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Abstract. In this paper, we propose a new conservative semi-Lagrangian (SL) finite
difference (FD) WENO scheme for linear advection equations, which can serve as a
base scheme for the Vlasov equation by Strang splitting [4]. The reconstruction proce-
dure in the proposed SL FD scheme is the same as the one used in the SL finite volume
(FV) WENO scheme [3]. However, instead of inputting cell averages and approximate
the integral form of the equation in a FV scheme, we input point values and approx-
imate the differential form of equation in a FD spirit, yet retaining very high order
(fifth order in our experiment) spatial accuracy. The advantage of using point values,
rather than cell averages, is to avoid the second order spatial error, due to the shearing
in velocity (v) and electrical field (E) over a cell when performing the Strang splitting
to the Vlasov equation. As a result, the proposed scheme has very high spatial accu-
racy, compared with second order spatial accuracy for Strang split SL FV scheme for
solving the Vlasov-Poisson (VP) system. We perform numerical experiments on linear
advection, rigid body rotation problem; and on the Landau damping and two-stream
instabilities by solving the VP system. For comparison, we also apply (1) the conserva-
tive SL FD WENO scheme, proposed in [22] for incompressible advection problem, (2)
the conservative SL FD WENO scheme proposed in [21] and (3) the non-conservative
version of the SL FD WENO scheme in [3] to the same test problems. The performances
of different schemes are compared by the error table, solution resolution of sharp in-
terface, and by tracking the conservation of physical norms, energies and entropies,
which should be physically preserved.
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1 Introduction

In this paper, we propose a conservative semi-Lagrangian (SL) finite difference (FD)
WENO scheme, by utilizing the same reconstruction procedure as in the SL finite vol-
ume (FV) WENO scheme in [3] for solving the 1-D advection equation

ut+cux =0, where c is a constant. (1.1)

This work is motivated by the kinetic plasma applications, where the Vlasov equation is
often numerically solved by the following procedure. First, the Strang splitting is applied
to decouple the high-dimensional nonlinear Vlasov equation into a sequence of linear
advection equations, such as (1.1); then a SL scheme is apply to solve those decoupled 1-D
equations. The SL approach for solving the Strang splitted Vlasov equation has been very
popular in the plasma simulation community, see for example [3, 9, 12, 21, 27, 31], as the
scheme for the splitted 1-D equation is usually simple, effective and free of CFL condition,
which is a restriction in Eulerian approach. There are many variance in designing a SL
scheme. Specifically, we characterize a SL scheme by the following three key components:

1. A solution space. The solution space can be point values, integrated mass (cell aver-
ages), or a piecewise polynomial function living on a fixed numerical grid, corre-
sponding to the SL FD scheme [3,15,21], SL FV scheme [9,12] and the characteristic
Galerkin method [5, 17] respectively.

2. Propagation. In each of the time step evolution, information is propagated along
characteristics. Usually, a high order interpolation or reconstruction procedure,
which determines the spatial accuracy of the scheme, is applied to recover the infor-
mation among discrete information on the solution space. In the literature, there are
a variety of interpolation/reconstruction choices, such as the piecewise parabolic
method (PPM) [7], positive and flux conservative method (PFC) [13], spline inter-
polation [8], cubic interpolation propagation (CIP) [28], ENO/WENO interpolation
or reconstruction [3, 16, 21, 22, 26]. We refer to [9, 10, 29] for comparison of different
reconstruction procedures.

3. Projection. Lastly, the evolved solution is projected back onto the solution space,
updating the numerical solution at tn+1.

It is known that the mass conservation is a very important property of a SL scheme.
Failure to conserve the mass might lead to some instability of the scheme [15]. To con-
serve the mass, a scheme working with integrated mass in a FV spirit, seems more natu-
ral and straightforward [9]. On the other hand, we argue that it is advantageous to work
with point values (FD scheme), rather than cell averages (FV scheme), due to the shear-
ing of advection coefficients (v and E) over a cell, in the context of Strang splitting for
Vlasov equation or other kinetic equations of similar kind. Due to above considerations,
a conservative scheme that works with point values seems ideal [21, 22]. In this paper,
we propose another approach of designing a conservative SL FD scheme by utilizing the
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same WENO reconstruction procedure as in a SL FV scheme [3]. The idea is motivated by
the very close relation between the FV and FD WENO scheme [16,26] for a semi-discrete
equation. We compare the performance of proposed scheme with the conservative or
non-conservative SL FD WENO schemes designed earlier in [3, 21, 22]. We note that the
scheme in [22] is applied to advection in incompressible flow; while in this paper, the
scheme in [22] is applied to Vlasov-Poisson (VP) system for the first time. Finally, we
remark that the SL method that we proposed is for linear equations. The SL schemes
for nonlinear equations are much more complicated and are out of the scope of the cur-
rent paper. Especially, due to the formation of shocks, the forward characteristics might
intersect with each other; or there might be multiple candidates for the root of character-
istic from backward characteristics tracing. This impose difficulty in designing a robust
and effective numerical scheme. We refer readers to [19, 23, 30] for research work in this
direction.

The paper is organized as follows. Section 2 is a review of FV and FD WENO scheme
for semi-discrete advection equation. Section 3 presents the SL FV WENO scheme [3],
and the proposed conservative SL FD WENO scheme, based on the same WENO re-
construction procedure as in the SL FV WENO scheme. Section 4 compares the pro-
posed scheme together with the conservative SL FD WENO scheme in [21, 22] and non-
conservative SL FD WENO scheme in [3] by linear advection and rigid body rotation.
Section 5 demonstrates the performance of the proposed schemes, in comparison with
other SL FD WENO schemes [3, 21, 22], through the classical Landau damping and two
stream instabilities by solving the VP system. Section 6 gives the conclusions.

2 FV and FD WENO methods

In this section, we will briefly review the FV and FD WENO spatial discretization for a
semi-discrete 1-D linear advection equation

ut+(cu)x =0, on [a,b], (2.1)

with the initial condition u(x,t=0)=u0(x). For simplicity, we assume a periodic bound-
ary condition. The purpose of this review section is to recall the WENO reconstruction
procedures in the FV and FD schemes, serving as a preparation for establishing the very
close relationship of the reconstruction procedures in SL FV and FD schemes in Section 3.
The readers are referred to [6, 26] for more details. In this paper, we adopt the following
spatial discretization of the domain [a,b]

a= x 1
2
< x 3

2
< ···< xN+ 1

2
=b, (2.2)

where Ii=[xi−1/2,xi+1/2], i=1,··· ,N, are uniform numerical cells with centers xi=(xi+1/2+
xi−1/2)/2, and cell sizes ∆x= xi+1/2−xi−1/2 =(b−a)/N. We use

ūi =
1

∆x

∫

Ii

u(ξ,t)dξ
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to denote the cell averages of the solution over Ii and use ui =u(xi,t) to denote the point
value of the solution at x = xi. We use ūn

i and un
i to denote the cell average/point value

of the solution over Ii/at xi at time t= tn respectively.

2.1 FV formulation

The FV scheme evolves the cell averages of the solution ūi, i=1,··· ,N, by approximating
the integral form of the Eq. (2.1)

d

dt
ūi =− 1

∆x

(

f̂i+ 1
2
− f̂i− 1

2

)

, ∀i=1,··· ,N, (2.3)

where the numerical flux
f̂i+ 1

2
= f̂

(

u−
i+ 1

2

,u+
i+ 1

2

)

is consistent with the physical flux f (u) = cu. It is Lipschitz continuous and monotoni-
cally increasing/decreasing with respect to the first/second argument. For example, an
upwind flux would be f̂i+1/2 =cu−

i+1/2, if c>0; and f̂i+1/2 =cu+
i+1/2 otherwise. The values

of u±
i+1/2 can be reconstructed in a WENO fashion from the cell averages in a neighbor-

hood stencil {ui−p,··· ,ui+q}. Specifically, one more point from the left (p=q) will be taken
to reconstruct u−

i+1/2, and one more point from the right (p=q−2) will be taken to recon-

struct u+
i+1/2. We refer to [6,26] for the details of WENO reconstructions. In the method of

line (MOL) procedure, the time derivative on the L.H.S of Eq. (2.3) is discretized by a sta-
ble time integrator, such as the third order strong stability preserving (SSP) Runge-Kutta
(RK) method [14]. There are other types of time discretization available in the literature,
e.g., the Lax-Wendroff type in [24].

2.2 FD formulation

The FD scheme evolves the point values of the solution ui, i=1,··· ,N, by approximating
the Eq. (2.1) directly. The scheme is of conservative form

d

dt
ui =− 1

∆x

(

f̂i+ 1
2
− f̂i− 1

2

)

. (2.4)

To obtain a high order approximation, a sliding average function h(x) is introduced, such
that

1

∆x

∫ x+ ∆x
2

x− ∆x
2

h(ξ)dξ = cu(x,t). (2.5)

Taking the x derivative of the above equation gives

1

∆x

(

h
(

x+
∆x

2

)

−h
(

x−∆x

2

))

=(cu)x. (2.6)
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Therefore the numerical flux f̂i+1/2 in Eq. (2.4) can be taken as h(xi+1/2), which can be
reconstructed from neighboring cell averages of h(x),

h̄j =
1

∆x

∫

Ij

h(ξ)dξ
(2.5)
= cu(xj,t), j= i−p,··· ,i+q,

by the WENO reconstruction [26]. The stencil {ui−p,··· ,ui+q} is chosen to be upwind
biased. Specifically, when c ≥ 0, one more point from the left (p = q) will be taken to
reconstruct f̂i+1/2; when c < 0, one more point from the right (p = q−2) will be taken.
Similar to Eq. (2.3), Eq. (2.4) is further discretized in time by a stable time integrator, such
as the third order SSP RK method [14].

Remark 2.1. (About WENO reconstructions) Although FV and FD schemes are working
with different quantities of the solution (cell averages and point values respectively), the
WENO reconstruction procedure in the FV and FD schemes is the same. Specifically, the
WENO reconstruction in both FV and FD schemes can be thought of as a blackbox, whose
input consists of cell averages of a given function, and whose output consists of highly
accurate point values of the same function at cell boundaries. The only difference is that
in the FV scheme, the reconstruction procedure works with the unknown function u itself;
but in the FD scheme, the reconstruction procedure works with a sliding average function
h defined in Eq. (2.5). In fact, for the linear advection equation with constant coefficients,
the numerical procedure of the FV and FD WENO schemes is exactly the same. The
only difference between these two schemes in this case is in the initial condition (the FV
scheme uses the cell averages of the initial condition while the FD scheme uses its point
values).

3 The SL FV and FD WENO schemes

In this section, we will start with a description of the SL FV WENO scheme, originally
introduced in [3]. We will briefly outline the scheme in Section 3.1, which will be closely
related to the SL FD WENO scheme introduced in Section 3.2.

3.1 SL FV WENO scheme

In a FV scheme, it is the cell averages of the solution ūi that are being updated. A SL FV
scheme is formulated based on the following observation: at each of the cell boundaries
at time level tn+1, say (xi+1/2,tn+1), there exists a backward characteristic line, denoted
as Γi+1/2, with its foot located on time level tn at yi+1/2. Since there is no flux passing
through the characteristics lines, due to the mass conservation, the cell averages of the
solution can be updated by

ūn+1
i

.
=

1

∆x

∫ x
i+ 1

2

x
i− 1

2

u(x,tn+1)dx=
1

∆x

∫ y
i+ 1

2

y
i− 1

2

u(x,tn)dx. (3.1)
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To evaluate the R.H.S of Eq. (3.1), we would like to locate yi±1/2 and to reconstruct the
integral by the given cell averages {ūn

i }N
i=1. For a linear advection equation, the character-

istics are straight lines with slope 1/c, therefore yi±1/2 =xi±1/2−c∆t; and the integral can
be reconstructed by a WENO interpolation of the primitive function of u. More specifi-
cally, we let

Un(x)=
∫ x

u(ξ,tn)dξ

to be the primitive function of u(x,tn) with U(a)=0, then

Un
i

.
=Un(xi)=∆x

i

∑
j=1

ūn
j , and

1

∆x

∫ y
i+ 1

2

y
i− 1

2

u(x,tn)dx=
1

∆x

(

Un(yi+ 1
2
)−Un(yi− 1

2
)
)

.

We reconstruct the point values of U, e.g., U(yi+1/2), from the grid point values of {Un
i }N

i=1

by a WENO interpolation. The WENO interpolation algorithm has been discussed in [2,
20,25]. The difference between the WENO interpolation in this SL FV framework and that
in the literature, e.g., in [25], is that (i) to obtain a (2k+1)th order local truncation error,
we need a (2k+2)-point stencil due to the 1/∆x factor in Eq. (3.1), and (ii) the smoothness
indicators in the WENO algorithm should be derived, taking into account of second and
higher order derivatives of U(x), rather than first and higher derivative of u(x) as in the
WENO interpolation in [25].

In the following, we provide a sixth order WENO interpolation, giving a fifth order
SL FV WENO scheme, as used in our simulations in Section 4 and 5. The goal is to
construct U(x) for any x ∈ [xi−1,xi] (or ξ

.
= (x−xi)/∆x ∈ [−1,0]) in the WENO fashion

from a 6-point stencil S={Ui−3,Ui−2,Ui−1,Ui,Ui+1,Ui+2}, which can be decomposed into
three 4-point stencils

S1 ={Ui−3,Ui−2,Ui−1,Ui}, S2 ={Ui−2,Ui−1,Ui,Ui+1}, S3 ={Ui−1,Ui,Ui+1,Ui+2}.

Linear weight function Ck(ξ), k =1,2,3. We denote Q(ξ) as the polynomial of degree 5
interpolating the point values in the 6-point stencil S and denote Pk(ξ) as the polynomial
of degree 3 interpolating the point values in the stencil Sk. It is proved in [2] that there
exist linear weights Ck(x), which are actually polynomials of degree 2, such that

Q(x)=
3

∑
k=1

Ck(x)Pk(x).

In the sixth order case of our implementation, we have

Q(ξ)=(Ui−3,Ui−2,Ui−1,Ui,Ui+1,Ui+2)
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P1(ξ)=(Ui−3,Ui−2,Ui−1,Ui)
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P2(ξ)=(Ui−2,Ui−1,Ui,Ui+1)
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C1(ξ)=
1

20
(ξ−1)(ξ−2), C2(ξ)=− 1

10
(ξ+3)(ξ−2), C3(ξ)=

1

20
(ξ+3)(ξ+2).

Nonlinear weights by the smoothness indicator. The smoothness indicators βk are deter-
mined by

βk =
3

∑
l=2

∫ 0

−1

( dl

dξ l
Pk(ξ)

)2
dξ. (3.2)

Therefore we have

β1 =−9Ui−3Ui−2+
4

3
Ui−3

2− 11

3
Ui−3Ui+10Ui−3Ui−1+14Ui−2Ui

+22Ui−1
2−17Ui−1Ui+

10

3
Ui

2+16Ui−2
2−37Ui−2Ui−1,

β2 =−7Ui−2Ui−1+
4

3
Ui−2

2− 5

3
Ui−2Ui+1+6Ui−2Ui+6Ui−1Ui+1

+10Ui
2−7UiUi+1+

4

3
U4

2+10Ui−1
2−19Ui−1Ui,

β3 =−17Ui−1Ui+
10

3
Ui−1

2− 11

3
Ui−1Ui+2+14Ui−1Ui+1+10UiUi+2

+16Ui+1
2−9Ui+1Ui+2+

4

3
Ui+2

2+22Ui
2−37UiUi+1.

The nonlinear weights are chosen to be

wk(ξ)=
w̃k(ξ)

∑
3
k=1w̃k(ξ)

, w̃k(ξ)=
Ck(ξ)

(ǫ+βk)2
,

where ǫ is chosen to be 10−6 in our simulations.



986 J.-M. Qiu and C.-W. Shu / Commun. Comput. Phys., 10 (2011), pp. 979-1000

3.2 SL FD WENO scheme

In a FD scheme, it is the point values of the solution ui that is being updated. There
have been two different formulations of conservative SL FD WENO schemes in the lit-
erature [21, 22]. The one in [22] is advantageous over that in [21] in that the formulation
in [22] can be applied to equations with variable coefficients; while the one in [21], based
on the splitting of interpolation matrices, only applies to advection with constant coef-
ficients. In this paper, we introduce another formulation of the SL FD WENO scheme,
based on the SL FV WENO scheme formulated in Section 3.1. Specifically, we show that
instead of working with cell averages of the solution in a SL FV WENO scheme, if we
work with point values in a FD formulation using the same WENO reconstruction pro-
cedure, we retain high order accuracy (fifth order in our simulations). This new SL FD
WENO scheme is simpler to implement than that in [22]. Unfortunately, as the SL FD
WENO scheme in [21], our current formulation only applies to equations with constant
coefficients.

It is known that at each of the grid points xi, there exists a backward characteristic
line with the foot located on the time level tn at yi =xi−c∆t for linear advection equation
with advection speed c. Along the characteristics, the solution is constant u(xi,t

n+1) =
u(xi−c∆t,tn). If we directly apply some point value reconstruction, e.g., the WENO in-
terpolation to update u(xi,t

n+1), the numerical scheme is not necessarily conservative.
To design a conservative SL FD scheme, we define an h(x,t) function as following,

1

∆x

∫ X(t;x+ ∆x
2 ,tn+1)

X(t;x− ∆x
2 ,tn+1)

h(ξ,t)dξ =u(x,t), t∈ [tn ,tn+1], (3.3)

where X(t;ξ,tn+1) are the characteristics curves over [tn,tn+1] ending at (ξ,tn+1), i.e.,

dX(t)

dt
= c, X(tn+1)= ξ.

From the Eq. (3.3), we know that

un+1
i =

1

∆x

∫ x
i+ 1

2

x
i− 1

2

h(ξ,tn+1)dξ,
1

∆x

∫ x
i+ 1

2
−c∆t

x
i− 1

2
−c∆t

h(ξ,tn)dξ =u(xi−c∆t,tn).

Since u(xi,t
n+1)=u(xi−c∆t,tn), we have

1

∆x

∫ x
i+ 1

2

x
i− 1

2

h(ξ,tn+1)dξ =
1

∆x

∫ x
i+ 1

2
−c∆t

x
i− 1

2
−c∆t

h(ξ,tn)dξ. (3.4)

In other words, in order to update the point values of u, e.g., un+1
j from u(xi−c∆t,tn),

it is equivalent to update the cell averages of h, e.g.,
∫ xi+1/2

xi−1/2
h(ξ,tn+1)dξ/∆x from some
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integrated mass of h at tn on the R.H.S. of Eq. (3.4). On the other hand, this integral can
be reconstructed from the cell averages of h, since

h̄i =
1

∆x

∫ x
i+ 1

2

x
i− 1

2

h(ξ,tn)dξ
(3.3)
= un

i ,

in the same way as the WENO reconstruction in the SL FV WENO scheme described in
the previous subsection.

Remark 3.1. (conservation) The conservation property of the scheme can be seen by

∆x
N

∑
i=1

un+1
i =∆x

N

∑
i=1

h̄n+1
i =

N

∑
i=1

∫ x
i+ 1

2
−c∆t

x
i− 1

2
−c∆t

h(ξ,tn)dξ =∆x
N

∑
i=1

h̄n
i =∆x

n

∑
i=1

un
i ,

if periodic boundary condition is assumed.

Remark 3.2. Unfortunately, the above formulation can not be applied to the equations
with variable coefficients. The problem is that

un
i =

1

∆x

∫ X(tn;x
i+ 1

2
,tn+1)

X(tn;x
i− 1

2
,tn+1)

h(ξ,t)dξ 6= 1

∆x

∫ x
i+ 1

2

x
i− 1

2

h(ξ,tn)dξ = h̄n
i .

In other words, un
i is not necessarily the cell averages of h, h̄n

i . A conservative update via
this route is therefore, if not impossible, highly non-trivial.

Remark 3.3. The SL FV/FD formulations for the linear advection equations with con-
stant coefficients are equivalent to the Lax-Wendroff formulation with enough terms in
the Taylor expansions. This is a different time discretization strategy from the SSP RK
schemes.

4 Numerical tests

In this section, the SL FD schemes proposed in Section 3 (referred to as Method I) is
tested for the simple cases of linear advection and rigid body rotation, together with
the conservative SL FD schemes proposed in [21, 22] (referred as Method II and Method
III respectively), and the non-conservative SL FD scheme proposed in [3] (referred as
Method IV). All of the SL FD schemes are coupled with a fifth order WENO reconstruc-
tion/interpolation.

4.1 Test examples

Example 4.1. (One dimensional linear translation)

ut+ux =0, x∈ [0,2π]. (4.1)
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Table 1: Order of accuracy for (4.1) with u(x,t=0)=sin(x) at T =20. CFL=2.2.

– Method I Method II Method III Method IV
mesh error order error order error order error order

40 1.18E-5 – 1.18E-5 – 1.31E-5 – 1.02E-5 –
80 3.63E-7 5.03 3.63E-7 5.03 4.04E-7 5.03 3.47E-7 4.88

120 4.74E-8 5.02 4.74E-8 5.02 5.27E-8 5.03 4.63E-8 4.96
160 1.11E-8 5.03 1.12E-8 5.02 1.24E-8 5.02 1.09E-8 5.02
200 3.64E-9 5.01 3.67E-9 4.99 4.07E-9 4.99 3.56E-9 5.04

Table 2: Order of accuracy for (4.2) with u(x,y,t=0)=sin(x+y) at T =20. CFL=2.2.

– Method I Method II Method III Method IV
mesh error order error order error order error order
20×20 7.94E-4 – 7.94E-4 – 8.28E-4 – 6.03E-4 –
40×40 2.51E-5 4.98 2.51E-5 4.98 2.62E-5 4.97 2.24E-5 4.75
60×60 3.29E-6 5.01 3.29E-6 5.01 3.44E-6 5.00 3.10E-6 4.88
80×80 7.80E-7 5.00 7.80E-7 5.00 8.16E-7 5.00 7.50E-7 4.93

Four different SL FD methods (Methods I, II, III, IV) with fifth order WENO reconstruc-
tion/interpolation are used to solve Eq. (4.1). Table 1 gives the L1 error, and the corre-
sponding order of convergence when the four different methods are applied to Eq. (4.1)
with the smooth initial data u(x,0)= sin(x). As expected, fifth order convergence is ob-
served. The schemes also inherit the essentially non-oscillatory property of the WENO
reconstruction, when advecting rectangular waves. Numerical results are omitted here
to save space. For Method IV, the conservation error is not significant for this example.
The conservation error up to T=20 is in the order of 10−15 for the smooth sine wave func-
tion, and is in the order of 10−12 for the rectangular wave. The non-conservative scheme
seems to have slightly smaller L1 error in magnitude.

Example 4.2. (Two dimensional linear transport)

ut+ux+uy =0, x∈ [0,2π], y∈ [0,2π]. (4.2)

The equation is being split into two one-dimensional equations, each of which is evolved
by SL FD WENO methods. For any 2-D linear transport equation, the SL method is
essentially a shifting procedure. Since the x-shifting and y-shifting operators commute,
there is no dimensional splitting error in time and the spatial error is the dominant error.
Table 2 gives the L1 error and the corresponding order of convergence for applying the
four different SL FD schemes to Eq. (4.2) with the smooth solution u(x,y,t)= sin(x+y−
2t). Again fifth order convergence for all schemes are observed as expected. In our 2-D
simulation, CFL=∆t/∆x+∆t/∆y.
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Figure 1: Plots of the initial profile. The numerical mesh is 100×100.

Figure 2: Plots of the numerical solution for Eq. (4.3) with CFL = 2.2 at T = 12π. The numerical mesh is
100×100. From left to right, from top to bottom are the solutions from Methods I, II, III, IV respectively.

Example 4.3. (Rigid body rotation)

ut−yux+xuy =0, x∈ [−2π,2π], y∈ [−2π,2π]. (4.3)

The equation is being Strang split into two one-dimensional equations, each of which is
evolved by different SL FD WENO methods. The initial condition we used is plotted in
Fig. 1. It includes a slotted disk, a cone as well as a smooth hump, similar to the one
in [18] for comparison purpose. The numerical solutions after six full revolutions by the
schemes are plotted in Fig. 2 by 2D surfaces and in Fig. 3 by 1D cuts benchmarked with
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(a) (b)

(c)

Figure 3: Plots of the 1-D cuts of the numerical
solution for Eq. (4.3) at X = 0 (a), Y =−1.6 (b)
and Y =1.54 (c) with CFL =2.2 at T =12π. The
numerical mesh is 100×100.

the exact solution. With all the reconstructions, non-oscillatory capturing of discontinu-
ities is observed. Conservative schemes (Methods I, II, III) are observed to perform better
than the non-conservative SL FD WENO scheme (Method IV), see the first and second
plots in Fig. 3.

5 The Vlasov-Poisson system

In this section, we demonstrate the performance of the proposed method, compared with
those in [3, 21, 22] by applying them to classical problems in plasma physics, such as
Landau damping and two-stream instability. These classical phenomena are described
by the well-known Vlasov-Poisson (VP) system,

∂ f

∂t
+v·∇x f +E(t,x)·∇v f =0, (5.1a)

E(t,x)=−∇xφ(t,x), −△xφ(t,x)=ρ(t,x). (5.1b)

In Eq. (5.1a)-(5.1b), x and v are coordinates in phase space (x,v)∈R
3×R

3, E is the electric
field, φ is the self-consistent electrostatic potential and f (t,x,v) is the probability distri-
bution function which describes the probability of finding a particle with velocity v at
position x at time t. The probability distribution function couples to the long range fields
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via the charge density, ρ(t,x) =
∫

R3 f (t,x,v)dv-1, where we take the limit of uniformly
distributed infinitely massive ions in the background. Eqs. (5.1a) and (5.1b) have been
nondimensionalized so that all physical constants are one. Below, we briefly recall some
classical preservation results in the VP system. We hope that our numerical solutions can
preserve these classical conserved quantities as much as possible.

1. Preservation of the Lp norm, for 1≤ p<∞,

d

dt

∫

v

∫

x
f (x,v,t)pdxdv=0. (5.2)

2. Preservation of the entropy

d

dt

∫

v

∫

x
f (x,v,t)ln( f (x,v,t))dxdv=0. (5.3)

3. Preservation of the energy

d

dt

(

∫

v

∫

x
f (x,v,t)v2dxdv+

∫

x
E2(x,t)dx

)

=0. (5.4)

The Strang splitting SL method for the VP system was originally proposed in ref-
erence [4], and soon gained wide popularity [9, 10, 29]. The Strang splitting reduces
the high dimensional nonlinear Vlasov equation into one-dimensional advection equa-
tions, on which the high order SL FD WENO schemes can be applied. In this section,
the four different SL formulations tested in Section 4 are applied to the Strang splitted
Vlasov equation. The schemes are tested in the classical problems in plasma physics,
such as Landau damping, two stream instabilities. The performance of the schemes will
be demonstrated/compared by the solution profiles, as well as by tracking the time evo-
lution of theoretically preserved quantities (Eq. (5.2)-(5.4)) in the discrete sense.

Without loss of generality, we consider the Vlasov equation, Eq. (5.1a), with only one
position and one velocity axis, i.e., (x,v)∈R×R. The extension to higher dimensions in
x and v is straightforward. The time splitting form of Eq. (5.1a) is,

∂ f

∂t
+v

∂ f

∂x
=0, (5.5a)

∂ f

∂t
+E(t,x)

∂ f

∂v
=0. (5.5b)

The split form of Eq. (5.1a) can be made second order accurate in time by solving Eq. (5.5a)
for a half time step, then solving Eq. (5.5b) for a full time step, followed by solving
Eq. (5.5a) for a second half time step. The observation that both Eq. (5.5a) and Eq. (5.5b)
are linear hyperbolic equations allows for a direct implementation of the SL FD WENO
schemes. Specifically, the numerical update from f n(x,v) (the solution at tn = n∆t) to
f n+1(x,v) is as follows:
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1. Advance a half time step for Eq. (5.5a) by a SL method,

f ∗(x,v)=SL
(

f ,
1

2
∆t

)

; (5.6)

2. Compute the electric field at the half step by substituting f ∗ into Eq. (5.1b) and solve for E∗(x);

3. Advance a full time step for Eq. (5.5b) by a SL method,

f ∗∗(x,v)=SL( f ∗,∆t); (5.7)

4. Advance a half time step for Eq. (5.5a) by a SL method,

f n+1(x,v)=SL
(

f ∗∗,
1

2
∆t

)

. (5.8)

In our experiments, periodic boundary conditions are imposed in the x-direction and
zero boundary conditions are imposed in the v-direction for all of our test problems.
Because of the periodicity in space, a fast Fourier transform (FFT) is used to solve the 1-D
Poisson equation. ρ(x,t) is computed by rectangular rule,

ρ(x,t)=
∫

f (x,v,t)dv=∑
j

f (x,vj,t)∆v,

which is spectrally accurate [1], when the underlying function is smooth enough. In our
numerical experiments below, The Lp norms/entropy/energy are numerically approxi-
mated by rectangular rule, which is again spectrally accurate, if the integrated function
is smooth enough.

Example 5.1. (Weak Landau damping) Consider the example of weak Landau damping
for the VP system. The initial condition used here is,

f (x,v,t=0)=
1√
2π

[

1+αcos(kx)
]

exp
(

− v2

2

)

, (5.9)

with α=0.01 and k=0.5. The time evolution of the L2 and L∞ norm of the electric field is
plotted in the upper plots of Fig. 4. The correct damping of the electric field is observed
in the plots, benchmarked with the theoretical value γ =0.1533 [11] (the solid line in the
same plots). We observe that all of the four methods generate very consistent results, per-
forming very well in recovering the damping rate. We remark that the numerical results
from the Method I, II and III are comparable with each other, almost indistinguishable
from the plots in this example and other examples below in most cases. The time evolu-
tion of the L1, L2 solution norms, energy, entropy in the discrete sense are demonstrated
in the mid and bottom plots in Fig. 4. The advantage of using conservative scheme in
preserving the relevant physical norms is observed. Despite this, we remark that in the
weak Landau damping case, the relevant physical norms are preserved pretty well for
both the conservative and non-conservative schemes (see the magnitude variance in all
of the y-axis) in Fig. 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Weak Landau damping: time evolution of electric field in L2 (a) and L∞ (b) norm, L1 (c) and L2 (d)
norms of the solution as well as the discrete kinetic energy (e) and entropy (f).

Example 5.2. (Strong Landau damping) The next example we consider is the case of
strong Landau damping. We simulate the VP system with the initial condition in Eq. (5.9)
with α=0.5 and k=0.5. Our numerical simulation parameters for all schemes are vmax=5,
Nx = 64, Nv = 128 and ∆t = ∆x; where vmax is the maximum velocity on the phase space
mesh, Nx is the number of grid points along the x axis, Nv is the number of grid points
along the v axis, and ∆t is the time step used. In the first row of Fig. 5, the time evolu-
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Strong Landau damping: time evolution of electric field in L2 (a) and L∞ (b) norm, L1 (c) and L2

(d) norms of the solution as well as the discrete kinetic energy (e) and entropy (f).

tion of the L2 and L∞ norm of the electric field is plotted. The profile of non-conservative
Method IV deviates from the evolution profiles of other conservative SL FD WENO meth-
ods after longer time evolution (roughly around T =40). The discrete L1 norm, L2 norm,
kinetic energy and entropy for four different methods are plotted in the second and third
row of Fig. 5. It is observed that schemes with conservative properties do a better job in
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preserving the discrete L1, L2 norm and kinetic energy than a non-conservative scheme.
On the other hand, the non-conservative scheme (Method IV) seems to be better in pre-
serving the entropy, an observation that the authors could not explain. Since the numer-
ical solutions we obtained are consistent with the Fig. 4.9 in [21], we skip demonstrating
them to save space.

Example 5.3. (Two stream instability [11]) Consider the symmetric warm two stream
instability, i.e., the electron distribution function in the VP system is started with the
unstable initial condition [11],

f (x,v,t=0)=
2

7
√

2π
(1+5v2)

(

1+
α

1.2
((cos(2kx)+cos(3kx))+cos(kx)

)

exp
(

− v2

2

)

, (5.10)

with α = 0.01, k = 0.5. The length of the domain in the x direction is L = 2π/k and the
background ion distribution function is fixed, uniform and chosen so that the total net
charge density for the system is zero. Our numerical simulation parameters are vmax =5,
Nx=64, Nv=128, ∆t=∆x for all schemes. Fig. 6 shows numerical solutions of phase space
profiles at T=53 from the four different SL FD WENO schemes. The conservative scheme
(Method I, II, III) seem to perform slightly better than a non-conservative scheme, if care-
ful observation in the rotational core is made. In the first row of Fig. 7, the time evolution

Figure 6: Phase space plots of the two stream instability at T = 53 using Method I, II, III, IV. The numerical
mesh is 64×128.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Two-stream instability: time evolution of electric field in L2 (a) and L∞ (b) norm, L1 (c) and L2 (d)
norms of the solution as well as the discrete kinetic energy (e) and entropy (f).

of the L2 and L∞ norm of the electric field is plotted. Consistent numerical solutions from
all of the four methods are observed. The second and third rows of Fig. 7 are the time
development of the discrete L1 norm, L2 norm, kinetic energy and entropy for four dif-
ferent methods. It is observed that schemes with conservative properties in general do a
better job in preserving those physical norms than a non-conservative scheme.
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Figure 8: Phase space plots of the two
stream instability at T=70 using Method
I, II, III, IV. The numerical mesh is 512×
512. The bottom plot is the same solu-
tion but using double refined numerical
mesh 1024×1024 as a reference solution.

Example 5.4. (Two stream instability [9]) Consider the symmetric two stream instability,
similar as in [9],

f (x,v,t=0)=
1

2vth

√
2π

[

exp
(

− (v−u)2

2v2
th

)

+exp
(

− v+u

2v2
th

)]

(1+0.05cos(kx)), (5.11)

with u = 0.99, vth = 0.3 and k = 2/13. The background ion distribution function is fixed,
uniform and chosen so that the total net charge density for the system is zero. Our numer-
ical simulation parameters are vmax =5, Nx =512, Nv =512, ∆t=∆x for all schemes. Fig. 8
shows numerical solutions of phase space profiles at T=70 from the four different SL FD
WENO schemes. The conservative scheme (Method I, II, III) seem to perform better than
a non-conservative scheme, compared with the double refined reference solution, the last
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(a) (b)

(c) (d)

Figure 9: Two-stream instability: time evolution of L1 (a) and L2 (b) norms of the solution as well as the
discrete kinetic energy (c) and entropy (d).

plot in Fig. 8. In the first row of Fig. 9, the time evolution of the L2 and L∞ norm of the
electric field is plotted. Consistent numerical solutions from all of the four methods are
observed. The second and third rows of Fig. 9 are the time development of the discrete
L1 norm, L2 norm, kinetic energy and entropy for four different methods. Again, con-
servative schemes in general perform better in preserving those physical norms than a
non-conservative scheme.

6 Conclusions

In this paper, we propose a new conservation semi-Lagrangian (SL) finite difference (FD)
WENO scheme, based on the same reconstruction procedure as the one used in a SL finite
volume (FV) WENO scheme. We implement the proposed scheme, as well as the other
three SL FD WENO schemes in [3,21,22] to the linear advection, rigid body rotation prob-
lem; and on the Landau damping and two-stream instabilities by solving the VP system.
We compare the performance of different schemes, and demonstrate that conservative
schemes in general perform better than non-conservative ones in tracking the evolution
of physically conserved quantities.
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