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Abstract. We consider constraint preserving multidimensional evolution equations.
A prototypical example is provided by the magnetic induction equation of plasma
physics. The constraint of interest is the divergence of the magnetic field. We de-
sign finite volume schemes which approximate these equations in a stable manner and
preserve a discrete version of the constraint. The schemes are based on reformulat-
ing standard edge centered finite volume fluxes in terms of vertex centered potentials.
The potential-based approach provides a general framework for faithful discretizations
of constraint transport and we apply it to both divergence preserving as well as curl
preserving equations. We present benchmark numerical tests which confirm that our
potential-based schemes achieve high resolution, while being constraint preserving.
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1 Introduction

We are concerned with evolution equations of the form

ut+L
(

∂x,f(x,t,u)
)

=0, ∀(x,t)∈R
n×R+, (1.1)

where u(x,t) : R
n×R+ 7→R

m is the unknown, f : X 7→X is a nonlinear flux function and
L : X 7→Y is a differential operator acting on the Sobolev space X. We assume there exists
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another differential operator M :Y 7→Z, such that ML
(

f(·,·,v)
)

≡0 for all v∈X. Applying
the operator M to both sides of (1.1), we obtain

(Mu)t≡0. (1.2)

Hence, solutions of (1.1) satisfy an additional constraint which enforces them to lie on a
sub-manifold of the space X.

The above framework is generic to a large class of evolution equations involving in-
trinsic constraints. We mention three prototype examples. As a first example, consider the
curl advection

ut+curl
(

f(x,t,u)
)

=0, (x,t)∈R
n×R+. (1.3)

This equation is an example for (1.1) and (1.2), with the differential operators L=curl and
M=div. Hence, solutions of (1.3) satisfy the additional divergence constraint

div(u)t =0. (1.4)

A specific example for (1.3) is the magnetic induction equation of plasma physics. Under
the assumptions of zero resistivity, the magnetic field u, evolving under the influence of
a given velocity v, satisfies the following form of the Maxwell’s equations [23]

ut+curl(u×v)=0, (x,t)∈R
n×R+. (1.5)

The fact that magnetic monopoles have not been observed in nature implies that

div
(

u(x,0)
)

≡0. (1.6)

As a consequence of the divergence constraint (1.4), the solutions of (1.5) remain diver-
gence free. The magnetic induction equation (1.5) is a sub-model for the equations of
ideal Magnetohydrodynamics (MHD) [11].

Adding magnetic resistivity to the model leads to the viscous magnetic induction
equations

ut+curl(u×v)=−σ
(

curl(curlu)
)

, (x,t)∈R
n×R+. (1.7)

The parameter σ is the resistivity co-efficient of the medium. Solutions of (1.7) also satisfy
the divergence constraint (1.4).

A second example for (1.1) and (1.2) is the grad advection

wt+grad
(

f(x,t,w)
)

=0, (x,t)∈R
n×R+. (1.8)

The differential operators of interest are L = grad and M = curl and solutions of (1.8)
satisfy the additional constraint

curl(w)t =0.
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A related example is the system of two dimensional linear wave equations [21]







pt+cux+cvy =0,
ut+cpx =0,
vt+cpy =0.

(1.9)

The corresponding differential operators L and M are

L=





0 c 0
c 0 0
0 0 0



∂x +





0 0 c
0 0 0
c 0 0



∂y,

and M=(0,0,1)∂x +(0,−1,0)∂y picks the vorticity of the flow,

ω :=vx−uy.

A third-considerably more complicated example of evolution equations with non-linear
constraints is provided by the Einstein equations [10].

Standard finite volume/finite difference numerical schemes for approximating (1.1)
and (1.2) may not necessarily treat the constraint properly and may fail to be stable [11].
Hence, suitable constraint preserving schemes need to be devised for robust approxima-
tion of (1.1) and (1.2). Design of efficient numerical schemes for the constrained evolution
equations (1.1) and (1.2) is a highly active research area, consult [1, 9, 21, 24, 31] and ref-
erences therein. We mention below three main methods available in the literature for
handling constraint transport equations, where most of the attention is devoted to appli-
cations to the ideal MHD and the magnetic induction equations (1.5).

1.1 Projection method

This method [5–7] is based on the Hodge decomposition of the solution u of (1.5). The
update un at each time step may not be divergence free and is corrected by the decompo-
sition

un =∇Ψ+curlΦ.

Applying the divergence operator to the Hodge decomposition leads to the elliptic equa-
tion

−∆Ψ=div(un).

The corrected field

u∗=un−∇Ψ

is divergence free. This method can be very expensive computationally as an elliptic
equation has to be solved at every time step, augmented with proper set of boundary
conditions, e.g., [31].
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1.2 Source terms

Adding a source term proportional to the divergence in (1.5) results in

ut+curl(u×v)=−vdiv(u). (1.10)

Applying the divergence to both sides, we obtain

(

div(u)
)

t
+div(vdivu)=0.

Hence, any potential divergence errors are transported away from the computational do-
main by the flow. Furthermore, the form (1.10) is symmetrizable [13]. This procedure for
”cleaning” the divergence was introduced in [22,23]. Recent papers [11,12] have demon-
strated that the source term in (1.10) needs to be discretized in a very careful manner
for numerical stability. Another problem with this approach lies in the non-conservative
form of (1.10). Hence, numerical schemes based on this approach may result in wrong
shock speeds [31].

1.3 Design of special divergence operators/staggering

This popular method consists of staggering the discretizations of the velocity and mag-
netic fields in (1.5). A wide variety of strategies for staggering the meshes has been pro-
posed [2–4, 8, 9, 24, 31] and references therein. The presence of different sets of meshes
leads to problems when the staggered schemes are parallelized. Unstaggered variants of
this approach have also been proposed in [1, 29, 30]. The approach suggested in [30] is of
particular relevance for this paper; the authors suggest an unstaggered method, based on
upwinded flux distributions in each cell, resulting in a scheme which preserves a particular
discrete form of divergence.

The above examples leave room for designing other constraint preserving schemes that
are easy to implement and computationally robust. In this paper we propose a new ap-
proach for designing such schemes. Our starting point is the genuinely multi-dimensional
structure of Eq. (1.1) complemented with the constraint (1.2). This is in contrast to stan-
dard finite volume schemes based on locally one dimensional edge centered fluxes [18,
28], which do not incorporate any explicit information in the transverse direction. Here,
we introduce a new approach to modify standard finite volume schemes which incorpo-
rates genuinely multi-dimensional information, resulting in a new family of constraint
preserving schemes.

To this end, we propose the construction of vertex-centered numerical potentials which
serve as the building blocks of our constraint preserving schemes. Written in terms of
these numerical potentials, the proposed schemes are genuinely multi-dimensional and
preserve a discrete form of the constraint (1.2). The framework is very general, easy to
code and allow for any consistent numerical flux to be used as a building block for the
construction of numerical potentials. No additional upwinding is necessary for numeri-
cal stability. Our new, so-called potential-based approach, is demonstrated in the context
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of the linear magnetic induction equation (1.5). The potential-based schemes preserve a
discrete version of divergence. We prove numerical stability for certain versions of these
schemes. Numerical experiments illustrating the generality of the approach and its com-
putational efficiency are presented.

The rest of this paper is organized as follows, in Section 2, we describe the general
form of constraint preserving potential-based schemes. In Section 3, the magnetic induc-
tion equation (1.5) are considered and some stability results presented. Numerical exper-
iments are presented in Section 4. This paper is the first in a series of papers devoted
to genuinely multi-dimensional schemes based on numerical potentials. Subsequent pa-
pers [19, 20] will extend this approach to non-linear conservation laws, including the
equations of MHD.

2 Potential based constraint preserving schemes

For simplicity of the exposition, we start with the two dimensional form of curl advec-
tion (1.3)

{

(u1)t+ fy =0,
(u2)t− fx =0,

(2.1)

with the flux
f = f (x,y,t,u),

where u:=(u1,u2) is the 2-vector of unknowns subject to divergence-free initial condition

divu(x,y,0)=0.

We consider a uniform Cartesian mesh with mesh sizes ∆x,∆y in the x- and y- directions
respectively. It consists of the discrete cells

Ci,j =
[

xi− 1
2
,xi+ 1

2

)

×
[

yj− 1
2
,yj+ 1

2

)

,

centered at the mesh points

(xi,yj)=(i∆x, j∆y), (i, j)∈Z
2.

To approximate (2.1), we use standard discrete averaging and difference operators

µxaI,J :=
aI+ 1

2 ,J +aI− 1
2 ,J

2
, µyaI,J :=

aI,J+ 1
2
+aI,J− 1

2

2
, (2.2a)

δxaI,J := aI+ 1
2 ,J−aI− 1

2 ,J , δyaI,J := aI,J+ 1
2
−aI,J− 1

2
. (2.2b)

A word about our notations: we note that the above discrete operators could be used
with indexes I, J which are placed at the center or at the edge of the computational cells,
e.g., I = i or I = i+1/2. In either case, we tag the resulting discrete operators according
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to the center of their stencil; thus, for example, µxwi+1/2 employs gridvalues placed on
the integer-indexed edges, wi and wi+1, whereas δywj employs the half-integer indexed
centers, wj±1/2.

A standard semi-discrete finite volume scheme [18, 28] for updating the cell averages
ui,j(t) in (2.1) at time t can be expressed as (dropping t for notational convenience)

d

dt
(u1)i,j =−

1

∆y
δyF

y
i,j≡−

1

∆y

(

F
y

i,j+ 1
2

−F
y

i,j− 1
2

)

, (2.3a)

d

dt
(u2)i,j =

1

∆x
δxFx

i,j ≡
1

∆x

(

Fx
i+ 1

2 ,j
−Fx

ı− 1
2 ,j

)

, (2.3b)

where Fx
i+1/2,j and F

y
i,j+1/2 are edge centered numerical fluxes, consistent with the flux f

in the x- and y- directions respectively. Examples for numerical fluxes include fluxes in
the viscosity form [26]

Fx
i+ 1

2 ,j
=µx fi+ 1

2 ,j+Qx
i+ 1

2 ,j
δx(u2)i+ 1

2 ,j, (2.4a)

F
y

i,j+ 1
2

=µy fi,j+ 1
2
−Q

y

i,j+ 1
2

δy(u1)i,j+ 1
2
, (2.4b)

where
fi,j := f (xi,yj,t,ui,j), Qx =Qx(x,y,t,u), Qy =Qy(x,y,t,u),

are suitable numerical viscosity coefficients. For example, the first-order Rusanov flux
for (2.1) has the viscosity form (2.4) with viscosity coefficients

Qx
i+ 1

2 ,j
=max

{

∣

∣λ
(2)
i,j

∣

∣,
∣

∣λ
(2)
i+1,j

∣

∣

}

, Q
y

i,j+ 1
2

=max
{

∣

∣λ
(1)
i,j

∣

∣,
∣

∣λ
(1)
i,j+1

∣

∣

}

, (2.5a)

where λ(ℓ) are the eigenvalues of the corresponding Jacobians,

∣

∣λ
(ℓ)
i,j

∣

∣=
∣

∣

∣

∂ f

∂uℓ

(xi,yj,t,ui,j)
∣

∣

∣, ℓ=1,2. (2.5b)

The family of viscous numerical fluxes (2.4) will be shown to serve as building blocks for
the potential-based schemes discussed in Section 2.1 below.

The standard finite volume scheme (2.3) may not preserve any discrete form of the
divergence constraint (1.4) (see [11]), which in turn may lead to numerical instabilities.
To address this difficulty, we introduce a family of genuinely multi-dimensional schemes
based on numerical potentials φi+1/2,j+1/2, defined at vertices xi+1/2,yj+1/2 with the sole
requirement that these potentials are consistent with the differential flux

φ(x,y,t,u,··· ,u)= f (x,y,t,u). (2.6)

We now set the numerical fluxes

Fx
i,j+ 1

2
=µxφi,j+ 1

2
, F

y

i+ 1
2 ,j

=µyφi+ 1
2 ,j.
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The resulting finite volume scheme written in terms of numerical potentials reads

d

dt
(u1)i,j =−

1

∆y
δyµxφi,j≡−

1

∆y

(1

2

(

φı+ 1
2 ,j+ 1

2
+φi− 1

2 ,j+ 1
2

)

−
1

2

(

φı+ 1
2 ,j− 1

2
+φi− 1

2 ,j− 1
2

)

)

, (2.7a)

d

dt
(u2)i,j =

1

∆x
δxµyφi,j≡

1

∆x

(1

2

(

φı+ 1
2 ,j+ 1

2
+φi+ 1

2 ,j− 1
2

)

−
1

2

(

φı− 1
2 ,j+ 1

2
+φi− 1

2 ,j− 1
2

)

)

. (2.7b)

The scheme (2.7) is consistent with (2.1) since the numerical potential is. There is a re-
markably rich family of consistent potential-based schemes—a host of examples will be
specified in the next subsection. They have a genuinely multi-dimensional structure,
due to the vertex-centered numerical potentials which include information in both nor-
mal as well as transverse directions. Observe that the potential-based scheme need not
involve any staggering of meshes. But before turning to specific examples of potential-
based schemes we describe their main motivation in the present context of divergence-
free equations.

Lemma 2.1. Let ui,j be the numerical solution of the potential-based scheme (2.6) and (2.7). Then,
their discrete divergence div∗, given by

div∗(ui,j) :=
1

∆x
µyδx(u1)i,j+

1

∆y
µxδy(u2)i,j, (2.8a)

is preserved in time
d

dt
div∗(ui,j)≡0, ∀i, j. (2.8b)

Verification of (2.8b) is straightforward: since the difference operators δx,δy and the
averaging operators µx,µy commute with each other, applying the discrete divergence
operator div∗ to the numerical solution of (2.7), we find

d

dt
div∗(ui,j)=−

1

∆x∆y
(µyδxδyµx−µxδyδxµy)φi,j≡0.

Remark 2.1. One approach in designing constraint preserving schemes is to satisfy that
constraint approximately: for example, the discrete statement of (2.8a) could be interpreted
as a second-order approximation of the differential divergence,

div∗(ui,j)=divu(xi,yj)+O(∆x2+∆y2).

This, however, requires the smoothness of the underlying solution. Instead, a key feature
of constraint preserving schemes based on numerical potentials is that they satisfy exactly
a discrete constraint, so that their numerical solution remains on a discrete sub-manifold,
independent of the underlying smoothness.

Lemma 2.1 shows that the class of potential-based schemes satisfies a precise discrete
analogue of the divergence constraint (1.4). We emphasize that it applies to any consistent
numerical potential. Special cases of the discrete divergence operator div∗ (2.8a) were
considered in [29, 30]. This level of generality of the potential-based approach offers a
major advantage over earlier studies and is explored next.
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2.1 The family of potential-based schemes is rich

Numerical potentials φ in (2.7) can be chosen in many different ways. The examples
below illustrate the generality of our potential-based approach.

2.1.1 Symmetric potential

A consistent choice of potential φ is obtained by averaging neighboring edge centered
fluxes, i.e.,

φi+ 1
2 ,j+ 1

2
=

1

4

(

Fx
i+ 1

2 ,j
+Fx

i+ 1
2 ,j+1

+F
y

i,j+ 1
2

+F
y

i+1,j+ 1
2

)

, (2.9)

where Fx
i+1/2,j,F

y
i,j+1/2 are consistent numerical fluxes. Higher order fluxes can be readily

used.
An explicit computation of the scheme (2.7) with the symmetric potentials (2.9) leads

to the revealing form

d

dt
(u1)i,j =−

1

4∆y

(

µxFx
i,j+1−µxFx

i,j−1

)

−
1

4∆y

(

δy

(

µxF
y
i+1/2,j+µxF

y
i−1/2,j

)

)

, (2.10a)

d

dt
(u2)i,j =

1

4∆x

(

µyF
y
i+1,j−µyF

y
i−1,j

)

+
1

4∆x

(

δx

(

µyFx
i,j+1/2+µxFx

i,j−1/2

)

)

. (2.10b)

The above form suggests that the potential based scheme (2.7) introduces a special trans-
verse correction (by averaging normal fluxes in the transverse direction) to the standard
finite volume scheme (2.3). The above form brings out the contrast between the standard
finite volume scheme (2.3) and the potential based scheme (2.7) quite sharply.

2.1.2 Staggered symmetric potential

A different consistent potential can be defined as

φi+ 1
2 ,j+ 1

2
=

1

2

(

Fx
(

µyui,j+ 1
2
,µyui+1,j+ 1

2

)

+Fy
(

µxui+ 1
2 ,j,µxui+ 1

2 ,j+1

)

)

, (2.11)

where Fx,Fy are consistent two-point numerical fluxes. This approach is equivalent to
the symmetric potential (2.9) for linear equations with constant coefficients. However, it
leads to a different scheme for equations with variable coefficients and for equations with
non-linear fluxes.

2.1.3 Diagonal potential

A completely different form of the potential is defined by

φi+ 1
2 ,j+ 1

2
=

1

2

(

Fx(ui,j,ui+1,j+1)+Fy(ui,j,ui+1,j+1)
)

, (2.12)

where Fx and Fy are consistent two-point numerical fluxes. It is straightforward to extend
this form for any 2k-point numerical fluxes. This form of the potential is isotropic and
leads to a compact form of the scheme (2.7).
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2.1.4 Mixed potential

A slightly different form of the diagonal potential is obtained as

φi+ 1
2 ,j+ 1

2
=

1

4

(

Fx
(

ui,j,ui+1,j+1

)

+Fx
(

ui,j+1,ui+1,j

)

+Fy
(

ui+1,j,ui,j+1

)

+Fy
(

ui,j,ui+1,j+1

)

)

, (2.13)

where Fx,Fy are consistent two-point numerical fluxes.

2.2 Second order potential-based schemes

The order of accuracy of the scheme (2.7) is related to the choice of numerical fluxes
Fx,Fy used to define the potentials. The discrete divergence operator div∗ (2.8a) and the
difference and averaging operators (2.2) are second-order accurate. Therefore, overall
second-order spatial accuracy is obtained by using standard non-oscillatory piecewise
linear reconstructions in each cell. We follow the reconstruction procedure proposed
in [17].

2.2.1 Second order non-oscillatory reconstruction

The cell averages ui,j are used to define the piecewise bilinear reconstruction

pi,j(x,y)=ui,j+
u′

i,j

∆x
(x−xi)+

u8
i,j

∆y
(y−yj). (2.14)

The numerical derivatives in x- and y- directions, denoted respectively by prime and
backprime are given by the standard limiter

u′
i,j =minmod

(

ui+1,j−ui,j,0.5(ui+1,j−ui−1,j),ui,j−ui−1,j

)

, (2.15a)

u8
i,j =minmod

(

ui,j+1−ui,j,0.5(ui,j+1−ui,j−1),ui,j−ui,j−1

)

. (2.15b)

The minmod function, defined as

minmod(a,b,c) :=

{

sgn(a)min
{

|a|,|b|,|c|
}

, if sgn(a)=sgn(b)=sgn(c),
0, otherwise,

is a standard van-Leer limiter; other standard limiters can also be used in this context.
The use of limiters ensures that the reconstruction of each unknown is non-oscillatory
e.g., total-variation diminishing, consult [28] and the references therein. In the sequel, we
will also need the following reconstructed corner pointvalues

uE
i,j =pi,j(xi+ 1

2
,yj), uW

i,j =pi,j(xi− 1
2
,yj), (2.16a)

uN
i,j =pi,j(xi,yj+ 1

2
), uS

i,j =pi,j(xi,yj− 1
2
). (2.16b)
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Given the any consistent two-point fluxes F,G, a second order flux based on a midpoint
rule to compute edge integrals takes the from

Fx
i+ 1

2 ,j
= Fx(uE

i,j,u
W
i+1,j), F

y

i,j+ 1
2

= Fy(uN
i,j,u

S
i,j+1). (2.17)

The above fluxes are used to define the potentials in the scheme (2.7) resulting in an
overall second order accurate discretization of (2.1).

Remark 2.2. In order to achieve third and even higher order accuracy in space, we need
to redefine the averaging and difference operators given in (2.7) to higher than second
order accuracy. The potentials can then be expressed in form of fluxes, based on third
and even higher order (W)ENO type reconstructions [15,25]. This program for designing
schemes of arbitrary orders of accuracy will be considered in a forthcoming paper.

2.3 A divergence preserving viscous discretization

The two dimensional form of the divergence preserving viscous equation (1.7) is

{

(u1)t+ fy =(u1)yy−(u2)xy,
(u2)t− fx =(u2)xx−(u1)xy.

(2.18)

Note that the viscosity in (2.18) is of the curl (curl) type.
We combine the potential based discretization of the flux terms in (2.1) with a simple

genuinely multi-dimensional discretization of the viscous term to obtain a divergence
preserving scheme for (2.18). Below, we employ the standard notations for forward,
backward and centered divided differences

D±
x ai,j =

±(ai±1,j−ai,j)

∆x
, D±

y ai,j =
±(ai,j±1−ai,j)

∆y
, D0

x,yai,j =
D+

x,yai,j+D−
x,yai,j

2
.

The divergence preserving scheme for (2.1) is

d

dt
(u1)i,j =−

1

∆y
δyµxφi,j−D0

xD0
y(u2)i,j+

1

4

(

D+
y D−

y (u1)i+1,j

+2D+
y D−

y (u1)i,j+D+
y D−

y (u1)i−1,j

)

, (2.19a)

d

dt
(u2)i,j =

1

∆x
δxµyφi,j−D0

xD0
y(u1)i,j+

1

4

(

D+
x D−

x (u2)i,j+1

+2D+
x D−

x (u2)i,j+D+
x D−

x (u2)i,j−1

)

. (2.19b)

The above scheme is a consistent discretization of (2.18). A straightforward calcula-
tion, together with Lemma 2.1 shows that the scheme (2.19) preserves the discrete di-
vergence operator div∗. Note that the viscous terms are discretized in a genuinely multi-
dimensional manner in (2.19).
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2.4 Curl preserving discretization

The grad advection equation (1.8) in two space dimensions with flux f = f (x,y,t,u) is
given by

{

(u1)t+ fx =0,
(u2)t+ fy =0.

(2.20)

We follow the strategy of the previous sections, seeking a consistent vertex centered po-
tential φi+1/2,j+1/2. The corresponding potential-based scheme reads

d

dt
(u1)i,j =−

1

∆x
δxµyφi,j,

d

dt
(u2)i,j =−

1

∆y
δyµxφi,j. (2.21)

The scheme preserves the following discrete curl operator

d

dt
curl∗(ui,j)≡0, curl∗(ui,j)=

1

∆x
µxδy(u1)i,j−

1

∆y
µyδx(u2)i,j. (2.22)

The proof follows along the lines of Lemma (2.1). The potentials can be defined in
a manner, analogous to the divergence preserving scheme (2.7). Indeed, the two-
dimensional divergence and curl preserving equations (2.1) and (2.20) and their corre-
sponding potential-based schemes (2.7) and (2.21), are dual to each other.

2.5 Divergence preserving schemes in three dimensions

The three dimensional divergence preserving equations (1.3) with flux vector f =
( f1, f2, f3), are explicitly written as

(u1)t+( f3)y−( f2)z =0, (2.23a)

(u2)t+( f1)z−( f3)x =0, (2.23b)

(u3)t+( f2)x−( f1)y =0. (2.23c)

It is straightforward to extend the potential based framework of this section and design a
divergence preserving scheme for the above equation. Let δx,δy and δz, µx,µy and µz de-
note the difference and average operators in the x,y and z directions respectively. Define
a uniform grid in all three directions

(xi,yj,zk)=(i∆x, j∆y,k∆z),

with mesh sizes ∆x,∆y and ∆z. Also, denote the cell

Ci,j,k =
[

xi− 1
2
,xi+ 1

2

)

×
[

yj− 1
2
,yj+ 1

2

)

×
[

zk− 1
2
,zk+ 1

2

)

,

and the cell average of the unknown over the cell Ci,j,k as ui,j,k.
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We need to define three vertex centered potentials (φl)i+1/2,j+1/2,k+1/2 with l = 1,2,3,
such that they are consistent, i.e.,

(φl)i+ 1
2 ,j+ 1

2 ,k+ 1
2
(x,y,z,t,u,··· ,u)= fl(u), l =1,2,3. (2.24)

The divergence preserving scheme in three dimensions is defined in terms of the poten-
tials as

d

dt
(u1)i,j,k =−

1

∆y
δyµxµz(φ3)i,j,k+

1

∆z
δzµxµy(φ2)i,j,k, (2.25a)

d

dt
(u2)i,j,k =−

1

∆z
δzµxµy(φ1)i,j,k+

1

∆x
δxµyµz(φ3)i,j,k, (2.25b)

d

dt
(u3)i,j,k =−

1

∆x
δxµyµz(φ2)i,j,k+

1

∆y
δyµxµz(φ1)i,j,k. (2.25c)

Arguing along the lines of Lemma 2.1, we now state the following divergence preserving
property.

Lemma 2.2. Let ui,j,k be the numerical solution of the potential-based scheme (2.24) and (2.25).
Then, their discrete divergence div∗, given by

div∗(ui,j,k

)

=
1

∆x
µyµzδx(u1)i,j,k+

1

∆y
µxµzδy(u2)i,j,k+

1

∆z
µyµxδz(u3)i,j,k, (2.26a)

is preserved in time
d

dt
div∗(ui,j,k)≡0, ∀i, j,k. (2.26b)

There is a rich(-er) class of 3D consistent potentials, which can be defined in a manner
analogous to the two dimensional case. As an example, we define the three dimensional
form of the symmetric potential (2.9), φ1 as follows:

(φ1)i+ 1
2 ,j+ 1

2 ,k+ 1
2
=

1

8

(

(F
y
1 )i,j+ 1

2 ,k+(F
y
1 )i+1,j+ 1

2 ,k+(F
y
1 )i,j+ 1

2 ,k+1+(F
y
1 )i+1,j+ 1

2 ,k+1

)

+
1

8

(

(Fz
1 )i,j,k+ 1

2
+(Fz

1 )i+1,j,k+ 1
2
+(Fz

1 )i,j+1,k+ 1
2
+(Fz

1 )i+1,j+1,k+ 1
2

)

,

where F
y
1 ,Fz

1 are numerical fluxes consistent with the flux f1 in the y- and z- directions
respectively. The potentials φ2,φ3 can be similarly defined.

2.6 Time stepping

The constraint preserving schemes discussed so far are semi-discrete schemes and need
to be coupled with suitable time integration routines. Consider, for example, the 2D
potential-based scheme (2.7) at time level t= tn,

d

dt
ui,j(tn)=En

i,j, En
i,j :=

{

−
1

∆y
δyµxφn

i,j,
1

∆x
δxµyφn

i,j

}

. (2.27)
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The simplest time stepping is the first-order accurate forward Euler scheme

un+1
i,j =un

i,j−En
i,j, (2.28)

where the time step ∆tn is limited by a suitable CFL condition. Second-order temporal
accuracy can be obtained using a SSP Runge-Kutta method [14]

u∗
i,j =un

i,j−∆tnEn
i,j, (2.29a)

u∗∗
i,j =u∗

i,j−∆tnEn
i,j, (2.29b)

un+1
i,j =

1

2
(un

i,j+u∗∗
i,j ). (2.29c)

An alternative first-order accurate genuinely multi-dimensional time stepping is the ex-
tended Lax-Friedrichs type time stepping

un+1
i,j =

1

8

(

4un
i,j+un

i+1,j+un
i,j+1+un

i−1,j+un
i,j−1

)

−∆tnEn
i,j. (2.30)

3 Schemes for the magnetic induction equation

The preceding description on constraint preserving schemes is very general. In order to
provide some concrete stability estimates and perform numerical experiments, we focus
on the two-dimensional form of the magnetic induction equations:

{

(u1)t+(v2u1−v1u2)y =0,
(u2)t−(v2u1−v1u2)x =0,

(3.1)

with the magnetic field u=(u1,u2) and a given velocity field v=(v1,v2).
In order to complete the divergence preserving potential based scheme (2.7), we need

to specify numerical fluxes Fx
i+1/2,j,F

y
i,j+1/2. The simplest available two point flux is the

average flux

Fx
i+ 1

2 ,j
=

fi,j+ fi+1,j

2
, F

y

i,j+ 1
2

=
fi,j+ fi,j+1

2
, (3.2)

where

f (u)=v2u1−v1u2.

Using the above flux, together with the symmetric potential (2.9) results in the potential-
based scheme

d

dt
(u1)i,j =−

1

2∆y
( f̄ x

i,j+1− f̄ x
i,j−1), (3.3a)

d

dt
(u2)i,j =

1

2∆x
( f̄

y
i+1,j− f̄

y
i−1,j), (3.3b)
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where

f̄ x
i,j :=µ2

x fi,j ≡
1

4

(

fi+1,j+2 fi,j + fi−1,j

)

, (3.4a)

f̄
y
i,j :=µ2

y fi,j ≡
1

4

(

fi,j+1+2 fi,j+ fi,j−1

)

. (3.4b)

The scheme (3.3a), which coincides with the symmetric scheme proposed in [30], preserves
the discrete divergence

div∗(ui,j(t)
)

=div∗(ui,j(0)
)

, (3.5a)

div∗(ui,j) :=
1

∆x
µyδx(u1)i,j+

1

∆y
µxδy(u2)i,j. (3.5b)

We will show that the potential-based symmetric scheme (3.3) is L2-stable. Our proof
highlights the role of (discrete) divergence-preserving. To motivate the numerical sta-
bility, we first provide the corresponding L2 well-posedness statement in the continuous
case.

Lemma 3.1. [11] Let u be the weak solution of the magnetic induction equations (3.1) subject to
divergence free initial data u0∈L2(R

2) and a convective velocity field

v=(v1,v2)∈C1(R+,R2).

Then, u satisfies the apriori energy bound†

d

dt
‖u‖2

L2 .‖v‖C1‖u‖2
L2 . (3.6)

To verify (3.6), we follow [11]. Adding to (3.1) a zero source term which is propor-
tional to vanishing divergence, we obtain

(u1)t+(v2u1−v1u2)y =−v1(u1)x−v1(u2)y, (3.7a)

(u2)t−(v2u1−v1u2)x =−v2(u1)x−v2(u2)y, (3.7b)

so that after straightforward simplifications (3.1) recast into the symmetric form

(u1)t+v1(u1)x+v2(u1)y =−(v2)yu1+(v1)yu2, (3.8a)

(u2)t+v1(u2)x+v2(u2)y =(v2)xu1−(v1)xu2. (3.8b)

The desired L2-bound follows by applying the energy method for the symmetric form of
the equations in (3.8) with bounded low-order term

‖v‖C1 <∞.

We now turn to show that the potential-based symmetric scheme (3.3a) satisfies a
discrete version of the L2 energy estimate (3.6).

†We use X.Y to denote the estimate X≤CY, where C is a constant which may depend on t but otherwise is
independent of the solution, ∆x,∆y etc.
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Lemma 3.2. Let ui,j be the solution of the semi-discrete potential based symmetric scheme (3.3)
subject to divergence-free initial data

div∗(u(xi,yj,0)
)

≡0,

and velocity field v∈C1(R+,R2). Then, the following L2-energy estimate holds

d

dt
‖u‖2

L2
∆

.‖v‖C1‖u‖2
L2

∆

, ‖u‖2
L2

∆

:=∆x∆y∑
i,j

(u1)
2
i,j+(u2)

2
i,j. (3.9)

Proof. We mimic the proof of the continuous estimate (3.6). We begin by writing the
discrete divergence div∗ in the form

div∗(ui,j

)

=
1

2∆x

(

(ū
y
1)i+1,j−(ū

y
1)i−1,j

)

+
1

2∆y

(

(ūx
2)i,j+1−(ūx

2)i,j−1

)

,

where ūx and ūy are the averages (3.4a). The discrete divergence preservation (3.5) tells
us that

div∗(uı,j)≡0 :

adding a multiple of this vanishing divergence as a discrete source term to (3.3a) yields a
discrete analogue of (3.7)

d

dt
(u1)i,j =−D0

y f̄ x
i,j−(v1)i,jD

0
x(ū

y
1)i,j−(v1)i,jD

0
yūx

2,i,j, (3.10a)

d

dt
(u2)i,j = D0

x f̄
y
i,j−(v2)i,jD

0
x(ū

y
1)i,j−(v2)i,jD

0
y(ūx

2)i,j. (3.10b)

Substituting the explicit form of
f =v2u1−u2v1,

in (3.10), one obtains after straightforward manipulations, the following discrete version
of the symmetric form of the equations in (3.8)

d

dt
(u1)i,j =−(v1)i,jD

0
x(ū

y
1)i,j−(v2)i,jD

0
y(ūx

1)i,j−
1

2

(

D+
y (v̄x

2)i,j(ūx
1)i,j+1

+D−
y (v̄x

2)i,j(ūx
1)i,j−1

)

+
1

2

(

D+
y (v̄x

1)i,j(ūx
2)i,j+1+D−

y (v̄x
1)i,j(ūx

2)i,j−1

)

, (3.11a)

d

dt
(u2)i,j =−(v1)i,jD

0
x(ū

y
2)i,j−(v2)i,jD

0
y(ūx

2)i,j+
1

2

(

D+
x (v̄

y
2)i,j(ū

y
1)i+1,j

+D−
x (v̄

y
2)i,j(ū

y
1)i,j−1

)

−
1

2

(

D+
x (v̄

y
1)i,j(ū

y
2)i,j+1+D−

x (v̄
y
1)i,j(ū

y
2)i,j−1

)

. (3.11b)

We conclude with energy method: summing by parts the first equation in (3.11) against
∆x∆y(u1)i,j and the second equation against ∆x∆y(u2)i,j and using Cauchy’s inequality,
we obtain the L2 energy estimate (3.9).
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Note that preserving the discrete divergence (3.5) plays a crucial role in the L2-
stability of the potential-based scheme (3.3). Since the scheme is based on centered sten-
cil it is unconditionally unstable, when combined with the forward Euler or second-order
Runge Kutta (RK) time stepping (2.28) and (2.29). Stability can be achieved by using
higher-order (≥3) RK time stepping, e.g., [27]. Alternatively, a standard way to stabilize
centered-based schemes is achieved by adding numerical diffusion (2.4). A simple Ru-
sanov type numerical diffusion operator (2.5) is used to modify the numerical fluxes (3.2),
yielding the viscous numerical fluxes

Fx
i+ 1

2 ,j
=Fx(ui,j,ui+1,j)

=
1

2
( fi,j+ fi+1,j)+max

{

|(v1)i,j|,|(v1)i+1,j|
}(

(u2)i+1,j−(u2)i,j

)

, (3.12a)

F
y

i,j+ 1
2

=Fy(ui,j,ui+1,j)

=
1

2
( fi,j+ fi,j+1)−max

{

|(v2)i,j|,|(v2)i,j+1|
}(

(u1)i,j+1−(u1)i,j

)

. (3.12b)

The diffusive terms involve the maximum wave speeds in each direction. Other diffusion
operators, like the standard upwind diffusion, can also be used. Once the diffusive nu-
merical fluxes are set, one can define the corresponding numerical potential and complete
the potential-based scheme (2.7). We are unable, however, to prove that the scheme (2.7)
with numerical diffusion (like in (3.12)) is L2-energy stable. Nevertheless, numerical ex-
periments in the sequel suggest that the potential-based scheme with numerical diffusion
is energy stable.

4 Numerical experiments

We test the constraint preserving schemes for the magnetic induction equation (3.1) in
this section. The following four schemes are considered:

• RUS: Standard first-order Rusanov scheme (2.3) and (3.12).

• CPR: Constraint preserving scheme (2.7) with Rusanov flux.

• CPR2: Second-order (both space and time) constraint preserving scheme (2.14),
based on Rusanov flux (2.5).

• CPS: Constraint preserving symmetric scheme (3.3a) with the Runge-Kutta time
stepping.

All schemes are updated in time with a CFL number of 0.45.

4.1 Numerical experiment 1: rotating hump

This test case is a benchmark for testing schemes for multi-dimensional advection [11,30].
We consider the two dimensional magnetic induction equation (3.1) with the velocity
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(a) RUS (b) CPR

(c) CPR2 (d) CPS

Figure 1: ‖u‖ at time t=2π in the rotating hump experiment with four different schemes on a 100×100 mesh.

field (v1,v2)=(−y,x). The exact solution can be calculated as

u(x,y,t)= R(t)u0

(

R(−t)(x,y)
)

, (4.1)

where R(t) is a rotation matrix with angle t.
We consider the divergence free initial data

u0(x,y)=4

(

−y

x− 1
2

)

exp
[

−20
(

x−
1

2

)2
+y2

]

, (4.2)

and the computational domain [−1,1]×[−1,1]. The exact solution (4.1) is a smooth hump,
centered at (1/2,0) rotating about the origin and completing one rotation in time t=2π.
Non-reflecting Neumann type boundary conditions are used.

The approximate solutions at time t=2π on a 100×100 mesh are shown in Fig. 1. We
show the norm

‖u‖=
(

u2
1+u2

2

)
1
2 ,
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Table 1: Absolute errors in L2 for ‖div∗‖ at time t=2π for the rotating hump with four different schemes.

Grid size RUS CPR CPR2 CPS
50/50 2.15e-1 6.07e-7 1.27e−7 7.0e−7

100/100 8.15e-2 3.04e-9 2.9e−8 1.5e−10
200/200 2.2e+3 5.34e-12 2.88e−14 2.8e−14
400/400 diverges 5.53e-14 7.1e−15 7.8e−15

with four different schemes. The constraint preserving schemes are based on the sym-
metric potential (2.9). The figure shows that the standard RUS scheme does a poor job of
approximating the rotating hump. The magnitude of the hump is smeared considerably
and the shape is distorted. Unphysical waves are also generated. In sharp contrast, the
constraint preserving schemes approximate the solution quite well. The first-order CPR
scheme smears the solution somewhat (note different scales in the figures) but the shape
is still maintained. The second-order CPR2 and the CPS schemes resolve the solution
very sharply. The smearing is reduced considerably and the shape is maintained.

The results suggest a strong connection between divergence preservation and the nu-
merical performance. This link is quantified in Table 1 where we tabulate the discrete
divergence div∗ (2.8a) in L2, generated with all the four schemes at time t=2π. Note that
since the initial data is divergence free, the exact divergence will be zero at all times.

Table 1 shows that the standard RUS scheme generates divergence errors of the or-
der of the truncation error on coarse meshes. However, the scheme is unstable on fine
meshes and crashes on a 400×400 mesh. The blow up of RUS scheme based on 400×400
mesh points was preceded by a large increase in the divergence, indicating a possible con-
nection between the two. The constraint preserving schemes result in very small diver-
gence errors, mostly due to boundary effects (no special divergence cleaning is applied
at the boundary). The errors on coarse meshes are very small and converge to zero quite
rapidly. As expected, the errors are of the order of machine precision on fine meshes.

The operator div∗ is a particular discrete form of the divergence operator. We have
shown that the constraint preserving scheme (2.7) preserves this particular form of diver-
gence. A natural question is what happens when a different form of discrete divergence
is used. We consider the standard centered discrete divergence operator

div(ui,j)= D0
x(u1)i,j+D0

y(u2)i,j.

A simple calculation shows that div and div∗ differ by O(∆x2+∆y2). Therefore, pre-
serving div∗ would only imply that errors in div behave like the square of the truncation
error. This issue is explored quantitatively and the results are shown in Table 2. The
table shows that the errors in the standard divergence div, generated by the constraint
preserving schemes, are low and are consistently lower than the expected square of the
truncation error. Consequently, we conclude that using a divergence preserving scheme
will lead to lower errors for other discrete forms of divergence.
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Table 2: Absolute errors in L2 for ‖div‖ at time t=2π for the rotating hump with four different schemes.

Grid size RUS CPR CPR2 CPS
50/50 2.16e-1 1.48e-2 1.43e−2 1.8e−2

100/100 8.29e-2 3.2e-3 1.32e−3 1.6e−3
200/200 1.99e+3 6.26e-4 6.7e−5 2.0e−4
400/400 blow-up 1.67e-4 4.4e−5 5.6e−6

In the above discussion, the divergence preserving schemes were based on the sym-
metric potential (2.9). We use all the four potentials described in Section 2 with the
first-order CPR scheme and show ‖u‖ for the approximate solution at time t = π/4 on
a 100×100 mesh in Fig. 2. The figure clearly shows that different choices of potential
resulted in very similar numerical approximations. This was also seen in other exper-
iments, indicating the robustness of our approach with respect to varying choices of

(a) Symmetric (b) StagSym
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0.1
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(c) Diagonal (d) Mixed

Figure 2: Rotating hump: ‖u‖ at time t = π/4 on a 100×100 mesh with the CPR scheme and different
potentials.
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potentials. However, there were some boundary instabilities for the diagonal potential
when long time scales were considered. This fact requires careful investigation in the
future.

4.2 Numerical experiment 2: discontinuous test case

The rotating hump involved smooth solutions. However, we can expect discontinuous
solutions (particularly in MHD models). We test the constraint preserving scheme on a
numerical experiment involving discontinuities in the solution. The initial data is given
by [11]

u0
1(x,y)=u0

2(x,y)=

{

2, if x>y,
0, otherwise,

and the velocity field is a constant v=(1,2). The exact solution is the initial discontinuity
moving along the diagonal

u(x,y,t)=u0(x−t,y−2t).

We consider the computational domain [−2,2]×[−2,2] and use extrapolated Neumann
boundary conditions. A one dimensional slice (at y = 0.0) of the solution component u1

computed with the RUS, CPR and CPR2 schemes at time t = 0.5 on a 100×100 mesh is
shown in Fig. 3. The figure shows that the standard RUS scheme leads to a large over-
shoot. This fact was first observed in [11]. Furthermore, the discontinuity is smeared
to a large extent. The CPR scheme reduces the overshoot considerably and resolves
the discontinuity with very little smearing. However there are small amplitude oscil-
lations, showing that the constraint preserving scheme is not necessarily total-variation
diminishing (TVD), although the exact solution in this particular experiment is TVD.
The second-order CPR2 scheme resolves the discontinuity more sharply and the oscilla-
tions are also reduced. The results show that the constraint preserving schemes are not
diffusive enough in this case. A simple method for increasing the diffusion without af-
fecting the constraint preserving abilities is to use the genuinely multi-dimensional Lax-
Friedrichs type time-stepping (2.30) with the CPR scheme. We term this scheme and its
second-order (in space) version as aCPR and aCPR2 scheme respectively. The results are
shown in Fig. 4. The aCPR scheme removes the oscillations, at the cost of smearing the
discontinuity. The spatially second-order aCPR2 scheme captures the discontinuity more
sharply and without any noticeable oscillations. This alternative time stepping provides
a simple recipe of modifying the constraint preserving schemes to eliminate unphysical
oscillations.

Remark 4.1. The potential based scheme (2.7) is slightly more expensive than its build-
ing block, the standard finite volume scheme (2.3). However, the overall cost is still quite
low. The simplicity and generality of this approach renders it considerably cheaper and
easier to implement than competing constraint preserving frameworks. The extra com-
putational cost is justified by the considerable increase in stability and resolution.
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

Exact:+++++++++++++++

RUS:    x x x x x x x x x x x x 

CPR:    o o  o o o o o o o o o

CPR2:−−−−−−−−−−−−−−−−−−−−−

Figure 3: Numerical experiment 2: u1(x,0,0.5) on a 100×100 mesh with different schemes.
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aCPR2:  o o o o o o o o o o

Figure 4: Numerical experiment 2: u1(x,0,0.5) on a 100×100 mesh with different schemes.

5 Conclusions

Evolution equations (1.1) with an intrinsic constraint (1.2) are considered. Examples in-
clude the divergence preserving equations (1.3) and the curl preserving equations (1.8).
Standard finite volume schemes (2.3) do not necessarily preserve discrete versions of the
constraint and may be unstable.

We design finite volume schemes for (1.1) that preserve discrete forms of the con-
straint (1.2). The schemes are based on vertex centered numerical potentials. The resulting
scheme is genuinely multi-dimensional and constraint preserving. The class of potential
based schemes is very rich. Potential based schemes are presented for both the diver-
gence preserving equation (1.3) and curl preserving equation (1.8). Constraint preserving
schemes for the equations with viscosity (1.7) are also proposed. Second-order accuracy
is obtained by employing non-oscillatory piecewise polynomial reconstructions.

The magnetic induction equations in two dimensions (3.1) are considered in detail.
A divergence preserving potential based scheme is shown to be L2-stable. Numerical
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experiments demonstrating the robustness and computational efficiency of the constraint
preserving schemes are presented. They show that the schemes perform considerably
better than standard schemes.

The main advantage of this new approach is its simplicity and generality. This pa-
per is the first in a series. Subsequent papers include ones describing potential based
genuinely multi-dimensional schemes for systems of conservation laws [19] and diver-
gence preserving schemes for the ideal MHD equations [20]. Extending the potential
based schemes to higher than second order accuracy and to unstructured grids will be
considered in future papers.
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