
Commun. Comput. Phys.
doi: 10.4208/cicp.080409.051009a

Vol. 8, No. 1, pp. 159-184
July 2010

Direct Vlasov Solvers with High-Order Spectral

Element Method

Jin Xu1,2,∗, Brahim Mustapha1, Peter Ostroumov1 and Jerry Nolen1

1 Physics Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL
60439, USA.
2Mathematics and Computer Science Division, Argonne National Laboratory, 9700
S. Cass Ave., Argonne, IL 60439, USA.

Received 8 April 2009; Accepted (in revised version) 5 October 2009

Available online 12 February 2010

Abstract. This paper presents the development of parallel direct Vlasov solvers us-
ing the Spectral Element Method (SEM). Instead of the standard Particle-In-Cell (PIC)
approach for kinetic space plasma simulation, i.e. solving the Vlasov-Maxwell equa-
tions, the direct method has been used in this paper. There are several benefits to
solve the Vlasov equation directly, such as avoiding noise associated with the finite
number of particles and the capability to capture the fine structure in the plasma, etc.
The most challenging part of direct Vlasov solver comes from high dimension, as the
computational cost increases as N2d, where d is the dimension of the physical space.
Recently due to fast development of supercomputers, the possibility of high dimen-
sions becomes more realistic. A significant effort has been devoted to solve the Vlasov
equation in low dimensions so far, now more interests focus on higher dimensions.
Different numerical methods have been tried so far, such as finite difference method,
Fourier spectral method, finite volume method, etc. In this paper SEM has been suc-
cessfully applied to construct these solvers. SEM has shown several advantages, such
as easy interpolation due to local element structure and long time integration due to
its high order accuracy. Domain decomposition in high dimensions have been used for
parallelization, these include scalable parallel 1D and 2D Poisson solvers. Benchmark
results have been shown and simulation results have been reported for two different
cases: one dimension (1P1V), and two dimensions (2P2V) in both physical and velocity
spaces.
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1 Introduction

Plasma and charged particle simulations have great importance in science. There are
three different approaches to simulate plasma: the microscopic model, the kinetic model
and the fluid model. The microscopic model is governed by Liouville’s equation. Each
charged particle is described by 6 variables (x,y,z,vx,vy,vz), for a system of N particles,
there are 6N variables in total. This requires to solve the Liouville equation in a phase
space with 6N dimensions, which obviously exceeds the capability of current supercom-
puters. On the other hand, the simplest model is the fluid model, which treats the plasma
as a conducting fluid with electromagnetic force exerting on it. This leads to solving the
Magnetohydrodynamics (MHD) equations in 3D (x, y and z). MHD solves for the av-
erage quantities, such as density and charge, which makes it difficult to describe fine
structures in the plasma. Due to computer speed limitations, MHD is a realistic ap-
proach in plasma simulation. Between these two models is the kinetic model, which
solves the charge density function by solving Boltzmann or Vlasov equations in 6 di-
mensions (x,y,z,vx ,vy,vz). The Vlasov equation describes the evolution of a system of
particles under the effects of self-consistent electromagnetic fields. This paper deals with
the kinetic model. There are two different ways to solve the kinetic model. The most pop-
ular one is to represent the beam bunch by macro particles and push the macro particles
along the characteristics of Vlasov equation. This is the so called Particle-In-Cell (PIC)
method [3], which utilizes the motion of the particles along the characteristics of the
Vlasov-equation using a Lagrange-Euler approach. In principle it simplifies the Partial
Differential Equation (PDE) to an Ordinary Differential Equation (ODE). The interaction
between charged particles, which is called space charge effect, is accounted for by first
distributing charges on a fixed grid, then solving Poisson’s equation. Then the electric
field from the potential solution can be computed. The PIC method has the advantages
of fast speed and easy implementation, but similar to MHD, it is hard to describe fine
structures in the plasma. Furthermore, there is noise associated with the finite number of
particles used in the simulation, and this noise decreases very slowly as 1/

√
N when the

number of particles N is increased. The other way to solve the kinetic model is to solve
the Vlasov equation directly. This can overcome the shortcomings of the PIC method, but
due to the high dimensional nature of the Vlasov equation, numerical simulations have
only been conducted in low dimensions such as 1P1V or the axisymmetic case. Recently,
2P2V simulations have been reported [15]. As the speed and memory of supercomputers
increases, 2P2V problems can be easily solved and higher dimensions could be realized
in the near future.

Since Cheng and Knorr published their original, ground-breaking paper on a fixed
mesh in the phase space [7], many different numerical methods have been adopted to
solve the Vlasov equation. Generally, they can be divided into the Fourier spectral method,
the finite element method, the finite difference method, the finite volume method, and the
semi-Lagrangian method.

The Fourier spectral method has been used for domains with periodic boundary con-
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ditions [21, 22]. This method can only be applied in regular domains. In order to handle
complex geometry, the finite element method has been used [29, 30]. Since the finite
element method usually uses low order basis, the accuracy can only be improved by in-
creasing the number of elements in the domain. The finite difference method can achieve
high order accuracy by using high-order schemes. Similar to the finite element method,
finite difference method can also be applied to irregular domain using the so-called cut-
cell scheme.

The finite volume method [13] shows some advantages under certain conditions. The
Piecewise Parabolic Method (PPM) [8] and the Van-Leer-Limited [1] scheme use limiters
on the reconstruction of the distribution function to maintain monotonicity and positivity.
In order to conserve mass, the flux corrected transport (FCT) method [4, 5] and the flux
balance method (FBM) [12] have been designed to solve the average Vlasov equation in
each cell of the phase-space. The positive and flux conservation (PCF) [13] scheme was
proposed to overcome the non-preservation of the positivity, which brings nonphysical
phenomena.

Since the phase-space distribution function is constant along the trajectories of the
system, which is the Liouville’s theorem, the semi-Lagrangian method has been success-
fully used in solving the Vlasov equation. The semi-Lagrangian method consists of com-
puting the distribution function at each grid point by following the characteristic curves
backward, and interpolating the distribution function at the previous time step. E. Son-
nendrücker and F. Filet et al. have obtained very good results with the semi-Lagrangian
method [2,13–15,17,27]. E. Sonnendrücker proposed the use of cubic spline, Lagrange, or
Hermite polynomials for the interpolation, and the results are encouraging. However, us-
ing a cubic spline destroys the local character of the reconstruction. Makamura and Yabe
proposed the cubic interpolated propagation (CIP) method based on the approximation
of the gradients of the distribution function. This method is robust, but very expensive in
memory as it needs to store f,∇x f and ∇y f . The Vlasov equation is hyperbolic, and thus
suffers from fine-scale filamentation as time increases. Therefore numerical techniques
are needed to make the scheme stable and robust.

In all the works mentioned above, different techniques have been adopted to sta-
bilize the simulation. This inevitably modified the original physical problem to some
extent. In this paper, we avoid these artificial effects by using high order method and
large scale computing. For the high order method, Spectral Element Method (SEM) has
been adopted in this paper. It combines the flexibility of the finite element method and
high order accuracy of the spectral method. It also has an advantage for interpolation,
since the accuracy can be increased by increasing the polynomial order. For large scale
computing, SEM also has the advantage of easy parallelization. Using SEM, we can de-
velop a highly scalable parallel Vlasov solver, especially for high-dimensional problems.
Arber et al. [1] compared different Vlasov solvers and claimed that high order schemes
may bring oscillations and introduce a negative distribution function if no further rem-
edy is used. The high order methods used so far are based on finite volume and finite
difference scheme, while for semi-Lagrangian method, high order method show better
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results.
In this paper, we report our results with SEM on parallel computers. Due to inherent

filamentation, people have tried to use different numerical techniques, such as adding
artificial viscosity or filtering. These techniques are similar to performing large eddy
simulations of turbulence. In this paper large scale computing has been applied, which
is similar to performing direct numerical simulations of turbulence. Efficient parallel
models have been developed based on domain decomposition. The paper is organized
in the following way: the Vlasov equation will be introduced in Section 2. SEM will be
briefly presented and the numerical methods explained in Section 3 for both 1P1V and
2P2V problems. The parallel algorithms for these problems are discussed in Section 4.
Then benchmarks of parallel solvers and simulation results are given in Section 5. At
last, the conclusion is drawn in Section 6.

2 Vlasov equation

The evolution of the distribution function of particles f (~x,~v,t) in the phase space (~x,~v)∈
Rd×Rd with d=1,2,3 and time t, is given by the dimensionless Vlasov equation:

∂ f (~x,~v,t)

∂t
+~v(~x,t)·∇x f (~x,~v,t)+~F(~x,~v,t)·∇v f (~x,~v,t)=0, (2.1)

where the force field ~F(~x,~v,t) can be coupled to the distribution function f. For the Vlasov-
Poisson system, this coupling is done through the macroscopic density ρ

ρ(~x,~v,t)=
∫

Rd
f (~x,~v,t)dv. (2.2)

The force field which only depends on t and ~x makes the system nonlinear and is given
by solving Poisson’s equation as shown in Eq. (2.3):

~F(~x,~v,t)=~E(~x,t), ~E(~x,t)=−∇~xφ(~x,t), −∆~xφ(~x,t)=ρ(~x,t)−1, (2.3)

where ~E is the electric field and φ the electric potential.

2.1 Vlasov equation in 1P1V phase-space

In 1P1V phase-space, the non-dimensional Vlasov equation can be written as follow [1]:

∂ f (x,v,t)

∂t
+v(x,t)

∂ f (x,v,t)

∂x
+E(x,t)

∂ f (x,v,t)

∂v
=0, (2.4)

E(x,t)=−∂φ(x,t)

∂x
, −∆φ(x,t)=

∂E(x,t)

∂x
=ρ(x,t)−1, (2.5)

ρ(x,t)=
∫ ∞

−∞
f (x,v,t)dv. (2.6)
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2.2 Vlasov equation in 2P2V phase-space

In beam dynamics, a simplified model can be developed in 2P2V as a paraxial model [15]
based on the following assumptions:

• The beam is in a steady-state: All particle derivatives with respect to time vanish;

• The beam is sufficiently long so that longitudinal self-consistent forces can be ne-
glected;

• The beam is propagating at constant velocity vb along the propagation axis z;

• Electromagnetic self-forces are included;

• ~p =(px,py,pz),pz ∼ pb and px,py ≪ pb, where pb = γmvb is the beam momentum. It
follows in particular that

β≈βb =vb/c,γ≈γb =(1−β2
b)

−1/2; (2.7)

• The beam is thin: the transverse dimensions of the beam are small compared to the
characteristic longitudinal dimension.

The paraxial model can be written as

∂ f

∂z
+

~v

vb
·∇~x f +

q

γbmvb
(− 1

γ2
b

∇Φs+~Ee+(~v,vb)
T×~Be)·∇~v f =0 (2.8)

coupled with the Poisson’s equation

−∆~xΦs =
q

ǫ0

∫

R2
f (z,~x,~v)d~v, (2.9)

where Φs is the self-consistent electric potential due to space charge. ~Ee and ~Be are exter-
nal electric and magnetic fields. vb is the reference beam velocity.

3 Numerical method

In this section, we will first briefly introduce the SEM. Following that, detailed numerical
methods for 1P1V and 2P2V problems will be presented.

3.1 Spectral Element Method

SEM originated in 1980’s. It combines the flexibility of the finite element method and the
high-order accuracy of the spectral method. SEM is characterized by its close relation
with orthogonal polynomials and Gaussian quadrature. Many researchers have con-
tributed to this area, successful SEM shows great advantages compared to other methods
in many application areas [9, 10, 18, 20, 25]. In this paper, we try to extend it to plasma
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simulation. As SEM is a high-order method, the interpolation error decreases exponen-
tially as the polynomial order increases. Due to its high accuracy, it is particularly suited
to problems that need long time integration.

In this paper, we use modal bases, which are formed by Jacobi polynomials. Jacobi

polynomials P
α,β
p (r) are eigenfunctions of the following Sturm-Liouville equation

d

dr

[

(1−r)1+α(1+r)1+β d

dr
P

α,β
p (r)

]

=λp(1−r)α(1+r)βP
α,β
p (r), (3.1)

with λp =−p(α+β+p+1). They have the following orthogonal property

∫ 1

−1
(1+r)β(1−r)αP

α,β
p (r)P

α,β
q (r)dr=Cδpq, (3.2)

with C depending on α,β,p. The expansion modal bases are tensor products of the fol-
lowing one dimensional basis defined in Eq. (3.3):

φp(r)=











1
2(1−r), p=0,
1
4(1−r)(1+r)P1,1

p−2(r), 0< p< P,
1
2(1+r), p= P,

(3.3)

where P1,1
p (r) are the Jacobi Polynomials P

α,β
p (r) with α= β=1 (Legendre Polynomial) in

the standard interval Ω = {r |−1≤ r≤1}. The first and last modes are linear in order to
satisfy the boundary conditions. All interior modes are zero at the boundaries.

The main advantages of SEM are its flexibility to handle complex geometry and high-
order accuracy. Nearly all operations and data are local, including interpolation, inte-
gration, solving Poisson’s equation, and transformation between physical and spectral
spaces, etc. Locality makes it easy for parallelization and is an important motivation to
use SEM in this paper.

3.2 Meshes and bases in 1P1V and 2P2V phase-spaces

Both 1P1V and 2P2V simulations use a structured quadrilateral element mesh. For 2P2V
simulations, a quadrilateral mesh has been used in both physical (x,y) space and velocity
(vx,vy) space separately. In each two dimensional space, modal bases have been used.
A mesh of 16 elements and bases of order up to (4,4) are shown in Fig. 1. In 2P2V
simulations, similar mesh and bases can be used separately in both physical and velocity
spaces.

In 1P1V simulations, the solution in each element can be expanded as following (3.4):

f (x,vx,t)=
Ne−1

∑
e=0

Px−1

∑
i=0

Pvx−1

∑
j=0

f̂ e
ij(t)φi(x)φj(vx), (3.4)
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Figure 1: Mesh (left) and modal bases (right).

where

φp(x)= P
α,β
p (r), φp(vx)= P

α,β
p (vr), r=

x−X(e)

X(e+1)−X(e)
, vr =

v−(Ve)

V(e+1)−V(e)
.

Ne is the total element number in the (x,vx) plane, e is the element number, X(e) and V(e)
are element boundaries in x and vx directions, and −1≤ r≤1, −1≤vr ≤1, Px and Pvx are
polynomial orders in x and vx directions respectively.

In 2P2V simulations, the distribution function f (x,y,vx ,vy) is expanded in the (x,y)
and (vx,vy) planes separately at different steps in the splitting scheme. Eq. (3.5) shows the
spectral element expansion in (x,y) plane, and Eq. (3.6) shows the expansion in (vx,vy)
plane.

For each (vx,vy)∈Ω(vx,vy),

f (x,y,vx,vy,t)=
Nx−1

∑
e=0

Px−1

∑
i=0

Py−1

∑
j=0

f̂ e
ij(vx,vy,t)φi(x)φj(y). (3.5)

For each (x,y)∈Ω(x,y),

f (x,y,vx,vy,t)=
Nvx−1

∑
e=0

Pvx−1

∑
i=0

Pvy−1

∑
j=0

ĝe
ij(x,y,t)φi(vx)φj(vy). (3.6)

3.3 Semi-Lagrangian method and time splitting scheme

As stated before, the semi-Lagrangian method consists of computing the distribution
function at each grid point by following the characteristic curves backward, and interpo-
lating the distribution function at the previous time step. According to Liouville’s theo-
rem, the phase-space distribution function is constant along the trajectories of the system.
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Therefore, the interpolation at the previous time step equals to the function value at the
present time step. In contrast to the Eulerian framework, the semi-Lagrangian scheme
allows the use of large time-steps without losing stability. The limitations for stability are
that trajectories should not cross and particles should not ”overtake” one another. There-
fore, the choice of time-step in the semi-Lagrangian scheme is only limited by numerical
accuracy.

The time splitting scheme has been used for time integration as proposed by Cheng
and Knorr [7]. They are different in 1P1V and 2P2V simulations. Details will be given in
the following sections.

3.3.1 1P1V problem

Cheng and Knorr’s scheme was proposed for one-dimensional problem. In order to in-
crease the accuracy, we have adopted the algorithm proposed in [26]. Each time step has
been divided into three substeps: the first and the third substeps are in velocity space
and the second substep is in physical space. The detailed procedure follows:

Do istep=1,nstep:

- Compute jn =q
∫

f n(xn,vn)vndv;

- Compute Epred =En− jn∆t from Ampere’s law;

- Do until |En+1−Epred |< ε

· Substep1: vn+1/2 =vn+1−Epred(xn+1)∆t/2;

· Substep2: xn =xn+1−vn+1/2∆t;

· Substep3: vn =vn+1/2−En(xn)∆t/2;

· Interpolate to compute charge density;

· Solve Poisson’s equation for En+1;

· Update new Epred =En+1.

- Enddo

Enddo

3.3.2 2P2V problem

In 2P2V simulations, as it is very expensive to interpolate in 4 dimensions, the distri-
bution function is updated after each substep. Time splitting is the same as Cheng and
Knorr’s. Each time step has been divided into three substeps: the first and third substeps
are in physical space and the second substep is in velocity space. The detailed procedure
follows:

Do istep=1,nstep:

- Substep1: Perform a half time step shift in the (x,y) plane: f ∗(~x,~v)= f (tn,~x−~v∆t/2,~v);
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- Compute the electric field at time tn+1/2 by substituting f ∗ in the Poisson’s equation;

- Substep2: Perform a full time step shift in the (vx,vy) plane: f ∗∗(~x,~v) = f ∗(~x,~v−
~E(tn+1/2,~x)∆t);

- Substep3: Perform a second half time step shift in the (x,y) plane: f (tn+1,~x,~v)= f ∗∗(~x−
~v∆t/2,~v);

Enddo

3.4 Interpolation

For any (x0,y0)∈Ω(x,y), interpolation can be done locally in each element using Jacobi
polynomial expansions

f (x0,y0,vx,vy,t)=
Nx−1

∑
e=0

Px−1

∑
i=0

Py−1

∑
j=0

ĝe
ij(x0,y0,t)φi(x0)φj(y0), (3.7)

φi(x0),φj(y0) are the corresponding polynomial values in x and y directions. For compar-
ison, cubic spline interpolation has also been tried. In order to guarantee the positivity of
the distribution function in phase space, all negative interpolation values have been set to
zero in the simulations. As SEM is a high-order method, increasing polynomial order can
reduce the interpolation error. Therefore, SEM can achieve much higher accuracy than
cubic splines. Comparisons will be presented in Section 5. This is another motivation to
use SEM to directly solve the Vlasov equation. Necessary adjustments are needed to con-
serve the total mass for long time integration, we have adopted the ideas of Priestley [24]
and Gravel and Staniforth [16]. For the simulations in this paper, since a high order SEM
has been used, mass loss is small and these adjustments are not necessary.

4 Parallel algorithms

4.1 1P1V simulations

4.1.1 2D domain decomposition

Domain decomposition in the two dimensional plane (x,vx) has been used. Two commu-
nication groups, comx and comvx, have been generated. Comx contains all processors
which have the same vx location, and comvx contains all processors which have the same
x location.

4.1.2 Parallel Poisson solvers

Poisson’s equation needs to be solved in the x direction, and the zero Dirichlet bound-
ary condition has been used in the 1D Poisson’s equation. Therefore each processor will
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solve Poisson’s equation together with other processors in the same comx group. Sup-
pose there are nx and nv processors in comx and comvx, then nv groups solve the same
Poisson’s equation at the same time. This reduces the parallel efficiency, as it scales with
nx, not nx×nv. The scaling of the Vlasov solver will depend on the ratio of Poisson solver
time with interpolation time. The scaling with nx will be shown in Section 5.

4.1.3 Pointer array, doubly-linked list and load balancing problem

Back tracking needs to be done for the semi-lagrangian method. Since domain decompo-
sition has been used, the roots of the characteristics from one processor can be located in
any other processor. Therefore, a pointer array of Px×Pvx has been setup on each proces-
sor to store head pointers as shown in Fig. 2. Doubly-linked lists store all grid points on
this processor, which has the roots of characteristics located on a corresponding proces-
sor. After the pointer array and doubly linked lists have been setup on each processor, a
global exchange of data operation is needed to gather all grid points which have roots on
a corresponding processor. Then interpolation can be done on each processor locally. At
last, exactly opposite scattering operations need to be performed to send all grid points
back to the original processor. At the end of each time step, all doubly-linked lists will
be cleared and the pointer array will be set to pointer NULL. There is a load balancing
problem when using a large number of processors because the roots of the characteristics
may not be distributed evenly on all processors, which will influence the final parallel
efficiency.

4.2 2P2V simulations

The challenge in 2P2V simulations is that all points in the physical plane need to be back
tracked using all possible velocity points in the velocity plane. Similarly, all points in the
velocity plane need to be back tracked using all possible points in the physical plane as
shown in the right of Fig. 3. This requires an efficient parallel model.

4.2.1 4D domain decomposition

The parallel model performs 2D domain decomposition in both physical (x,y) and ve-
locity (vx,vy) planes, therefore totally 4D domain decomposition has been used. This
makes it easy to use a large number of processors available on BG/P, and is particularly
helpful for direct numerical simulation (DNS) of the Vlasov equation. Similar to 1P1V
simulations, two more communicators, comxy and comvxvy, have been generated for
operations in different planes.

4.2.2 Parallel Poisson solvers

1. Direct solvers

For comparison, two direct Poisson solvers have been developed for 2P2V simulations.
The first one is a global direct Poisson solver where each processor in comxy individu-
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Figure 2: Pointer arrays and load balancing.
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Figure 3: Shur complement (left) and 2P2V data structure (right).

ally solves the same Poisson’s equation. This solver is not suitable when the mesh size
increases. The second solver makes use of the Shur complement to first solve the bound-
ary matrix then solve interior modes in each quadrilateral as shown in the left of Fig. 3.

Poisson’s equation in 2D can be written as follows:

∇2u=
∂2u

∂x2
+

∂2u

∂y2
=−ρ

ǫ
= f , (4.1)

∫

V
∇2u·φdv=

∫

V
f ·φdv, (4.2)

∫

V
∇u·∇φdv=

∫

∂V
~n·(∇uφ)dS−

∫

V
f ·φdv. (4.3)
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This leads to a linear system

(

Abb Cbi

Cib Aii

)(

ub

ui

)

=

(

fb

fi

)

,

where Abb is the boundary coefficient, Cbi is the boundary interior coefficient, Aii is the
interior coefficient, and Cib is the interior boundary coefficient. ub is the boundary un-
known coefficient and ui is the interior unknown coefficient. ub is the boundary right-
hand side and fi is the interior right-hand side. Applying the Shur complement, bound-
ary and interior modes are solved separately as following:

(Abb−CbiA
−1
ii CT

bi)ub = fb−CbiA
−1
ii fi, (4.4)

ui = A−1
ii ( fi−CT

biub), (4.5)

the zero Dirichlet boundary condition has been used to solve Poisson’s equation in 2D.

2.Iterative solver

As the mesh size becomes larger, direct solvers cannot be used due to memory limitation
on each processor. Therefore, an iterative solver is necessary. The standard conjugate
gradient method has been used in this paper. Iterative solvers can make use of solutions
at previous time steps, therefore, only a few steps of iteration are needed to reach the
required accuracy. Since the Poisson equation is solved in the physical plane, only those
processors in the same comxy will contribute to the parallel Poisson solver. It is similar
to the situation in the 1P1V case, which reduces the parallel efficiency. The total paral-
lel efficiency depends on the ratio of time for Poisson solver and time for interpolation.
Benchmark results will be shown in Section 5.

4.2.3 Pointer array, doubly-linked list and load balancing

Two pointer arrays need to be setup for both the physical and velocity planes, and doubly-
linked lists also need to be generated for both planes. A similar load balancing problem
exists as in 1P1V case, which reduces the overall parallel efficiency. After each substep,
the pointer array needs to be set to NULL pointer, and all doubly-linked lists are cleared.

5 Benchmark results

5.1 Verification and comparison

In order to verify the scheme, we will show the convergence of derivatives and interpo-
lation. Interpolation with a Jacobi polynomial and cubic spline will also be presented.
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Figure 4: Derivative convergence with polynomial order (left) and element number (right).

5.1.1 Convergence of derivative

In Fig. 4, the errors of derivatives have been shown to decrease with increasing polyno-
mial order and element number. The computation domain is [0,4π]×[−6,6]. The function
f (x,y) equals cos(x) or cos(y) when testing in x or y direction. As it is shown, the error
decreases faster by increasing the polynomial order more than the element number.

5.1.2 Convergence of interpolation

In Fig. 5, the errors of 1D interpolation are shown to decrease with increasing polynomial
order and element number. The computation domain is [0,4π]×[−6,6]. The function
f (x,y) equals exp(−0.5x2)/2π or exp(−0.5y2)/2π when testing in x or y direction. The

red line shows
∂ f
∂x , and the green line shows

∂ f
∂y . Increasing polynomial order is more

efficient to reduce the interpolation error, which is a benefit of SEM. 1D interpolation are
used to interpolate electric fields.

In Fig. 6, the errors of 2D interpolation are shown to decrease with increasing polyno-
mial order and element number. The computation domain is [0,4π]×[−6,6]. The function
f (x,y) equals exp(−0.5y2)(1+0.5cos(x))/

√
2π. In 1P1V simulations, 2D interpolation

are used to update the distribution function at t=n+1.

5.1.3 Comparison of interpolation with Jacobi polynomials and cubic splines

In Fig. 7, we compare the interpolation errors with Jacobi polynomials and cubic splines.
Polynomial order N=4 has been used for this test. Similar domain and function have been
used as in previous tests. As the polynomial order increases, the distance between mesh
points are smaller. From the left plot, it is clear that when using a Jacobi polynomial, the
interpolation errors decrease much faster than using a cubic spline. On the right plot, two
polynomial orders N =2,4 have been compared with cubic spline interpolation. Similar
results have been obtained, and even using N =2 the errors converges faster than when
a cubic spline is used.
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Figure 5: 1D Interpolation convergence with polynomial order (left) and element number (right).
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Table 1: Strong scaling of 1D iterative Poisson solver (E=32, P=32).

CPU 4 8 16 32
Time (s) 2.91 1.53 7.38e-1 4.22e-1

Parallel Efficiency 1.0 0.951 0.986 0.86

Table 2: Strong scaling of 2D iterative Poisson solver (E=64, P=4).

CPU 16 64 256 1024 4096
Time (s) 286 68 17.2 4.08 1.66

Parallel Efficiency 1.0 1.0 1.0 1.0 0.673

Table 3: Benchmark results for 1P1V Vlasov solver on BG/P at ANL (E=128, P=20).

(CPUx,CPUvx) Poisson time Ratio Total Time Speedup Parallel Efficiency
(16,1) 3.36e-02 0.033% 101.37 1.0 1.0
(16,4) 4.78e-02 0.20% 24.2 4.19 1.0
(16,16) 4.79e-02 0.72% 6.655 15.23 0.952
(16,64) 4.53e-02 1.68% 2.7 37.54 0.587

5.2 Scalability

As large scale computing is necessary, we have benchmarked the parallel Poisson and
Vlasov solvers for both 1P1V and 2P2V simulations. Details are given in the following.

5.2.1 1D Poisson solver

We have tested the 1D Poisson solver by choosing one processor in the velocity space.
The iterative solver relies heavily on matrix-vector multiplication. As can be seen from
Table 1, good scaling has been achieved. Since we only increase the processor number
in physical space in these benchmarks, the total number of processors will be squared in
the real 1P1V simulations if the same number of processors is used in velocity space. The
scaling is closely related to the polynomial order being used on each element. The higher
the order used, the better scaling can be achieved.

5.2.2 2D Poisson solver

In 2D Poisson solver benchmarks, we set the total processor number in the velocity plane
to be one. From Table 2, very good scaling has been achieved up to 1024 processors.
Similar to the 1D Poisson solver, the scaling is closely related to the polynomial order
used on each element, and the higher the order used, the better scaling can be achieved.

5.2.3 1P1V Vlasov solver

In order to see the scaling of 1P1V Vlasov solver, the number of processors in the phys-
ical plane was kept constant at 16. Only the number of processors in the velocity plane
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Table 4: Benchmark results for 2P2V Vlasov solver on BG/P at ANL (E=24, P=4).

Total CPU 16 64 256 1024

CPUx 2 4 4 8

CPUy 2 4 4 8

CPUvx 2 2 4 4

CPUvy 2 2 4 4

Poisson solver 2.74 1.16 1.33 4.46e-02

1st substep 78.1 22.9 5.84 2.70

2nd substep 120.2 31.5 9.54 2.6

3rd substep 74.8 22.1 5.66 2.66

Total time 275.9 77.7 22.4 8.01

Speedup 1.0 3.55 12.32 34.4

Parallel Efficiency 1.0 0.89 0.77 0.54

was changed. From Table 3, the processor times for the Poisson solvers are nearly the
same, and good scaling was achieved. The time to solve the Poisson’s equation is closely
related to the accuracy parameter ǫ. For these benchmarks, ǫ=1.0×10−8. The algorithm
was optimized so that there are no nested loops or “if” statements in the loops. These
contribute to nearly linear scaling for the interpolation.

5.2.4 2P2V Vlasov solver

In the 2P2V case, the interpolation time dominates the Poisson solver time. Therefore,
good scaling has been shown on the right plot of Fig. 8 for up to 256 processors. But
due to four-dimensional simulation, the mesh size that can be used on 16 processors is
relatively small. Therefore, the scaling becomes worse when using 1024 processors. And
using 1k processors in both physical and velocity spaces will be one million processors
total, which is more than the processor number currently available on BG/P. From Fig. 8,
the Poisson solver time stays the same when the number of processors is the same in
the physical space as when using 16 or 64 processors total. From Table 4, the Poisson
solver time is less than a few percent of total time in one step, and the scaling of the three
substeps is better than the Poisson solver because there are less communications in the
three substeps than the Poisson solver.

5.3 Stability issue

Due to inherent instability, the beam filamentation becomes smaller and smaller. The
instability issue appears if the mesh size is not small enough in our simulations. This is
consistent with other researchers. Since we have adopted high order SEM and large scale
computing, stability can be sustained for all simulations in this paper without additional
stabilizing techniques.
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6 Simulation results

6.1 1P1V results

Several classic problems have been investigated in order to verify the parallel SEM solvers.
These include linear and strong Landau damping, and two stream instability. These sim-
ulations will be presented in the following sections of the paper.

6.1.1 Linear Landau damping

The initial distribution function is

f (0,x,v)=
1√
2π

exp(−v2/2)(1−αcos(kx)), (x,v)∈ [0,2π/k]×R. (6.1)

where k is the wave number and α=0.01 is the amplitude of the perturbation. We consider
linear regimes here. In the x direction, the periodic boundary condition has been used.
In the v direction, zero Dirichlet boundary condition has been used. vmax has been set to
6, so the velocity space spans from −6 to 6. ∆t=1/8, P=16, E=64.

The evolution of the square root of the electric energy is shown on the left of Fig. 9. It
is supposed to decrease exponentially with a rate of −0.154. This value matches Cheng
and Knorr’s results very well. Linear Landau damping simulation is not difficult, as the
initial variation just damps out.

6.1.2 Strong Landau damping

The initial distribution function and boundary conditions are similar to the linear Landau
damping problem, but with α = 0.5. All other parameters are the same as in the linear
Landau damping.

The evolution of the square root of the electric energy is shown on the right of Fig. 9.
The slopes of electric energy can also be measured at two periods, and the values −0.281
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Figure 9: Electric field energy history: Linear Landau Damping (left); Strong Landau Damping (right).

Figure 10: Strong Landau damping: Contour for distribution function f (x,y) in 2D phase space at t = 0 (top
left), t=16 (top right), t=32 (bottom left) and t=48 (bottom right).
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and 0.076 are also very close to Cheng and Knorr’s. Strong Landau damping simulation is
more challenging, as a more complicated structure has been generated. In order to see the
details of the distribution function in the phase space, contours of the distribution func-
tion f at t =0,16,32 and 48 are shown in Fig. 10. These contours clearly show the Vlasov
equation transforming an initial smooth distribution function into thinner and thinner
ridges. This is the nature and the challenge of solving the Vlasov equation. In order to
capture these ridges, larger mesh needs to be used. Otherwise some artificial smooth-
ing needs to be added to make the scheme stable for long time integration. Previous
researchers have obtained similar results using small meshes and additional techniques.
These inevitably modified the Vlasov equation, similar to performing a large eddy simu-
lation (LES) of turbulence. In this work, we rely on large scale computing and high-order
SEM. The Vlasov equation has been simulated directly without any smoothing, which is
similar to direct numerical simulation (DNS) of turbulence. These DNS results could be
used to check other LES simulations on a small grid.

6.1.3 Two stream instability

The initial distribution function is

f (0,x,v)=
1√
2π

v2exp(−v2/2)(1−αcos(kx)), (x,v)∈ [0,2π/k]×R. (6.2)

where α = 0.05, k = 0.5 and vmax = 6. ∆t = 1/8, P=16, E=64. The boundary condition is
similar to the Landau damping simulations.

The simulation starts with initial two ridges with variation, then a vortex is gener-
ated. The vortex rotates and generates a hole in the center, which corresponds to trapped
particles. This result is also close to that in [2]. With large scale computing a detailed
structure of the vortex can be captured, which cannot be done with a small grid. Simi-
lar phenomena occur as in strong Landau damping simulations. As time increases, the
ridges become thinner and thinner. Larger and larger mesh is needed to accurately sim-
ulate these sharp ridges. Contours of the distribution function at t = 0,16,32 and 48 are
shown in Fig. 11.

With the success of these 1P1V simulations, other interesting problems can also be
easily studied, such as bump-on-tail instability and ion-acoustic turbulence, etc.

6.2 2P2V results

In order to verify our 2P2V Vlasov solver, we compared it with another solver (TRACK)
using a PIC model which has been developed in the physics division at Argonne Na-
tional Lab. First, we show results of TRACK for KV and Gaussian beams under periodic
alternating magnetic force field.

As shown in Fig. 12, exact and nearly periodic Xrms,Yrms,X
′
rms and Y′

rms envelopes have
been obtained, which verify that TRACK produces correct results for KV and Gaussian
beams with periodic magnetic force.
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Figure 11: Two stream instability: Contour for distribution function f (x,y) in 2D phase space at t = 0 (top
left), t=16 (top right), t=32 (bottom left) and t=48 (bottom right).

Next, we compare results of our new Vlaosv solver with TRACK for a Gaussian beam.
As shown in Fig. 13, the statistics matches well with each other except for small differ-
ences which can be removed by using larger mesh. From the phase contours in Fig. 17,
beam halos can be clearly seen in XX’ and YY’ planes. These halos are not shown clearly
in the PIC simulations, which means that the Vlasov solver is more sensitive in predicting
halos. From these comparisons, we can validate our new Vlasov solver, and they can be
further applied to simulate beams with complex structures.

In 2P2V simulation, a proton beam has been simulated through a periodic alternating
electric field as shown in Fig. 14. Initial emittance ǫ=200π mm mrad, and energy W=0.2
MeV. The current of the beam is 0.1 A, and reference velocity vb = 6.19×106m/s. The
physical space is [−0.12,0.12]×[−0.12,0.12], and the velocity space is [−8×105,8×105]×
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[−8×105,8×105]. The periodic alternating electric field is defined as

~E(x,y,z)=

(

k0(z)x
−k0(z)y

)

,

where

k0(z)=























Vb, 0< z<1/8,
0, 1/8< z<3/8,
−Vb, 3/8< z<5/8,
0, 5/8< z<7/8,
Vb, 7/8< z<1,

k0(z) is shown in Fig. 14.
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Figure 17: Contour plots of the distribution function f (x,y,vx,vy) in 2D phase space at t=0,1,2,3 from left to
right.

The initial distribution function is Gaussian

f0(x,y,vx,vy)=
n0

4π2abcd
exp

(

− r2

2
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, (6.3)
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2
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ǫx

2a0
, d=

d0

2
=

ǫy

2b0
, (6.5)

where a0 =0.00925, b0 =0.00341, c0 =33480, d0 =90520 are derived from the Kapchinky-
Vladimirsky (KV) distribution. Currently, the largest mesh that can be used for the sim-
ulation is 2564, and it has been tested with 4096 processors on BG/P at ANL.

Fig. 15 shows the distribution function in physical space and electric potential solved
by Poisson’s equation. A zero boundary condition has been imposed.

Fig. 16 shows the electric field components Ex and Ey obtained by derivation of the
electric potential. They are not zero on all boundaries.
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Fig. 17 shows the phase contours at t = 0,1,2,3 for a 100 mA proton beam. In (x,y)
and (x′,y′) planes, they are nearly the same, as the beam is nearly periodic. In (x,x′) and
(y,y′) planes, the beam halos can be clearly seen.

Fig. 18 shows the total mass with time. Since we have adopted mass conservation
technique, which corrects the total mass at each time step. This makes the total mass
nearly constant during the entire simulation process.

Based on these simulations, statistical quantities can be calculated easily, such as Xrms,
Yrms, XX′

rms and YY′
rms. They are defined as follows:

Xrms =

√

∫

X(x,y,x′,y′)2 f (x,y,x′,y′)dxdydx′dy′
∫

f (x,y,x′,y′)dxdydx′dy′
, (6.6)

Yrms =

√

∫

Y(x,y,x′,y′)2 f (x,y,x′,y′)dxdydx′dy′
∫

f (x,y,x′,y′)dxdydx′dy′
, (6.7)

XX′
rms =

√

∫

X(x,y,x′,y′)X′(x,y,x′,y′) f (x,y,x′,y′)dxdydx′dy′
∫

f (x,y,x′ ,y′)dxdydx′dy′
, (6.8)

YY′
rms =

√

∫

Y(x,y,x′,y′)Y′(x,y,x′,y′) f (x,y,x′,y′)dxdydx′dy′
∫

f (x,y,x′,y′)dxdydx′dy′
, (6.9)

where x′=vx, y′=vy.

7 Summary

This paper presented our first efforts to develop parallel direct Vlasov solvers with
high-order SEM. The advantages and effectiveness of the SEM have been demonstrated.
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Both 1P1V and 2P2V Vlasov solvers have been successfully developed using the Semi-
Lagrangian method. Domain decomposition has been used for parallelization of these
solvers. Scalable Poisson solvers have been developed in them. Benchmarks of the paral-
lel models have shown good scaling on BG/P at ANL. SEM shows its advantages in these
direct Vlasov solvers, such as local interpolation, easy parallelization and long time inte-
gration. These first explorations are encouraging, and higher dimensional problems are
under investigation and will be reported in the near future. Numerical techniques can be
added to current solvers on small grids as other researchers, and current DNS results can
be used to calibrate them. The results are promising, and with the upcoming peta-scale
supercomputers, these direct Vlasov solvers can be applied to real beam dynamics and
plasma simulations soon. Many challenges still need to be overcome and many valuable
results are expected.
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