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Abstract. The previously developed LB-DF/FD method derived from the lattice Boltz-
mann method and Direct Forcing/Fictitious Domain method is extended to deal with
3D particle’s Brownian motion. In the model the thermal fluctuations are introduced
as random forces and torques acting on the Brownian particle. The hydrodynamic in-
teraction is introduced by directly resolving the fluid motions. A sphere fluctuating in
a cubic box with the periodic boundary is considered to validate the present model.
By examining the velocity autocorrelation function (VCF) and rotational velocity au-
tocorrelation function (RVCF), it has been found that in addition to the two relaxation
times, the mass density ratio should be taken into consideration to check the accuracy
and effectiveness of the present model. Furthermore, the fluctuation-dissipation theo-
rem and equipartition theorem have been investigated for a single spherical particle.
Finally, a Brownian particle trapped in a harmonic potential has been simulated to
further demonstrate the ability of the LB-DF/FD model.

AMS subject classifications: 68U20, 76T20, 76M28, 82B80

Key words: Lattice Boltzmann method, fictitious domain, Brownian motion.

1 Introduction

Particles suspended in fluids experience a random force due to the thermal fluctuations in
the fluid around them in addition to the average hydrodynamic force. Brownian motion
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may take place for those sub-micron/nanoscale particles. For many applications in mi-
crosystems for chemical and biological analysis, the ability to control and measure tem-
perature inside microfluidic devices is critical since temperature often affects biological
or chemical processes. Recent developments [1,2] demonstrate that the well-defined tem-
perature dependence of the Brownian motion of nanoparticles could be used to present a
temperature measurement technique which offers several benefits over existing method-
ologies. Brownian particle can be adopted to measure the local viscoelastic response of
soft materials [3] or the topography of a surrounding polymer network [4]. The motion
of a Brownian probe can also be used to characterize mechanical properties of molecular
motors by analyzing the particle’s trajectory [5]. Moreover, the biased Brownian mo-
tions or rectified Brownian motions, induced by an energy source [6] or by broken spatial
reflection symmetry [7], provide a very effective technique for particle separation. Fur-
thermore, it has been demonstrated [8,9] that nano-particles in a conventional base fluid,
known as nanofluids, tremendously enhance the heat transfer characteristics of the orig-
inal fluid. At the same time, many groups [10–12] have declared that Brownian motion
is a key mechanism governing the thermal behavior of nanofluids. Besides, the theory
of stochastic processes originated from Brownian motion have found wide applications
in climate dynamics [13], stock market [14], traffic flow [15] and so on, which should go
beyond Einstein’s first consideration. Due to its importance in engineering applications,
there has always been a great deal of interest in developing algorithms that can provide a
better understanding of particle’s Brownian motion. Especially in some cases [3–5], high
resolution of Brownian motion is needed, which requires the numerical algorithms have
the ability to observe the motion on short time scales (t≪τD , τD=a2/D0, a is the spherical
particle radius, D0 is the particle diffusion coefficient).

Roughly speaking, the existing numerical methods for modeling particle’s Brown-
ian motion can be categorized by the treatment of particle’s motion equations into three
groups. (1) Langevin-type equation based method. Brownian dynamics (BD) [16] and
Stokes dynamics (SD) [17,18] are the most important methods in this group. These meth-
ods treat the particle’s motion by the Langevin equations without treatment of the fluid
flow which indicates that random fluctuations are applied directly into the particles. For
BD approximate expressions are used to model the hydrodynamic interactions and for
SD the Rotne-Prager-Yamakawa tensors are used to express the hydrodynamic interac-
tions. BD and SD are widely used numerical methods and achieved great success in the
simulations of particles’ Brownian motion. One of limitations of these methods may be
that they cannot account for the short-time motion [19]. (2) DNS (Direct Numerical Sim-
ulation) method. In this group, the thermal fluctuations in the fluid, which result in the
Brownian motion of particles, are modeled by adding a random stress tensor to Navier-
Stokes equations. This method was called fluctuating hydrodynamics [20]. Solving the
fluctuating hydrodynamic equations coupled with the particle equations of motion re-
sult in the Brownian motion of particles. In this method, the particles acquire random
motion through the hydrodynamic force acting on its surface from the surrounding fluc-
tuating fluid. Therefore, there is no need to add a random force term in the particles’
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equations, unlike Langevin equations. Sharma and Patankar [21] have solved the fluctu-
ating hydrodynamic equations through finite volume method and their numerical results
include the Brownian displacements of a spherical particle and drag coefficient acting on
the particle, which agree well with analytic values. Application of LBM coupled with
fluctuating hydrodynamics to simulate particle’s Brownian motion was first proposed
by Ladd [22, 23], which is performed by adding a fluctuating term in the LB equation.
These methods can successfully account for the short-time motion and deal with par-
ticles of irregular shape in a straightforward manner. In the late 1990’s Ahlrichs and
Dünweg [24, 25] have applied the fluctuating lattice Boltzmann equations into the simu-
lations of polymer solutions successfully. Other important references in this regard may
be found in [26, 27]. Meanwhile, it should be stated here that in these methods, a ran-
dom stress tensor required for a spatial grid, which needs a lot of random numbers for
the fluctuating hydrodynamics, especially in 3D simulations. (3) Langevin-type equation
based DNS method. In this group, Langevin equations are also adopted for the motion
of the Brownian particles, while the hydrodynamic interaction is determined within a
DNS framework. For instance, Yu et al. [28] extends the distributed Lagrange multi-
plier/fictitious domain (DLM/FD) method to deal with nanoparticles’ Brownian motion
to study the remarkable heat transfer in the nanofluids and his preliminary computa-
tional results support the argument that the micro-heat-convection induced by Brownian
motion is primarily responsible for the unusually high heat conductivity of nanofluids.
Also, Iwashita et al. [29] presented another numerical model to simulate the Brownian
motion of solid particles, in which a Smoothed Profile (SP) method is used to solve fluid
flow. In both studies [28, 29], Langevin equations are proposed for the Brownian parti-
cles. Iwashita et al. [29] have demonstrated that their model can account for the long-time
behavior (t > τB for translational motion, τB = M/6πµa, M is particle mass, a is particle
radius, µ is fluid viscosity; t>τr for rotational motion, τr = J/8πµa3 , J is moment of iner-
tia) of particle’s Brownian motion through numerical results of velocity autocorrelation
function (VCF) and rotational velocity autocorrelation function (RVCF), which indicates
that this method is effective only at t > τB or t > τr . It should be pointed out here that in
general the time scale τB or τr is much smaller than τD. In this respect, the Langevin-type
equation based DNS method could be used to observe the motion on relative short time.

The lattice Boltzmann method (LBM) has been found applications in many areas of
flow physics [30–32], especially in particle suspensions [33–40]. The bounce-back rule
was first introduced to impose no-slip boundary conditions [22, 23], in which the par-
ticle surface is represented by the boundary nodes, which are essentially a set of the
mid-points of the links between two fixed grids. It was proved robust and efficient for
particulate flows, especially in the case of large number of particles. Later, the basic idea
of the immersed boundary method (IBM) was incorporated successfully into LBM for the
2D and 3D fluid-particle systems, which has been known as IB-LBM [41, 42]. Recently,
distributed Lagrange multipliers and fictitious domain (DLM/FD) method has been in-
troduced into the framework of LB models for fluid-structure interactions [43, 44]. More
recently, the LB-DF/FD method [45], which combines the ideas of the LBM and DF/FD
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(Direct Forcing/Fictitious Domain) method, has been proposed for the 2D particle-fluid
interaction problems. The aim of the present study is to extend the previous LB-DF/FD
method from 2D to 3D cases, and provides an alternate approach for modeling particle’s
Brownian motion using the technique of Langevin-type equation based DNS scheme.
To this end, we introduce thermal fluctuations by using white noise as random forces
and torques for Brownian particles. Then, we would re-examine the long-time behavior
of Brownian particle (t > τB or t > τr) proposed by Iwashita et al. [29] and more deeply
we want to provide some insight into the mechanism by which VCF or RVCF deviates
from their theoretical results in the shorter time (t < τB or t < τr). The present numer-
ical model offers several benefits. First, in fluctuating hydrodynamics a random stress
tensor is needed in Navier-Stokes equations, as a result it requires generating O(Nd)
random numbers for numerical simulations with Nd spatial grids, while the present
method requires only O(Np) random numbers for a dispersion composed of Np parti-
cles, which is much less than that of fluctuating hydrodynamics. Second, compared with
Langevin-type equation based method, the present method can account for the hydrody-
namic memory effects which play a key role in Brownian particles’ short-time motion. It
should be noted that the above two merits are true for all Langevin-type equation based
DNS methods. Last, the present method makes use of LBM for solving fluid flow and
consequently it preserves the merits of the LBM in simulating fluid flow [42].

The rest of the paper is organized as follows: Section 2 describes the LB-DF/FD
model for particle’s Brownian motion. In Section 3, firstly, the problem of decay of an
initially posed translational velocity or rotational velocity of a sphere is utilized to verify
the method; secondly, a sphere fluctuating in a cubic box with the periodic boundary is
considered to examine the VCF and RVCF; finally, the motions of a Brownian particle in
harmonic potentials is used to further check the validity of the method.

2 Numerical model

2.1 Lattice Boltzmann method

The fluid flow is solved by the LB method. The discrete LB equations of a single relax-
ation time model under external forces are described as

fi(x+ei∆t,t+∆t)− fi(x,t)=−
1

τ

[

fi(x,t)− f
(0)
i (x,t)

]

+
ωi∆t

c2
s

(λ·ei), (2.1)

where fi(x,t) is the distribution function on the i-direction microscopic velocity ei,

f
(0)
i (x,t) is the equilibrium distribution function, λ is the external force, ∆t is the time

step of the simulation, τ is the relaxation time, cs is the speed of sound and ωi are weights
related to lattice model. The fluid density ρ f and velocity u are determined by the distri-
bution function

ρ f =∑
i

fi, ρ f u=∑
i

fici. (2.2)
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For the D3Q15 lattice model used here, the discrete velocity vectors are

ei =











(0,0), i=0,

(±1,0,0)c, (0,±1,0)c, (0,0,±1)c, i=1−6,

(±1,±1,+1)c, (±1,±1,−1)c, i=7−14,

(2.3)

where c=∆x/∆t, the speed of sound is defined as c2
s =c2/3, ∆x is the lattice spacing. The

equilibrium distribution function is chosen as

f
(0)
i (x,t)=ωiρ f

[

1+
3ei ·u

c2
+

9(ei ·u)2

2c4
−

3u2

2c2

]

, (2.4)

ωi are chosen as the following values: ω0 =2/9; ωi =1/9, i=1∼6; ωi =1/72, i=7∼14.

By performing a Chapman-Enskog expansion and in the low Mach number limit, the
macroscopic mass and momentum equations can be recovered

∇·u=0, (2.5a)

ρ f

[∂u

∂t
+(u·∇)u

]

=−∇p+µ∇2u+λ. (2.5b)

The kinematic viscosity can be expressed as ν = (2τ−1)(∆x)2/6∆t. For simplicity the
lattice spacing ∆x and time step ∆t are both set be 1 in the present work.

2.2 LB-DF/FD method

Here we briefly explain the LB-DF/FD method in our numerical model since those are
explained in detail elsewhere [45].

In DF/FD method, the interior domains of the particles are filled with the same flu-
ids as the surroundings and a pseudo body force λ is introduced to enforce the interior
(fictitious) fluids to satisfy the constraint of rigid body motion, as described by

u=U+ωs×r (the particle inner domain, P), (2.6)

where U and ωs are the particle translational velocity and angular velocity, respectively.
Moreover, in DF/FD method, a certain number of Lagrangian nodes are distributed to
represent the particle in the simulations, while an Eulerian mesh is used for the fluid.

The Brownian motion of a particle with mass M and moment of inertia J is governed
by Newton’s equations

M
dU

dt
=FH+FB+FE, (2.7a)

d(J·ωs)

dt
=TH+TB, (2.7b)
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where FH and TH are the hydrodynamic forces and torques on the particle, respectively,
defined as

FH =
∫

∂P
n·σds, TH =

∫

∂P
r×(n·σ)ds, (2.8)

where σ is the fluid stress tensor, n is the unit outward normal on the particle surface and
r is the position vector with respect to the particle mass center. FB and TB are the random
forces and torques due to thermal fluctuations which are defined in the following section.
FE denotes other external forces.

Based on a direct-forcing scheme, the forcing term exerted on the Lagrangian points
in the particle domain can be expressed as

λ
n+1 =ρ f

un+1−u∗

∆t
=ρ f

Un+1+ωn+1
s ×r−u∗

∆t
, (2.9)

where u∗ is a temporary velocity which satisfies the momentum equation (2.5b) with zero
body-force.

From (2.5b)-(2.8), one can obtain the equations for updating particle’s Brownian mo-
tion

M
Un+1

∆t
=(M−M′)

Un

∆t
+

∫

P
ρ f

u∗

∆t
dΩ+FBn+1

+FEn+1
, (2.10a)

J·ωn+1
s

∆t
=

(J−J′)·ωn
s

∆t
−ω

n
s ×[(J−J′)·ωn

s ]+
∫

P
ρ f r×

u∗

∆t
dΩ+TBn+1

, (2.10b)

where M′ and J′ are expressed as

M′=
∫

P
ρ f dΩ, J′=

∫

P
ρ f r×rdΩ. (2.11)

As shown from (2.10a) and (2.10b), the hydrodynamic forces and torques exerted on the
particle does not appear explicitly and as a result it’s unnecessary to calculate them to
update the particle’s motion.

The whole problem is decoupled into the fluid and solid particle sub-problems with
the fractional step scheme, which includes the following steps:

1. Calculate f ∗(x,t) from Eq. (2.1) without the body force λ and then u∗ from Eq. (2.2).

2. Based on Eqs. (2.10a) and (2.10b), calculate translational velocity U and angular velocity ωs.

3. Update pseudo body-force λn+1 inside the particle domain through Eq. (2.9).

4. Introduce body-force λn+1 into Eq. (2.1) and calculate f (x,t) without collision, then the new ρ f

and u determined.
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2.3 Brownian forces and torques

In the present model Brownian forces FB and torques TB, due to thermal fluctuations, are
introduced as white noise, in the same way as the Langevin equation (LE) does. They
have the following properties:

< FB
i (t)>=0, < FB

i (t)FB
j (t′)>=C1δijδ(t−t′), i, j= x,y,z, (2.12a)

<TB
i (t)>=0, <TB

i (t)TB
j (t′)>=C2δijδ(t−t′), i, j= x,y,z, (2.12b)

where the angle brackets denote taking an average over an equilibrium ensemble, C1 and
C2 are parameters to control the temperature. Eq. (2.12) indicates that Brownian forces FB

and torques TB are Markovian, which indicates that we neglected their memory effects.
In the simulations, Fi and Ti are generated by a Gaussian random number generator with
the desired mean and variance.

The translational temperature KBTV and rotational temperature KBTΩ are determined
in the same way as [29]. First, the translational diffusion coefficient DV and rotational dif-
fusion coefficient DΩ are calculated in the numerical simulations through the following
Green-Kubo integrals:

DV =
1

3

∫ ∞

0
<U(0)·U(t)>dt, DΩ =

1

3

∫ ∞

0
<Ω(0)·Ω(t)>dt. (2.13)

Then the Stokes-Einstein diffusion coefficients of a spherical particle with radius a,
DV = KBTV/6πµa for the translational motion and DΩ = KBTΩ/8πµa3 for the rotational
motion, can be used to define the temperatures KBTV and KBTΩ. The parameters C1 and
C2 in Eq. (2.8) are chosen to make sure KBTV =KBTΩ.

Widom [46] studied the behavior of a spherical Brownian particle in a viscous fluid by
using the generalized Langevin equation (GLE), which has also been studied by Hauge
et al. [47] and Hinch [48]. It has been found that the Brownian forces or torques autocor-
relation function are not proportional to the Dirac δ function, unlike Eq. (2.12), which in-
dicates that Brownian forces FB and torques TB are non-Markovian. As a fact, the Marko-
vian effects due to Eq. (2.12) might cause deviations from theoretical results. Iwashita et
al. [29] have numerically investigated these deviations by SPM coupling with Langevin
equations and proposed a long-time behavior. We aim to re-examine this long-time be-
havior and take further investigations.

3 Results and discussion

For the spherical particle, the Lagrangian nodes are distributed on the concentric spher-
ical surfaces. On each surface, the distribution of the nodes is determined using the
method suggested by Yu [49] and Uhlmann [50]. For a given value of Nl , run a simu-
lation of the motion of point-particles confined to the surface of a sphere. These points
are moving under a mutual repulsive force which is proportional to the inverse of the
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square of the inter-particle distance. After several runs an equilibrium configuration can
be obtained. In the present method, the number of the Lagrangian points on ith surface
is set to be Nbi2, here Nb being the number of nodes on the first surface. Let Ns denote
the number of the surfaces, the total number of the Lagrangian nodes for a sphere is
Nl =1+NbNs(Ns+1)(2Ns +1)/6.

Figure 1: Arrangements of Lagrangian points for a spherical particle (only the points on one layer is shown).

It should be remarked that the arrangement of Lagrangian nodes as shown in Fig. 1
is one of the possible ways to distribute Lagrangian points. Moreover, the numbers of
Lagrangian nodes or the numbers of the surfaces used in the present work are not the
unique answer. There’s no a general theory or rule to determine them. Numerical simu-
lations have suggested that the numbers of Lagrangian nodes can be chosen just to make
∆Vl(∆Vl =Vp/Nl ·x3, Vp is the particle volume) not too large or too small, for the sake of
numerical stability.

As an initial test of the present model, Brownian motion of a single sphere in a pe-
riodic box has been numerically investigated. In Fig. 2, the decay of an initially posed
translational velocity U(0) or rotational velocity Ω(0) of the sphere is compared with the
analytical solutions for different periodic unit cells from 183 to 723. The analytical solu-
tions are based on an inverse Laplace transform of the frequency-dependent equations
of motion [47]. Both of them are normalized by their t = 0 values. The initial values of
U(0) and Ω(0) for decay are both set to be 0.01 (in lattice unit). Other parameters are
summarized as follows: a = 2.65, ν = 1/6, ρ f = 1, ρp = 11, Ns = 2, which are similar to
those of Ladd [23]. The results show that the length of simulated periodic box has signifi-
cant effect on the decay of translational velocity but little effect on the decay of rotational
velocity. Furthermore, from Fig. 2 good agreement between numerical and theoretical
results can be observed over the whole time domain for periodic box of 723, which has
been chosen through the whole numerical simulations to make sure that the results are
unaffected by the periodic boundary conditions.

Besides, in order to demonstrate the effect of arrangements of Lagrangian nodes, three
kinds of arrangements referring to Nb = 8,10 and 12 have been taken into account. Nu-
merical results have been shown in Fig. 3 for translational velocity and rotational velocity,
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respectively. The results indicate that the influences of the arrangements of Lagrangian
points are negligible.

Fig. 4 shows the velocity autocorrelation function (VCF) <U(0)U(t)> and rotational
velocity autocorrelation function (RVCF) <Ω(0)Ω(t)> of the same sphere. The temper-
ature has been set to be KBT≈1.1×10−3. As is known, Langevin equation (LE) leads to
an exponential decay both in VCF and RVCF because it completely neglects the hydrody-
namic memory effects. In Fig. 4 it can be seen that our numerical results agree well with
the analytical solution based on an inverse Laplace transform of the frequency-dependent
equations of motion [47] rather than the exponential LE results, which indicates that the
hydrodynamic memory effects are accurately taken into account in the present model. It
should be stated that in [29] two relaxation time parameters have been used to describe
their numerical results, τB=M/6πµa for translational Brownian motion and τr= J/8πµa3

for rotational Brownian motion, respectively. They have shown that the deviations be-
come notable for t<τB or t<τr, while the agreements between the numerical results and
the analytical solutions are excellent for t > τB or t > τr . However, in our results the de-
viations are not very obvious, even when t is small. Good agreement can be observed
almost over the whole time domain as shown in Fig. 4.

To assist clarify this problem, we have also conducted another simulation with the
same computational parameters as the above except ρp = 1 and KBT ≈ 1.0×10−3. The
results have been shown in Fig. 5, which is consistent with [29]. Almost the same conclu-
sion can be drawn from Fig. 5. However, by comparing numerical results with analytical
solutions in detail, it can be found that the deviations at t < τB or t < τr are more notable
for ρp = 1 than for ρp = 11. Let’s introduce another relaxation time τν = a2/ν, which is
usually used to characterize the fluid inertia. By comparing τB which characterizes the
particle inertia with τν, one can get τB/τν = 2ρp/9ρ f . Therefore, as ρp/ρ f increases the
particle inertia influences the Brownian motion more than the fluid inertia, as a result,
the Markovian effects become more important, which leads to the fact that Brownian
forces FB and torques TB defined by Eq. (2.11) can account for the Brownian motion more
accurately for ρp/ρ f = 11 than for ρp/ρ f = 1. Moreover, it should be mentioned that as
ρp/ρ f approaches infinity, non-Markovian effects can be completely neglected and LE
dominates the Brownian motion, and of course the deviations would disappear no mat-
ter how much τB is. The same conclusion can be made for rotational Brownian motion if
one get τr/τν =ρp/15ρ f .

A basic relation between the relaxation response of a dragged particle and the VCF
of a Brownian particle is the fluctuationCdissipation theorem. It should be noted that
the analytical solutions in Fig. 3 are identical to those in Fig. 4, in other words, within
the statistical error the velocity correlation functions are identical to the steady decay of
the translational and rotational velocities of the same sphere. Therefore, by taking the
mass density ratio ρp/ρ f into account our simulations satisfy the fluctuation-dissipation
theorem at least for t>τB or t>τr.

It has been shown that thermal equilibrium between the Brownian particle and the
surrounding fluid molecular will reach and that an equi-partition of energy for each de-
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Figure 2: Decay of an initially posed translational velocity or rotational velocity of a sphere of a = 2.65 and
ρp =11 for different periodic boxes.
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Figure 3: Decay of an initially posed translational velocity or rotational velocity of a sphere of a = 2.65 and
ρp =11 for different Nb number.
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D. M. Nie and J. Z. Lin / Commun. Comput. Phys., 9 (2011), pp. 959-973 969

gree of freedom for both translational and rotational Brownian motion will be observed,
which can be described as [47]

<U2(0)>=<V2(0)>=<W2(0)>
KBT

Me
, (3.1a)

<Ω2(0)>=<Θ2(0)>=<Y2(0)>=
KBT

J
, (3.1b)

where U, V and W refer to translational velocity of x, y and z coordinate, Ω, Θ and Y
refer to rotational velocity of x, y and z coordinate, respectively. Me is the effective mass,
described as Me = M+2πa3ρ f /3. It should be pointed out that Eq. (3.1a) is in contradic-
tion with the equipartition theorem because the particle mass M instead of the effective
mass Me would be expected in Eq. (3.1a). An equi-partition of energy for both transla-
tional and rotational motion at x, y and z coordinate can be observed in both cases after
a certain run time, as displayed in Fig. 6. Moreover, it can be seen that the equi-partition
of energy at x, y and z coordinate is reached earlier for rotational motion than for trans-
lational motion. Not surprisingly, it takes more time to reach thermal equilibrium of all
three degrees of freedom in both translational and rotational motion for ρp =11 than for
ρp = 1 due to particle inertia. However, thermal equilibrium between solid particle and
fluid has not been found since the mean-square velocities (MSV) of translational mo-
tion or rotational motion deviate from KBT/Me or KBT/J quantitatively, which is clearly
shown in Fig. 6. In additions, the MSV of translational motion are about 16% less than
KBT/Me for ρp=1 and about 11% less than KBT/Me for ρp=11. The results are consistent
with the conclusion that as ρp/ρ f increases the present model can account for particle’s
Brownian motion more accurately. The similar observations about thermal equilibrium
between solid particle and fluid have also been obtained by Ladd [23] through the fluc-
tuating lattice-Boltzmann equations. In his simulations, the temperatures characterizing
translation and rotation are similar, but typically 10-20% less than the effective tempera-
ture of the fluid fluctuations.

In order to further demonstrate the ability of the present LB-DF/FD model, a Brown-
ian particle trapped in a harmonic potential has been considered. This problem is usually
adopted to describe a Brownian particle confined to a restricted volume. The harmonic
potential is introduced by adding a harmonic force

FHP =−k(R−Req), (3.2)

where Req is its equilibrium position and k the spring constant.
One of the most important results in this problem is the mean-square displacement

(MSD) of Brownian particle which has been given by [51]

lim
t→∞

<∆r2(t)>
2kBT

k
, (3.3)

where <∆r2(t)>=
〈

|R(t)−R(0)|2
〉

/3. In the simulations the parameters are summarized
as follow: a=2.65, ν=1/6, ρp =11, KBT≈1.0×10−3. Eight spring constants k range from



970 D. M. Nie and J. Z. Lin / Commun. Comput. Phys., 9 (2011), pp. 959-973

KBT/Me

<Ω
2(0)>

<Θ
2(0)>

<Υ
2(0)>

Rotational

KBT/J

t

M
S

V
:T

ra
ns

la
tio

na
la

nd
R

ot
at

io
na

l

0 10000 20000 30000 40000 50000
0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

<U2(0)>
<V2(0)>
<W2(0)>

Translational

<Ω
2(0)>

<Θ
2(0)>

<Υ
2(0)>

Rotational

KBT/J

KBT/Me

t

M
S

V
:T

ra
ns

la
tio

na
la

nd
R

ot
at

io
na

l

0 20000 40000 60000 80000 100000
0.0E+00

5.0E-07

1.0E-06

1.5E-06

2.0E-06

<U2(0)>
<V2(0)>
<W2(0)>

Translational

(a) ρp =1 (b) ρp =11

Figure 6: Time evolutions of the mean-square velocities (MSV) for ρp =1 and 11.

erature of the fluid fluctuations.
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Figure 7: The spring constant dependence of the limt→∞ <∆r2(t)> k/2.

0.05 to 3.2 have been taken into account, and the corresponding temperature KBT derived
from limt→∞ < ∆r2(t) > k/2 are plotted in Fig. 7. Obviously, the result approaches KBT
as k → 0 and is consistent with the results obtained from the diffusion coefficient for a
Brownian particle.

4 Conclusions

In this paper, the lattice Boltzmann-Direct Forcing/Fictitious Domain method is extended
to solve the 3D particle Brownian motion. Langevin equations are considered for the mo-
tion of the Brownian particle, while the hydrodynamic forces and torques are determined
in a DNS framework. By examining the velocity autocorrelation function (VCF) and ro-
tational velocity autocorrelation function (RVCF), it has been found that the numerical
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results agree well with analytical solutions at long-time (t>τB or t>τr), which is consis-
tent with the previous numerical results. At the same time, the mass density ratio ρp/ρ f

plays a key role in the present simulations. As ρp/ρ f increases, the particle inertia influ-
ences the Brownian motion more than the fluid inertia, which makes the Langevin equa-
tions become more accurate. Therefore, if ρp/ρ f is large enough the numerical results
may agree well with analytical solutions even t<τB or t<τr. The mean-square velocities
(MSV) of translational motion or rotational motion also confirmed this conclusion.

On the other hand, it should be noted that this study has been only for a single spher-
ical particle case. Extending the present LB-DF/FD model to non-spherical particle and
many particles system should be the future work. Moreover, the mechanism of thermal
equilibrium between the particle and fluid is not fully developed, and should be exam-
ined more deeply in the future work.
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[47] E. H. Hauge and A. Martin-Löf, Fluctuating hydrodynamics and Brownian motion, J. Stat.
Phys., 7 (1973), 259–281.

[48] E. J. Hinch, Application of the Langevin equation to fluid suspensions, J. Fluid. Mech., 72
(1975), 499–511.

[49] Z. S. Yu and X. M. Shao, A direct-forcing fictitious domain method for particulate flows, J.
Comput. Phys., 227 (2007), 292–314.

[50] M. Uhlmann, An immersed boundary method with direct forcing for the simulation of par-
ticulate flows, J. Comput. Phys., 209 (2005), 448–476.

[51] H. J. H. Clercx and P. P. J. M Schram, Brownian particles in shear flow and harmonic poten-
tials: a study of long-time tails, Phys. Rev. A., 46 (1992), 1942–1950.


