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Abstract. The thermodynamic properties and some critical properties of the planar
rotator model with chiral Dzyaloshinsky-Moriya (DM) interaction on triangular lattice
are analyzed using a hybrid Monte Carlo method. It has been shown that there is a XY-
like Berezinskii-Kosterlitz-Thouless (BKT) phase transition in this model. The ground
state of this spiral system and the effects of size mismatch are also discussed.

PACS: 07.05.Tp, 21.60.Ka, 05.10.Ln, 75.10.Hk

Key words: Critical temperature, Dzyaloshinsky-Moriya interaction, Monte-Carlo simulation,
vortex.

1 Introduction

The study of the anisotropic effects on critical behaviors in spin system has attracted
much interest. One of the important anisotropies is the so-called Dzyaloshinsky-Moriya
(DM) interaction, arising from a mixture of super-exchange and spin-orbit coupling un-
der distorted lattices [1, 2]. It has been shown the DM interaction is responsible for the
understanding of the weak ferromagnetism of the low-temperature orthorhombic phase
and magnetic structure in copper oxide compound, such as La2CuO4 and some Fe and
Cr jarosites [3–8]. The DM interactions play an important role in the study of spin glasses
as well as the explanation of some neutron scattering measurements [9, 10]. Due to the
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lack of centrosymmetry of the lattice, the DM interaction can induce a helical chiral mag-
netic order [11–15]. Recently, it is found that DM interaction is the primary source of
anisotropy and plays an important role for understanding of the magnetization and spin
structure in antiferromagnetic materials [16]. The effects of DM interactions on low en-
ergy magnetic excitations have also investigated extensively by spin wave analysis and
direct numeric simulations [17–19]. The study of classical and quantum XY model with
DM interactions on a triangular lattice by real space renormalization group method and
spin molecular dynamics simulations indicated that the Berezinskii-Kosterlitz-Thouless
(BKT) phase could appear at low temperatures [20]. Wilson renormalization group re-
sults showed that adding DM interactions on the classical ferromagnetic Heisenberg
model, there exists a XY-like phase transition [21]. In addition, Monte-Carlo (MC) sim-
ulations and self-consistent harmonic approximation theory were also used to calculate
the BKT transition for the two-dimensional classical Heisenberg model with DM interac-
tion [22, 23]. To the best of our knowledge, the most of numeric simulations have been
focused on the study of strong DM interactions for antiferromagnetic spin models. On
appearance of anisotropic interactions, however, the spin system may display complex
thermodynamic and magnetic characteristics due to the competition between spin cou-
pling and DM interactions. In this work, we adopt a hybrid Monte-Carlo method to
study the effects of the DM term on planar rotator model on triangular lattices.

2 Model and simulation method

The Hamiltonian of the classical spin planar rotator model with a DM interaction term
between spins can be written as [20, 24, 25]

H=−J∑
〈ij〉

~Si ·~Sj−∑
〈ij〉

~D·(~Si×~Sj). (2.1)

Here J=1 is the reduced ferromagnetic coupling constant, θi are the angular coordinates

of two-component spins ~Si=(Sx
i ,S

y
i )=(cosθi,sinθi) and i, j indicate the nearest neighbor

sites of a triangular lattice. For the application of a cluster algorithm, Eq. (2.1) can be
simplified into

H=− J̃∑
〈ij〉

cos(θi−θj−ϕ). (2.2)

By considering the direction of DM interaction vector ~D= Dẑ along the positive z-axial
direction. For simplicity, J̃= J

√
1+d2, d=D/J and ϕ=tan−1(J/ J̃). Note that when d=

√
3,

namely ϕ=π/3, this model coincides with the fully frustrated XY model if the sum of ϕ
along an elementary triangular cell is equal to π [26, 27].

In order to prevent critical slowing down and correlations for different configurations,
we use a hybrid MC method, including cluster and single spin updates to calculate the
thermodynamic quantities for the model Hamiltonian Eq. (2.2). The simulations consist
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of one Swendsen-Wang (SW) cluster update [28, 29] followed by one Metropolis single
spin update in each MC step [30]. In an SW update process, we introduce a transforma-

tion θi → θi+
1−σi

2 π. Eq. (2.2) can be rewritten as

H=− J̃ ∑
〈i,j〉

cos
(

θi−θj+
1−σi

2
π+

1−σj

2
π−ϕ

)

=− J̃ ∑
〈i,j〉

cos(θi−θj−ϕ)σiσj,

where σi=±1. Now we define an effective Ising coupling HIsing=−∑i,j Jijσiσj, where Jij=

− J̃cos(θi−θj−ϕ). If Jijσiσj>0, we put a bond between two nearest spins with probability

p=1−e−2Jijσiσj/kBT.

Otherwise, there is no need to put bond between the nearest spins. In the next step, a
Hoshen-Kopelman method is used to identify all clusters of sites which are produced by
a connected network of bonds. In the following, one cluster is chosen to be updated with
probability 1/2 and a new spin arrangement is formed. In our simulation, 104MC steps
were discarded for thermal equilibration. about 5×105MC steps were used to get thermal
averages.

3 Results and discussions

We first discuss the ground state of this model. DM interaction can make the spin to ar-
range in a canted degree with its nearest neighbors [14,32]. Fig. 1 shows a typical ground
state spin configuration with DM interaction. Here we assume that the DM vector is
along two opposite direction. d>0 means the positive z-axial direction and d<0 means
negative z-axial direction. It is noted that the magnetic spin has a spiral periodic arrange-
ment. The periodicity is independent of the direction of the DM interaction vector, but
dependent on the magnitude of d. By changing the sign of d, based on the definition of
ϕ, the sign of ϕ in Eq. (2.2) is altered too. Since ϕ means the average difference of an
elementary triangle of the lattice on the ground state, the angular displacement between
nearest neighbor rotors changes sign as the sign of ϕ is changed. That is to say, the ori-
entation of the DM vector only effects the spin arrangement direction, as shown by the
arrows in Fig. 1(b)-(c). From Fig. 1(b)-(c), one notices that the spins along the horizontal
bonds undergo a complete 2π rotation over 10 lattice constants while along the two other
directions of the triangular lattice, 20 lattice constants are needed to perform a full 2π ro-
tation. With some fluctuations the nearest neighbor phase differences are about 2π/10
and 2π/20 respectively. Each triangular plaquette in the ground state has the similar
spin configuration as illustrated in Fig. 2. For the orientation of bonds defined as the red
arrows in Fig. 2, the energy per plaquette can be written as

U=− J̃[cos(α1−ϕ)+cos(α2−ϕ)+cos(α3−ϕ)], (3.1)
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Figure 1: Spin configurations of ground state for different DM interactions (a) d=0.02, (b) d=0.5, (c) d=−0.5.
The temperature of simulation is T=0.05.
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Figure 2: Example of a unit plaquette of ground state in triangular lattice. The arrows in the triangle indicate
the orientations of bonds.

where α1=θ1−θ2, α2=θ2−θ3 and α3=θ1−θ3=α1+α2 are the phase differences along the
orientations of bonds. We minimize the energy for both α1 and α2, ∂U/∂α1=∂U/∂α2=0,
that is

sin(α1−ϕ)+sin(α1+α2−ϕ)=sin(α2−ϕ)+sin(α1+α2−ϕ)=0.

Then we obtain the result α1=α2 =∆θ, which indicates that the nearest neighbors phase
differences ∆θ on the non-horizontal bonds are all the same. The relation of ground state
phase difference and parameter d can be written as follows

d= tan(ϕ)= tan
(3

2
∆θ

)

. (3.2)

We can get the ground state phase difference of nearest spins for any given value of d.
For example, at d=0.5, Eq. (3.2) gives ∆θ=0.309≈π/10, in excellent agreement with the
angles measured in Fig. 1. Then the periodicity Q of spin arrangements on ground state
can be obtained for any given values of d. The incommensurability of the ground state
periodicity with the finite lattice size and the boundary conditions may have a signifi-
cant effect on the thermodynamic quantities and the nature of phase transition [32–35].
When the system is incommensurate, periodic boundary conditions will serve to intro-
duce ”frustration” and act as an external stress in all space directions [32, 34]. In the
following, we discuss the effects of this mismatch on the thermodynamic quantities and
critical properties.
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Usually, the magnetization is used as an order parameter in the Monte Carlo simula-
tions for XY model. Here the spin arrangement is not parallel at ground state because of
DM interaction. Therefore, according to the spin configuration of this model, we define a
new order parameter as

M=
√

(Mx)2+(My)2=

√

√

√

√

( N

∑
i=1

cos
[

θi+(m+2n)∆θ
]

)2
+
( N

∑
i=1

sin
[

θi+(m+2n)∆θ
]

)2
, (3.3)

where m,n∈ [0,L−1] are integers and indicate the location of spin, as shown in Fig. 1.
Mx and My are the order parameter components of x direction and y direction. As the
MC proceeds, we record the time series of the energy density e=E/N, where lattice size
N= L×L. For each temperature, some thermodynamic quantities are observed [25, 31]

χα=

[

(〈(Mα)2〉−〈Mα〉2)
]

NkBT
, (3.4a)

χ′=
(χx+χy)

2
, (3.4b)

CV =
[〈E2〉−〈E〉2]

NkBT2
, (3.4c)

where χα is the order parameter susceptibility component (α can be taken as x or y com-
ponent in 2D model), χ′ is the in-plane order parameter susceptibility, CV is the specific
heat and T denotes temperature.

In this paper, the temperature, the specific heat, the energy per spin, the order param-
eter and the in-plane order parameter susceptibility are measured in unites of J/kB , kB, J,
S and (S)2, respectively. Here kB is the Boltzmann constant. The spin length S=1 is used
for simplicity. In the presenting figures, the statistical errors are smaller than the symbol
sizes.

Physically, any long-range order which otherwise would be present is destroyed
by spin wave excitations in planar rotator spin models. The existence of a phase
with conventional long range order at any non zero temperature is precluded by the
Mermin-Wagner theorem [36]. Therefore there is no spontaneous magnetization in two-
dimensional spin models. In such models there can however exist topological long
range order. Kosterlitz and Thouless used approximate renormalization group method
to demonstrate that this transition is caused by the unbinding of vortex-antivortex
pairs [37, 38]. The scenario is that at temperatures above some critical value Tc the vor-
tices and anti-vortices are unbounded and serve to disorder the system. Decreasing the
temperature causes the vortices and anti-vortices to bind. Then the phase transition ex-
hibits some essential scaling behavior, such as the order parameter susceptibility scales
with a power of the lattice size, χ′ ∝ L2−η, where theoretically the critical exponent η is
1/4 at the phase transition temperature. The DM interaction can induce an easy-plane
anisotropy, from which a BKT type transition has been expected in a two-dimensional
classical Heisenberg model with a DM interaction [22]. Due to both the absence of spec-
tacular peaks and a logarithmic correction that gives problems with ordinary finite-size
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Figure 3: Helicity modulus as a function of T for different d values at the fixed size L=48.

scaling, the precise determination of the temperature for a BKT transition is a difficult
task. The helicity modulus, Υ, obtained by a measure of the resistance to an infinitesi-
mal spin twist ∆ across the system along one coordinate, is a good way to show a BKT
transition. For a model Hamiltonian, Υ takes the generic expression [39, 40]

Υ=
〈 ∂2 H

∂∆2 〉
N

−β
〈( ∂H

∂∆
)2〉−〈 ∂H

∂∆
〉2

N
, (3.5)

where β=(kBT)−1 is the inverse temperature. For the planar rotator model with a DM
interaction, defined by Eq. (2.2), based on the derivation process of [41], we can get the
expression of helicity modulus on the triangular lattice

Υ(T)=−〈H〉√
3
− 2 J̃2

√
3kBTN2

〈[

∑
〈i,j〉

(êij · x̂)sin(θi−θj−ϕ)
]2〉

. (3.6)

Here êij is the unit vector pointing from site j to site i. x̂ is a selected basis vector in one
coordinate. There are universal relations between the helicity modulus and the critical
temperature, which are like fingerprints for the BKT transition. According to the renor-
malization group theory [37], critical temperature can be estimated from the intersection
of the helicity modulus Υ(T) and the straight line Υ=2kBT/π. The MC data of Υ(T) will
have a deeper drop in the critical region with increase of lattice size. For larger lattice size,
the intersection will be nearer to the critical temperature. Therefore, an over-estimate of
TC may be obtained by this method. We first consider the case that the DM interaction is
small, d<0.1.

Fig. 3 shows the results of different d for fixed system size L= 48, which is smaller
than the periodicity of spin arrangement. It is clear that there is a crossing point for
d<0.03. The intersections disappear for d>0.03. For d=0.00, as an example, the transition
temperature is Tc ≈ 1.50. This data is comparable with the result of high temperature
expansions [42, 43]. It is noted that the helicity modulus has a negative value when d≥
0.03. The negative value indicates that there is a lower free energy than the unperturbed
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Figure 4: Order parameter and specific heat for different lattice sizes at fixed d=1.0, where m=M/N is order
parameter density.

energy in a twisted system. This is due to the fact that Eqs. (3.5) and (3.6) are constructed
for periodic boundary conditions and the system sizes are limited in one periodicity of
spin arrangement. So the spins on the boundary line have a mismatch with its nearest
neighbors. This mismatch affects the value of helicity modulus using Eq. (3.5), which is
derived from periodic boundary conditions.

Meanwhile, periodic boundary conditions generally cause a mismatch around crit-
ical temperature causing an artificial ”stress” on the spin structure. This could have a
significant effect on the nature of the phase, especially when the system size is not large
enough compared with the periodicity [33]. Then a type of spiral phase transition whose
spin structure is typically incommensurate occurs at finite temperature. In this case, the
ground state structure will be governed mainly by the DM interaction, just as shown in
Fig. 1(b)-(c). This spiral phase is expected to be a XY-like BKT transition [21]. The min-
imum periodic length required to fully accommodate the ground state structure in the
short periodicity bond direction is given by Q=π/∆θ. For example, for d=0.05 we have
Q≈94. In the thermodynamic limit, the order parameter will be always finite and close to
1, as shown in Fig. 4. The specific heat is also shown in Fig. 4. If the lattice size is incom-
mensurate with the periodicity, the order parameter will collapse at the low temperature,
for example in some helimagnets. To avoid this mismatch, one approach is to employ
free boundary conditions and take very large lattice size to eliminate surface effects. But
this will need more time to attain the data. Another approach of trying to commensu-
rate the size mismatch would be to take the system size as an integral multiple of one
periodicity length. Thus the boundary will be suitable for this system and some methods
based on period boundary conditions can also be used directly. For example, for d=1.0
we can have Q= 6, which is just an integer. Fig. 5 shows the helicity modulus obtained
from Eq. (3.6), where the system sizes are taken as L = 12,24,36 and 48. The MC data
indicate the helicity modulus is positive at all temperatures. With the increased lattice
sizes, a deep drop appears near the temperature of the peak of specific heat. From the
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Figure 5: Helicity modulus as a function of T for different lattice sizes at the fixed DM interaction d=1.0.
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Figure 6: Application of Binders fourth order cumulant to estimate the phase transition temperature for several
lattice sizes at d=1.0.

crossing point of Υ(T) and the straight line Υ= 2kBT/π for the largest size L= 48, the
phase transition temperature is estimated at about TC =2.05.

Another approach called Binder’s fourth-order cumulant can be used to estimate the
location of TC in the thermodynamic limit. The Binder’s fourth order cumulant can be
defined as

UL=1− 〈M4〉
3〈M2〉2

. (3.7)

At the phase transition temperature, UL is expected to be approximately independent of
the system size. Therefore, TC can be obtained from the crossing point of UL for different
lattice sizes. As an example, Fig. 6 shows UL for different lattice sizes at d=1.0. The phase
transition temperature is estimated at about TC = 2.06. Generally speaking, this method
overestimates TC. With increasing L, the estimation of TC will be more accurate. Due to
the statistical uncertainties, however, more computer time is required to calculate near
TC.
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Theoretically, the critical exponent η is 1/4 at the BKT phase transition point. From
the finite size scaling analysis of the in-plane order parameter susceptibility, near and be-
low TC, the order parameter susceptibility scales with a power of the lattice size, χ′∝L2−η.
Therefore,using η=1/4, from the common point of intersection of the curves χ′/L7/4 vs
T, the phase transition temperature can be obtained [44–46]. Fig. 7 shows the application
of this method at d=1.0. The estimation of TC is about 2.03, which is very close to the re-
sult of helicity modulus method. From the scaling relation, we can get η=0.26 at T=2.05,
very close to the theoretical value. Both the results of the helicity modulus and critical
exponent have shown that the phase transition of this model is a BKT type. Using the
methods above, the phase transition temperature at different DM interactions is shown
in Fig. 8. Obviously, TC increases with the DM interaction.

The scenario of the BKT phase transition shows topological long-range order exists in
the system at low temperature and the vortex and antivortex are bounded as pairs. How-
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Figure 10: Log of vortex density as a function of 1/T for different lattice sizes. The solid straight line is the
linear fitted line to the low temperature data. The dotted lines indicate the fitted region of temperature.

ever, the number of vortices proliferates at high temperature. Meanwhile, the distance
between vortex-antivortex pairs becomes so large that they are effectively free and render
the system disordered. Fig. 9 shows a snapshot of unbinding of vortex and antivortex at
T=2.1, just above the critical temperature. In order to get the vortex density, we simulate
with different lattices under periodic boundary conditions. According to the BKT theory,
the vorticity q is defined as follows [37, 38],

q=
1

2π

∮

dθ(r), (3.8)

where θ(r) is the angle which a spin situated at r with the fixed axis. The integral is
taken round the boundary in each elementary triangle plaquette consisting of three spins
at the corners. The vortex density ρ is defined as the total number of vortex (positive
vortex and negative vortex) divided by the number of spins. In the limit, ρ is expected
as a exponential dependence with the energy 2µ which is the contribution of creating a
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vortex-antivortex pair, ρ∼ e−2µ/T . The theoretical value of 2µ is 10.2 in the BKT predic-
tion [47]. In order to get the result of 2µ, we plot −lnρ as the function of 1/T in Fig. 10. To
be compared with the theoretical value, in the low temperature region of T at 1.4∼TC, we
estimate 2µ=9.80 using a linear fit. Above TC, vortex density increases and 2µ decreases
as the temperature increases, which indicates that it is easier to generate more vortices
when many vortices are already present disordering the spins.

4 Conclusions

In conclusions, with an improved Swendsen-Wang algorithm, we studied the effects of
the DM term of a planar rotator model on the thermodynamic properties and some criti-
cal properties as well as the spin magnetic structure on a triangular lattice. It was found
that there is an XY-like BKT transition in this model with DM interaction.On the other
hand, we studied the ground state of system and verified that the periodicity of spin
arrangements only depends on the strength of the DM interaction. Meanwhile, we de-
fine an efficient order parameter to describe the configuration. Moreover, the thermody-
namics quantities are independent of spin arrangements because of the symmetry of the
Hamiltonian equation. The effects of the size mismatch on the thermodynamic quantities
are also discussed. We explain the reasons of negative value of the helicity modulus and
give one approach to solve this problem. In addition, the phase transition temperatures
are obtained by different methods and the properties of vortex density are also discussed.
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