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Abstract. In this paper we proposed a modified Baer-Nunziato model for compress-
ible multi-fluid flows, with main attention on the energy exchange between the two
fluids. The proposed model consists of eleven PDEs; however, the use of the particu-
lar phase evolving variables may reduce the model to have only six PDEs. The main
advantage of the model is that the Abgrall’s UPV criterion on mixture velocity and
pressure is satisfied without affecting either its hyperbolicity or its conservations of
the two individual masses, momentum or total energy. An Lax-Friedrichs scheme is
built for a particular case of the proposed model. When the two fluids in the fluid mix-
ture are both of the linear Mie-Gruneisen type, the scheme satisfies the Abgrall’s UPV
criterion on mixture velocity and pressure. Numerical experiments with polytropic,
barotropic, stiffened and van der Waals fluids show that the scheme is efficient and
able to treat fluids characterized with quite different thermodynamics.

AMS subject classifications: 65M06, 35L65, 76N15, 76M10

Key words: Baer-Nunziato model, hyperbolicity, Abgrall’s UPV criterion.

1 Introduction

The Baer-Nunziato (BN) model, see [2–5] and [8], is a two-mass, two-velocity and two-
pressure diffuse model for multi-fluid flows. The model, by omitting the mass transfer,
drag force, chemical reaction and convective heat exchange, has the form

∂α1ρ̂1

∂t
+

∂α1ρ̂1u1

∂x
=0, (1.1a)

∂α1ρ̂1u1

∂t
+

∂(α1ρ̂1u2
1+α1 p̂1)

∂x
= p

∂α1

∂x
, (1.1b)
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∂α1ρ̂1E1

∂t
+

∂u1(α1ρ̂1E1+α1 p̂1)

∂x
= pu

∂α1

∂x
, (1.1c)

∂α2ρ̂2

∂t
+

∂α2ρ̂2u2

∂x
=0, (1.1d)

∂α2ρ̂2u2

∂t
+

∂(α2ρ̂2u2
2+α2 p̂2)

∂x
= p

∂α2

∂x
, (1.1e)

∂α2ρ̂2E2

∂t
+

∂u2(α2ρ̂2E2+α2 p̂2)

∂x
= pu

∂α2

∂x
, (1.1f)

∂α1

∂t
+u

∂α1

∂x
=0, (1.1g)

where ρ̂k is the phase density, uk is the phase velocity, p̂k is the phase pressure, Ek=u2
k/2+

ǫk is the specific phase total energy of the kth fluid with ǫk the specific phase internal
energy, αk is the volume fraction satisfying the saturation condition

α1+α2 =1, (1.2)

and finally, u and p are the averaged interfacial velocity and pressure. There are different
ways to compute the interfacial velocity and pressure corresponding to different physics,
e.g., in [8] they are computed as the mixture velocity,

u=
α1ρ̂1u1+α2ρ̂2

α1ρ̂1+α2ρ̂2
, (1.3)

and mixture pressure,

p= p1+p2 =α1 p̂1+α2 p̂2, (1.4)

respectively, where

p̂k = Pk(ρ̂k,ǫk) (1.5)

is the phase pressure computed by the EOS of the kth fluid as in Eq. (2.1) and pk =αk p̂k is
the partial pressure contributed by the kth fluid.

The system is not conservative, and the source terms in the momentum and energy
equations, called nozzling terms [3], correspond to the momentum and energy exchange
between the two fluids. Although the model is complex, it is unconditionally hyperbolic
and is able to treat fluids characterized by very different thermodynamics because each
fluid uses its own EOS.

The Abgrall’s uniform-pressure-velocity (UPV) criterion requires that a two-phase
flow, uniform in pressure and velocity, must remain uniform on the same variables dur-
ing its temporal evolution (see [8,9]). The BN model (1.1) and its numerical methods can
meet the Abgrall’s UPV criterion by requiring

u1 =u2 =const, p̂1 = p̂2 =const; (1.6)
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i.e., the two fluids are in velocity and pressure equilibriums with each other [8]. How-
ever, directly assuming pressure equilibrium will result in the loss of hyperbolicity of
the model. In practice, relaxations that drive the fluids towards the velocity and pressure
equilibriums are added to the BN model in numerical simulations, see, e.g., [4,6,8], which
surely adds complexities.

In this paper we propose a modified BN model. The work is a further extension
of [14]. The modification is mainly on the energy exchange between the two fluids in the
work done by the pressure. The modified model meets the Abgrall’s UPV criterion by
requiring only the velocity equilibrium, and in this way the hyperbolicity of the model
is not affected. An Lax-Freidrichs (LxF) scheme for a particular case of the model is con-
structed and is proved to meet the UPV criterion on mixture velocity and pressure for
linear Mie-Gruneisen fluids. Numerical experiments on Riemann problems with a wide
range of different fluids show that the scheme is efficient. Second-order extension of the
LxF scheme has been obtained in the way of [7] and the numerical experiments showed
great improvement over the first-order schemes. However, the extension is not straight-
forward and will be reported in another work. Nevertheless, a numerical example will
be presented to show the improvement of the second-order extension over the first-order
schemes.

The rest of the paper is organized in the following fashion. In Section 2 we present
the modified BN model and discuss its properties, especially those relevant to the UPV
criterion. In Section 3 we present the LxF scheme for the particular case of the modified
model. Section 4 presents the numerical tests performed with the LxF scheme. Finally,
we conclude the paper in Section 5.

2 The modified BN model

Assume that the EOS’s of the two fluids in the fluid mixture are

p= Pk(ρ,ǫ), k=1,2, (2.1)

respectively. According to the thermodynamics,

(Pk)ρ >0 and (Pk)ǫ >0. (2.2)

We assume that the EOS of each fluid can be decomposed as

Pk(ρ,ǫ)= Pk,1(ρ,ǫ)+Pk,2(ρ,ǫ), (2.3)

with

(Pk,l)ρ ≥0 and (Pk,l)ǫ≥0, l =1,2. (2.4)

Note that the original EOS of the fluid can be recovered by setting Pk,1(ρ,ǫ)=Pk(ρ,ǫ) and
Pk,2(ρ,ǫ)≡ 0. As a result, the assumption Eqs. (2.3) and (2.4) adds no restriction on the
EOS’s.
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We assume velocity equilibrium in our modified BN model, i.e., u1=u2=u. The model
that describes the balance laws of masses, momentum and energies of the two fluids is
then governed by

∂ρ1

∂t
+

∂ρ1u

∂x
=0, (2.5a)

∂ρ2

∂t
+

∂ρ2u

∂x
=0, (2.5b)

∂ρu

∂t
+

∂(ρu2+p)

∂x
=0, (2.5c)

∂ρ1E1

∂t
+

∂uρ1E1

∂x
+

ρ1

ρ

∂up

∂x
=0, (2.5d)

∂ρ1E2

∂t
+

∂uρ1E2

∂x
+

ρ2

ρ

∂up

∂x
=0, (2.5e)

where ρk = αkρ̂k is the partial density of the kth fluid, ρ = ρ1+ρ2 is the mixture density
and p is the mixture pressure. To close the model, we need to provide a way to compute
the mixture pressure. To this end, we introduce four sets of nonnegative phase evolving
variables, (α1,l ,α2,l) and (β1,l ,β2,l), l = 1,2, each of which satisfies the phase advection
equation

∂χk,l

∂t
+u

∂χk,l

∂x
=0, (2.6)

with χ=α or β. The αk,l’s satisfy the saturation conditions

α1,l +α2,l =1, l =1,2. (2.7)

Also α1,l =1 (α2,l =0) and β1,l =1 in the first fluid and α1,l =0 (α2,l =1) and β2,l =1 in the
second fluid for l =1,2. Then the mixture pressure is computed as

p= p1+p2, (2.8)

where the two partial pressures are computed as

p1 =α1,1P1,1(β1,1ρ1,ǫ1)+α1,2P1,2(β1,2ρ1,ǫ1), (2.9a)

p2 =α2,1P2,1(β2,1ρ2,ǫ2)+α2,2P2,2(β2,2ρ2,ǫ2), (2.9b)

with the two EOS’s having decompositions (2.3)-(2.4). Thus, we complete the modified
model, which is a system of eleven PDEs.

Remark 2.1. It is easy to see that the two mass equations in the modified model, (2.5a)
and (2.5b), are just the same as (1.1a) and (1.1d) in the original model, and the momentum
equation in the modified model, (2.5c), is just the sum of the two momentum equations
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(1.1b) and (1.1e) in the original model. Therefore, the major difference between the orig-
inal and modified BN models lies in the two balance laws of energy. If we write (2.5d)
and (2.5e) as

∂ρ1E1

∂t
+

∂u
(

ρ1E1+
ρ1

ρ p
)

∂x
= pu

∂
ρ1

ρ

∂x
, (2.10a)

∂ρ2E1

∂t
+

∂u
(

ρ1E2+
ρ2

ρ p
)

∂x
= pu

∂
ρ2

ρ

∂x
, (2.10b)

and compare them with (1.1c) and (1.1f), we see that the modification corresponds to
replacing the volume fractions and phase pressures with the mass fractions and mixture
pressures, respectively, in the original BN model.

Remark 2.2. The introduction of αk,l’s and βk,l’s provides freedom to describe the ther-
modynamics of the fluid mixture rather than imposes restriction on it, and particular
choices of them may reduce the dimension of system (2.5). For example, we can set the
decomposition (2.3)-(2.4) as

Pk,1(ρ,ǫ)= Pk(ρ,ǫ), and Pk,2(ρ,ǫ)≡0, (2.11)

set α1,1 = α1, α2,1 = α2, β1,1 = 1/α1 and β2,1 = 1/α2, where α1 and α2 are the two volume
fractions, and abandon α1,2, β1,2, α2,2 and β2,2. Then (2.8)-(2.9) recovers mixture pressure
computation (1.4) and (1.5), and in this case, the system is reduced to consist of only six
PDEs.

Theorem 2.1. The proposed model (2.5) has the following properties:

(1) it recovers the standard Euler system when only one fluid is present;

(2) it conserves the masses of individual fluids as well as of the fluid mixture, the mixture
momentum and the mixture total energy;

(3) it is unconditionally hyperbolic.

Proof. The first two conclusions of the theorem are obvious, and we thus only prove the
third one. To this end, we write the system (2.5) in the primitive variables

∂w

∂t
+A(w)

∂w

∂x
=0, (2.12)

where
w=(ρ1,ρ2,u,p1,p2,α1,1,α1,2,β1,1,β1,2,β2,1,β2,2)

T.

By calculation we can obtain from (2.5) that

∂ρ1

∂t
+u

∂ρ1

∂x
+ρ1

∂u

∂x
=0, (2.13a)

∂ρ2

∂t
+u

∂ρ2

∂x
+ρ2

∂u

∂x
=0, (2.13b)
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∂u

∂t
+u

∂u

∂x
+

1

ρ

(∂p1

∂x
+

∂p2

∂x

)

=0, (2.13c)

∂p1

∂t
+u

∂p1

∂x
+κ1

∂u

∂x
=0, (2.13d)

∂p2

∂t
+u

∂p2

∂x
+κ2

∂u

∂x
=0, (2.13e)

where

κ1 =
2

∑
l=1

{

α1,l β1,l(P1,l)ρρ1+α1,l
(P1,l)ǫ p

ρ

}

, (2.14a)

κ2 =
2

∑
l=1

{

α2,l β2,l(P2,l)ρρ2+α2,l
(P2,l)ǫ p

ρ

}

. (2.14b)

By taking the six independent PDEs in (2.6) as we obtain the coefficient matrix A(w) in
(2.13),

A(w)=







































u 0 ρ1 0 0 0 0 0 0 0 0
0 u ρ2 0 0 0 0 0 0 0 0

0 0 u 1
ρ

1
ρ 0 0 0 0 0 0

0 0 κ1 u 0 0 0 0 0 0 0
0 0 κ2 0 u 0 0 0 0 0 0
0 0 0 0 0 u 0 0 0 0 0
0 0 0 0 0 0 u 0 0 0 0
0 0 0 0 0 0 0 u 0 0 0
0 0 0 0 0 0 0 0 u 0 0
0 0 0 0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 0 0 0 u







































. (2.15)

It is easy to obtain the eigenvalues of A(w),

λ1 =u−c, λ2,3,4,5,7,8,9,10 =u, λ11 =u+c, (2.16)

with the sound speed

c=

√

κ1+κ2

ρ
. (2.17)

The positivity of ρ1, ρ2, p, αk,l’s, αk,l’s together with (2.4) guarantees the reality of c, from
which the hyperbolicity of the model follows.

Theorem 2.2. If initially the fluid has uniform velocity and mixture pressure, then the modified
model maintains the velocity and mixture pressure to be uniform during the temporal evolution.
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Proof. Assume that the velocity and mixture pressure are initially constant u0 and p0,
respectively. Firstly, we obtain the velocity evolution equation from (2.13c),

∂u

∂t
+u

∂u

∂x
+

1

ρ

∂p

∂x
=0. (2.18)

Secondly, by summing up (2.13d) and (2.13e), we obtain the mixture pressure evolution
equation

∂p

∂t
+u

∂p

∂x
+(κ1+κ2)

∂u

∂x
=0. (2.19)

It is obvious that u(x,t)=u0 and p(x,t)=p0 are the unique solution to (2.18) and (2.19) that
satisfies the initial conditions u(x,0)=u0 and p(x,0)=p0. The proof is thus completed.

We conclude this section by considering an example of the modified BN model. We
know that nearly all fluids are of the Mie-Gruneisen type

P(ρ,ǫ)=(γ−1)(ρǫ+Aρ)−γB, (2.20)

with γ>1, A>0 and B>0. We call EOS (2.20) of linear Mie-Gruneisen type when all γ,
A and B are constant. The linear Mie-Grunesien type of fluids include

polytropic: p=(γ−1)ρǫ, (2.21a)

barotropic: p=(γ−1)
(

ρǫ+
Bρ

ρ0

)

−γB, (2.21b)

stiffened: p=(γ−1)ρǫ−γB. (2.21c)

If both the fluids are of the linear Mie-Gruneisen type but with different coefficients, we
decompose each EOS as

Pk,1(ρ,ǫ)=(γk−1)(ρǫ+Akρ), Pk,2(ρ,ǫ)=−γkBk, k=1,2. (2.22)

It is easy to verify that (2.4) holds for this decomposition. Now we choose (α1,1,α2,1)
to be the mass fractions (ρ1/ρ,ρ2/ρ), which satisfy the phase advection equation (2.6);
choose (α1,2,α2,2) to be the two volume fractions, (α1,α2); choose β1,1≡1 and β2,1≡1, and
abandon β1,2 and β2,2. With this setting, the two partial pressures become

pk =(γk−1)(ρkǫk +Akρk)−αkγkBk, k=1,2, (2.23)

and the system (2.5) is reduced to have six PDEs. It is easy to obtain the two κ’s in (2.14),

κk =
ρk

ρ

(

pk+αk(γkBk+(γk−1)p)
)

, k=1,2. (2.24)

Note that the sound speed c then computed by (2.17) is different from that of the reduced
BN model with velocity equilibrium in [3]; the latter is simply the mass average of the
two sound speeds.
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3 The Lax-Friedrichs scheme

In this section we proposed a Lax-Friedrich (LxF) scheme for the modified BN model of
the linear Mie-Gruneisen type. The phase evolving variables are chosen as those given
in the end of the previous section, and thus the model is reduced to six PDEs. The LxF
scheme, which uses stagger grids, is then given by:

ρ̄1,i+ 1
2
=

1

2
(ρ1,i+ρ1,i+1)−

λ

2
(ρ1,i+1ui+1−ρ1,iui), (3.1a)

ρ̄2,i+ 1
2
=

1

2
(ρ2,i+ρ2,i+1)−

λ

2
(ρ2,i+1ui+1−ρ2,iui), (3.1b)

ρ̄i+ 1
2
ūi+ 1

2
=

1

2
(ρiui+ρi+1ui+1)−

λ

2
(ρi+1u2

i+1+pi+1−ρiu
2
i −pi), (3.1c)

ρ̄1,i+ 1
2
Ē1,i+ 1

2
=

1

2
(ρ1,iE1,i+ρ1,j+1E1,i+1)−

λ

2
(ρ1,i+1E1,i+1ui+1−ρ1,iE1,iui)

−
λ

2

ρ1,i+ρ1,i+1

ρi+ρi+1
(ui+1pi+1−ui pi), (3.1d)

ρ̄2,i+ 1
2
Ē2,i+ 1

2
=

1

2
(ρ2,iE2,i+ρ2,i+1E2,i+1)−

λ

2
(ρ2,i+1E2,i+1ui+1−ρ2,iE2,iui)

−
λ

2

ρ2,i+ρ2,i+1

ρi+ρi+1
(ui+1pi+1−ui pi), (3.1e)

ᾱ1,i+ 1
2
=

1

2
(α1,i+α1,i+1)−

λ

2

(ui+ui+1)

2
(α1,i+1−α1,i), (3.1f)

where the quantities with overhead bars are on the next time level and the quantities
without overhead bars are on the current time level. The numerical mixture pressure is
then computed by

pi = p1,i+p2,i, (3.2)

where pk,i is computed as

pk,i =(γk−1)(ρk,iǫk,i+Akρk,i)−αk,iγkBk, k=1,2. (3.3)

The mesh ratio λ=τ/h with τ and h the spatial and temporal increments is restricted by
the CFL condition, i.e., (|u|+c)λ<1.

Theorem 3.1. The proposed scheme (3.1) has the following properties:

(1) it conserves the individual as well as the mixture masses, mixture momentum and energy;

(2) when the CFL condition is satisfied, it maintains the individual masses nonnegative;

(3) it recovers the standard LxF scheme when only one fluid is present.

Proof. Conclusions (1) and (3) are obvious. To prove (2), we rewrite (3.1a) and (3.1b) as

ρ̄k,i+ 1
2
=

1

2
(1+λui)ρk,i +

1

2
(1−λui+1)ρk,i+1, k=1,2. (3.4)
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The relevant CFL condition guarantees

λmax
i

|ui|<1, (3.5)

and thus yields the nonnegativity of the two coefficients in (3.4). The nonnegativity of
the two masses then follows, and thus the proof is complete.

Theorem 3.2. If initially the velocity and mixture pressure are uniform, then the scheme main-
tains the property that the velocity and mixture pressure are uniform in the computations.

Proof. According to the UPV assumption of the flow, the numerical solution in the ith cell
at tn is

Ui =(ρ1,i,ρ2,i,ρiu0,ρ1,iE1,i,ρ2,iE2,i,α1,i), (3.6)

with mixture pressure p0, where both u0 and p0 are constant. The same situation holds
in the (i+1)th cell. According to (3.1h), the two partial pressures in the ith and (i+1)th
cells are computed as

pk,i =(γk−1)(ρk,iǫk,i+Akρk,i)−αk,iγkBk, k=1,2, (3.7a)

pk,i+1 =(γk−1)(ρk,i+1ǫk,i+1+Akρk,i+1)−αk,i+1γkBk, k=1,2. (3.7b)

To prove the theorem, we need to show that the numerical solution at tn+1 is still with
the velocity u0 and mixture pressure p0.

Firstly, we have from (3.1a) and (3.1b)

ρ̄k,i+ 1
2
=

1

2
(1+λu0)ρk,i+

1

2
(1−λu0)ρk,i+1, k=1,2. (3.8)

By noting pi = pi+1 = p0, we have from (3.1c)

ρ̄i+ 1
2
ūi+ 1

2
=

1

2
(1+λu0)ρiu0+

1

2
(1−λu0)ρi+1u0, (3.9)

which, by noting ρ1+ρ2 =ρ, leads to the first conclusion

ūi+ 1
2
=u0. (3.10)

Secondly, by noting the definition of internal energy, (3.8), (3.10) and the uniform mixture
pressure p0 at the current time level, we obtain from (3.1d) and (3.1e)

ρ̄k,i+ 1
2
ǭk,i+ 1

2
=

1

2
(1+λu0)ρk,iǫk,i +

1

2
(1−λu0)ρk,i+1ǫk,i+1, k=1,2. (3.11)

Also using (3.1f) and the saturation condition on α1 and α2 gives

ᾱk,i+ 1
2
=

1

2
(1+λu0)αk,i+

1

2
(1−λu0)αk,i+1, k=1,2. (3.12)



Q. Wu, X.-G. Lu and D.-K. Mao / Commun. Comput. Phys., 9 (2011), pp. 1040-1055 1049

We note from (3.8), (3.11) and (3.12) that the evolutions of ρk, ρkǫk and αk, k =1,2, are all
in the form

Ψ̄i+ 1
2
=

1

2
(1+λu0)Ψi+

1

2
(1−λu0)Ψi+1, (3.13)

with Ψ=ρk , ρkǫk or αk. We also note from (3.3) that the two partial pressures are all linear
combinations of ρk, ρkǫk and αk in the two cells. This leads to

p̄k,i+ 1
2
=

1

2
(1+λu0)pk,i+

1

2
(1−λu0)pk,i+1, (3.14)

the evolutions of the two partial pressures are also in the form of (3.13).
Finally, by adding up (3.14) for k=1,2 and noting (3.2) in the ith and (i+1)th cells, we

have for the mixture pressure

p̄i+ 1
2
=

1

2
(1+λu0)pi+

1

2
(1−λu0)pi+1. (3.15)

The second conclusion then follows from pi=pi+1=p0, and the proof is thus complete.

4 Numerical experiments

In this section, we present a number of numerical tests using the LxF scheme proposed
in the previous section. All the tests are Riemann problems of two-fluid flows involving
polytropic, barotropic, stiffened and van der Waals gases. The examples are chosen from
literatures on interface modeling, and are believed to be wildly used to test the efficiency
of multi-fluid models and their numerical methods. Brief description of each example
will be given, and its more detailed description can be found in the cited references.

The EOS of the van der Waals gas is

P(ρ,ǫ)=(γ−1)
ρǫ+aρ2

1−bρ
−aρ2, (4.1)

where γ, a and b are constant. We decompose the EOS of the van der Waals gas as

P1(ρ,ǫ)=(γ−1)
ρǫ+aρ2

1−bρ
−aρ2, P2(ρ,ǫ)=0. (4.2)

Therefore, with the phase evolving variables chosen as in the end of Section 2, the partial
pressure of the kth fluid in the ith cell is computed by

pk,i =(γk,i−1)
ρk,iǫk,i+akρk,iρi

1−bkρi
−aρk,iρi, (4.3)

if the fluid is van der Waals.
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The CFL number is always set as 0.5. For each example we present the numerical
results of the mixture density, velocity, mixture pressure and total energy. In all the fol-
lowing figures we use solid lines to represent the exact solutions and use dots for the
numerical solutions. Because of the heavy dissipation of the LxF scheme, very fine grids
are used in all the tests. In the end of this section, we present a numerical solution com-
puted with the second-order extension of the LxF scheme to show the improvement.

4.1 Numerical tests

Test 4.1. The initial value is






















0< x<0.5, 0.5< x<1.0,
ρl =1.0, ρr =0.125,
ul =0.0, ur =0.0,
pl =1.0, pr =0.1,
γl =1.6, γr =1.2.

(4.4)

The problem is chosen from [1]. The numerical solution on a grid of 1,000 cells at t=0.25
is presented in Fig. 1.
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Figure 1: Numerical solution of Test 4.1 at t=0.25, 1,000 grid cells.
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Test 4.2. The initial value is







0< x<2.0, 2.0< x<4.0, ρl =10−
6.0
7.0 , ρr =1.0,

ul =0.0, ur =0.0, pl =103, pr =1.0,
γl =1.4, γr =7.0, Br =3000, ρ0 =1.0.

(4.5)

The problem is chosen from [11]. The left gas is polytropic and the right gas is barotropic.
The numerical solution on a grid of 1,000 cells at t=0.01 is presented in Fig. 2.
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Figure 2: Numerical solution of Test 4.2 at t=0.01, 1,000 grid cells.

Test 4.3. The initial value is







0< x<0.5, 0.5< x<1.0, ρl =103, ρr =50,
ul =0.0, ur =0.0, pl =109, pr =105,
γl =4.4, Bl =600,000,000, γr =1.4.

(4.6)

The problem is chosen from [1]. The left gas is stiffened and the right gas is polytropic.
Numerical solution on a grid of 10,000 cells at t=0.0001 is presented in Fig. 3.
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Figure 3: Numerical solution of Test 4.3 at t=0.0001, 10,000 grid cells.

Test 4.4. The initial value is






0< x<1.0, 1.0< x<2.0, ρl =103, ρr =50.0,
ul =0.0, ur =0.0, pl =109, pr =105,
γl =4.4, Bl =600,000,000, γr =1.4, ar =5.0, br =1.0−3.

(4.7)

The problem is chosen from [10]. the left gas is stiffened and the right gas is van der
Waals. Numerical solution at t=0.00024 on a grid of 10,000 cells is presented in Fig. 4.

As is described in the beginning of this section, the partial pressure of the van der
Waals gas is computed as in (4.3). However, in this test the mixture density will reach
1,000 in cells on the left of the interface where the stiffened gas is dominated, which will
cause the denominator 1−brρi in (4.3) to approach zero. To fix the problem, we set

ρ̄i =min
{

ρi,
0.8

br

}

, (4.8)

and then compute the partial pressure contributed by the van der Waals fluid, pW,i, as

pW,i :=
(γr−1)(ǫ2,iρ2,i+arρiρ̄2,i)

1−br ρ̄i
−ar ρ̄iρ2,i, (4.9)
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Figure 4: Numerical solution of Test 4.4 at t=0.00024, 10,000 grid cells.

with ρi replaced by ρ̄i. Note, this fix does not affect the conservation of the individual
masses, mixture momentum and mixture energy; it only alters a bit the computation
of the two partial energies near the interface. The fix corresponds to introduce some
numerical energy exchange between the two fluids.

4.2 Observations and comments

Generally speaking, all the numerical solutions are in good agreement with the exact
solutions, and as expected, the velocities and pressures of the fluid mixture experience
little fluctuations across the interfaces, even for the van der Waals gas in Test 4.4, which
does not have the UPV property guaranteed by Theorem 3.2. This indicates that the
proposed model and its LxF scheme are efficient and able to treat fluids characterized
with a wide range of different thermodynamics.

It is obvious that all the numerical solutions suffer from the heavy numerical dissipa-
tion of the LxF scheme. A second-order extension of the scheme in the ways of [7] has
been built and a separate paper will be devoted to that issue. Nevertheless, we would
like to present in Fig. 5 the numerical solution computed by the second-order scheme on
a grid of 100 cells for Test 4.1 and compare it with the numerical solution computed by
the first-order scheme on the same grid. The improvement of the second-order scheme
over the first-order one is clearly seen in the figure.
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Figure 5: Numerical solutions of Test 4.1 computed by the first- and second-order LxF schemes at t=0.25, 100
grid cells.

We note that the numerical solutions in Tests 4.3 and 4.4 do not quite converge to the
exact solutions; the right shocks do not travel at correct speeds and the densities have
undershoots behind the interfaces. We guess the problem is caused by that all the tests
involve a very stiffened gas (Bl =600,000,000) and have great jumps in both density and
pressure; therefore, the problems similar to that reported in [13] for single fluids take
place in these tests, and this kind of problems may be severed in simulations of two-fluid
flows.

5 Conclusions

We have presented a modified BN model and a corresponding LxF scheme for a partic-
ular case of the model. The modification is mainly on the energy exchange in the work
done by the pressure. Also the mixture pressures is computed in a generalized way in
which four sets of phase evolving variables are used to describe the thermodynamics of
the fluid mixture. The model consists of eleven equations; however, particular choices
of the phase evolving variables reduce the model to have only six equations. The model
and the LxF scheme are hyperbolic and maintain the conservation of individual masses,
momentum and total energy. Also the model and the LxF scheme meet the UPV criterion



Q. Wu, X.-G. Lu and D.-K. Mao / Commun. Comput. Phys., 9 (2011), pp. 1040-1055 1055

for linear Mie-Gruneisen fluids. Numerical experiments show that the model and the
LxF scheme are efficient and able to handle fluids characterized with different thermody-
namics.
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