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Abstract. The dynamics and interaction of quantized vortices in Bose-Einstein con-
densates (BECs) are investigated by using the two-dimensional Gross-Pitaevskii equa-
tion (GPE) with/without an angular momentum rotation term. If all vortices have the
same winding number, they would rotate around the trap center but never collide. In
contrast, if the winding numbers are different, their interaction highly depends on the
initial distance between vortex centers. The analytical results are presented to describe
the dynamics of the vortex centers when β=0. While if β 6=0, there is no analytical result
but some conclusive numerical findings are provided for the further understanding of
vortex interaction in BECs. Finally, the dynamic laws describing the relation of vortex
interaction in nonrotating and rotating BECs are presented.
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1 Introduction

The first observation of a single vortex line in weakly interacting alkali gases has veri-
fied the superfluid properties of Bose-Einstein condensates (BECs) [1]. Recently, many
efforts have been made to develop more complicated vortices. For example, vortex lat-
tices containing a large number of vortices were created by rotating the system with a
laser spoon [2, 3]; multiply charged vortices were also observed by using the topological
phase engineering methods [4]. It is expected that more complicated vortex clusters can
be created in the future with the further development of phase imprinting method. The
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achievement of vortex states would enable various opportunities, ranging from inves-
tigating the properties of random polynomials [5] to using vortices in quantum memo-
ries [6]. All of these developments have stirred interests in the study of states with several
vortices.

So far, there have been a number of investigations on the properties of vortices in
BECs. For example, the manipulation of the topological charge of a vortex by external
potentials was discussed in [7]; different stationary vortex cluster states were observed
in nonrotating BECs [8–10], and later the dynamical stability of these cluster was inves-
tigated in [11]. The interaction of vortices in nonrotating BECs was studied in [12] when
the atomic interaction is very weak. The generation and dynamics of vortex-antivortex
pairs were studied in a toroidal condensate [13]. By using the Thomas-Fermi approxima-
tion, analytical expressions for the angular momentum and the energy of a vortex dipole
were obtained in [14].

The main aims of this paper are: i) to provide a detailed study of the vortex interaction
in nonrotating BECs; ii) to extend the interaction study from nonrotating BECs to rotating
condensates. There are four possible reasons affecting the vortex interaction: the winding
number of a vortex, the initial distance between vortex centers, the strength of atomic
interaction, and the angular rotation speed if in rotating BECs. To get an insight about the
vortex interaction, we start by considering the interaction with zero atomic interaction,
and find the analytical results to describe the motion of vortex centers. This study is
extended by taking a small atomic interaction into account, and due to the nonlinear
effect the dynamics become more complicated. To the best of our knowledge, there is still
no study about the interaction of vortices in strongly interacting BECs. In this paper, we
obtain some conclusive findings for the strongly interacting case, which may provide the
further understanding of the vortex interaction in BECs. Finally, the vortex interaction in
rotating BECs is studied. Analytical results are derived to show the relation between the
interaction in nonrotating and rotating BECs. Some numerical results are also presented
to verify our analytical findings.

The paper is organized as follows. In Section 2, the mathematical model and nu-
merical schemes are introduced. In Section 3, the dynamics and interaction of one, two
and more vortices are investigated in detail for nonrotating BECs. It is generalized to
the rotating BECs in Section 4, and also a relation connecting the dynamics of vortices in
nonrotating and rotating BECs is presented in Section 4. Section 5 provides a summary
and brief discussion.

2 The mathematical model and numerical schemes

2.1 The mathematical model

At a temperature T much smaller than the critical temperature Tc, the properties of BECs
in a rotational frame can be well described by the macroscopic wave function ψ(x,t),
whose evolution is governed by a self-consistent, mean field nonlinear Schrödinger equa-
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tion (NLSE), also known as the Gross-Pitaevskii equation (GPE) with an angular momen-
tum rotation term [15, 16]

ih̄∂tψ(x,t)=

(
− h̄2

2m
∇2+V(x)+NU0|ψ|2−ΩLz

)
ψ(x,t), x∈R

3, t≥0, (2.1)

where x = (x,y,z)∈R
3 is the Cartesian coordinate vector, m is the atomic mass, h̄ is the

Planck constant, N is the total number of atoms in the condensate, Ω is the angular ve-
locity of the rotating laser beam and U0 = 4πh̄2as/m describes the interaction between
atoms in the condensate with as (positive for repulsive interaction and negative for at-
tractive interaction) the scattering length. Lz =−ih̄(x∂y−y∂x) is the z-component of the
angular momentum L=x×(−ih̄∇). The external potential is described by V(x), and if a
radially symmetric harmonic potential is considered, it takes the form

V(x)=
m

2

[
ω2

r

(
x2+y2

)
+ω2

zz2
]
, (2.2)

with ωr and ωz the trapping frequencies in the radial and axial directions, respectively.
The wave function in (2.1) is normalized by

‖ψ(·,t)‖2 :=
∫

R3
|ψ(x,t)|2dx=1, t≥0. (2.3)

Under the normalization (2.3), we can introduce the dimensionless variables: t →
t/ωr, x→ a0x with a0 =

√
h̄/mωr, ψ→ψ/a3/2

0 and Ω→ωrΩ, and obtain a dimensionless
GPE [17–19]. If the condensate is tightly confined in the axial direction, i.e., ωz ≫ ωr,
the three-dimensional (3D) GPE can be further reduced to a two-dimensional (2D) GPE
[17–19]. In this paper, we will use the following 2D dimensionless GPE as our study
model:

i
∂ψ(x,t)

∂t
=

[
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
(x2+y2)+β|ψ|2−ΩLz

]
ψ(x,t), t≥0, (2.4)

ψ(x,0)=ψ0(x) with ‖ψ0‖2 :=
∫

R2
|ψ0(x)|2dx=1, (2.5)

where x=(x,y)∈R
2, Lz =−i(x∂y−y∂x) and β is a constant characterizing the strength of

the interatomic interaction. There are two important invariants of the GPE (2.4)-(2.5): the
normalization of the wave function

‖ψ(·,t)‖2 =
∫

R2
|ψ(x,t)|2dx≡

∫

R2
|ψ(x,0)|2dx=1, t≥0, (2.6)

and the energy

E(ψ)=
∫

R2

[
1

2
|∇ψ|2+

1

2
(x2+y2)|ψ|2+

β

2
|ψ|4−ΩRe(ψ∗Lzψ)

]
dx≡E(ψ0), t≥0, (2.7)
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where f ∗ and Re( f ) denote the conjugate and real part of the function f , respectively.
To find the stationary vortex state, we can rewrite the wave function ψ(x,t) into the

form [17, 19–21]

ψ(x,t)=φm(x)e−iµmt = fm(r)eimθe−iµmt, (2.8)

where (r,θ) is the polar coordinate, m∈Z is the winding number (or topological charge)
of the vortex, and µm is the chemical potential defined by

µm =
∫

R2

[
1

2
|∇φm|2+

1

2
(x2+y2)|φm|2+β|φm|4−ΩRe(φ∗

mLzφm)

]
dx. (2.9)

The real-valued modulus fm(r) satisfies

µm fm(r)=

[
− 1

2r

d

dr

(
r

d

dr

)
+

1

2

(
r2+

m2

r2

)
+β| fm(r)|2+mΩ

]
fm(r), (2.10)

fm(0)=0, lim
r→∞

fm(r)=0 with 2π
∫ ∞

0
| fm(r)|2rdr=1. (2.11)

In the case of β=0, Eqs. (2.10)-(2.11) can be exactly solved and [17, 19]

fm,β=0(r)=
1√

π|m|!
r|m|exp

(
− r2

2

)
, r≥0. (2.12)

While when β 6= 0, there is no exact solution to fm(r), but it can be obtained by solving
(2.10)-(2.11) numerically. In this paper, we will study the dynamics and interaction of n
vortices with winding number m=±1. To do this, we set the initial condition in (2.5) as

ψ0(x)=α
n

∏
j=1

φm j
(x−x0

j )=α
n

∏
j=1

φm j
(x−x0

j ,y−y0
j ), x∈R

2, (2.13)

where x0
j =(x0

j ,y0
j ) and mj =±1 define the initial position and the winding number of the

j-th vortex for j=1,2,··· ,n, respectively; the constant α is chosen such that the initial data
(2.13) satisfies the normalization condition in (2.5).

2.2 Numerical schemes

There are numerous available numerical methods to solve the time-dependent GPE (2.4)-
(2.5). For example, a set of finite difference schemes was presented and applied in [22–
24]; recently the quantum lattice Boltzmann (qLB) schemes were proposed to study the
steady states and dynamics of nonrotating BECs [25, 26]. In this paper, we will apply the
time-splitting spectral type methods in [17, 18, 27] to solve the GPE (2.4) with/without a
rotation term. The main merit of these methods is that they are of high-order accuracy
and unconditionally stable. For the convenience of the reader, in the following we give a
brief review of these methods.
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To solve the GPE (2.4)-(2.5), we first truncate the problem into a bounded computa-
tional domain with the homogeneous Dirichlet boundary condition, i.e.,

i∂tψ(x,t)=−1

2
(∂2

x +∂2
y)ψ+

1

2
(x2+y2)ψ+β|ψ|2ψ−ΩLzψ, x∈Ωx, t>0, (2.14)

ψ(x,t)=0, x∈Γ=∂Ωx, t≥0, (2.15)

ψ(x,0)=ψ0(x), x∈Ωx, (2.16)

where the computational domain is defined by Ωx =[a,b]×[c,d]. Due to the confinement
of the external potential, the solution of (2.4)-(2.5) decays exponentially fast to zero when
|x|→∞; thus if we choose |a|,b,|c| and d sufficiently large, the effect of the domain trun-
cation can be neglected.

Choose a time step size ∆t > 0 and define the time sequence tn = n∆t for n = 0,1,··· .
Then from time t= tn to t= tn+1, the GPE (2.14) can be solved in the following two steps:

i∂tψ(x,t)=−1

2
(∂2

x+∂2
y)ψ+iΩ(x∂y−y∂x)ψ, (2.17)

i∂tψ(x,t)=
1

2
(x2+y2)ψ+β|ψ|2ψ. (2.18)

Eq. (2.18) can be integrated exactly in time, and we have

ψ(x,t)=ψ(x,tn)exp
[
−i
(

β|ψ(x,tn)|2+(x2+y2)/2
)
(t−tn)

]
for t∈ [tn ,tn+1]. (2.19)

For Eq. (2.17), we use different discretizations when Ω=0 and Ω 6=0.
When Ω=0, we choose the spatial mesh size ∆x=(b−a)/J and ∆y=(d−c)/K with J,

K two even positive integers, and denote the grid points xj =a+ j∆x (for j=0,1,··· , J) and
yk =c+k∆y (for k=0,1,··· ,K). Let ψn

j,k be the approximation of ψ(xj,yk,tn). Then Eq. (2.17)

can be discretized by the sine pseudospectral method in space and integrated exactly in
time, i.e. we have

ψj,k(t)=
J−1

∑
p=1

K−1

∑
q=1

(
ψ̂n

p,q exp(−i(µ2
p+λ2

q)(t−tn)/2)
)

sin(µp(xj−a))sin(λq(yk−c), (2.20)

for t∈ [tn,tn+1], where ψ̂p,q are the sine-transform coefficients defined by

ψ̂p,q =
4

JK

J−1

∑
j=1

K−1

∑
k=1

ψj,k sin(µp(xj−a))sin(λq(yk−c)) with µp =
pπ

b−a
, λq =

qπ

d−c
.

Then the full scheme for the GPE (2.14)-(2.16) can be obtained by combining (2.19) and
(2.20) through the fourth-order splitting-step method, i.e., the fourth-order time-splitting
sine pseudospectral (TSSP4) method; see [17] for more details. This method is of spectral
accuracy in space and the fourth-order accuracy in time. It is unconditionally stable,
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time reversible and time transverse invariant. It also conserves the normalization in the
discrete level [17].

While when Ω 6=0, the nonlinear coefficient of the angular momentum rotation term
makes the sine pseudospectral discretization not work for (2.17), so that the above TSSP4
method can not be used to solve the GPE (2.14) in a rotating frame. However, we can
formulate (2.17) into the polar coordinate and have

i∂tψ(x,t)=− 1

2r

∂

∂r

(
r

∂ψ

∂r

)
− 1

2r2

∂2ψ

∂θ2
+iΩ

∂ψ

∂θ
. (2.21)

Eq. (2.21) can be discretized in the θ-direction by a Fourier pseudospectral method, in the
r-direction by a fourth or sixth-order finite difference method, and in time by a Crank-
Nicolson method. Then the steps (2.17) and (2.18) are coupled by the second-order time-
splitting method. The resulting scheme is also unconditionally stable and time reversible
(see the detailed scheme in [18]). It will be used in Section 4 to study the dynamics and
interaction of vortices in rotating BECs.

In addition, a leap-frog Fourier pseudospectral (LFFP) method was proposed in [27].
The LFFP method applying the Cartesian coordinate is explicit and of spectral accuracy
in all direction. However, it is conditionally stable.

3 Vortices in nonrotating BECs

In this section, we investigate the dynamics and interaction of vortices in nonrotating
BECs. The GPE (2.14)-(2.16) with Ω=0 is solved by using the fourth-order time-splitting
sine spectral (TSSP4) method.

For a special case, if we choose n=1 in (2.13), i.e. there is only one vortex, the motion
of its center can be described by the second-order ODE system [18, 27–29]:

x′′(t)+x(t)=0, y′′(t)+y(t)=0, t≥0, (3.1)

x(0)= x0, y(0)=y0, x′(0)=y′(0)=0, (3.2)

where x(t) and x0 denote the locations of the vortex center at time t>0 and t=0, respec-
tively. From (3.1)-(3.2), it is easy to obtain

x(t)= x0cost, y(t)=y0 cost, t≥0. (3.3)

That is, the vortex moves on a straight line, and its dynamics depends only on the initial
position (x0,y0), but not on the nonlinear parameter β or the winding number m.

In contrast to the single vortex, the dynamics of n≥ 2 vortices are much more com-
plicated. In the following, we will start from considering the interaction of two vortices
with the same or opposite winding numbers, and then generalize it to the case with more
vortices, i.e. for n≥3 in (2.13).
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Figure 1: Trajectory of vortex pairs when β = 0 and m = 1. a) x0
1,2 = (±1,±0.5); b). x0

1 = (−0.5,0.3) and

x0
2 =(0.4,0.2); c). x0

1 =(0.6,0.8) and x0
2 =(0,0).

3.1 Interaction of vortex pair

A vortex pair is defined as two vortices having the same winding number, i.e. n=2, and

m1 =m2 =m, with m=+1 or −1 (3.4)

in the initial condition (2.13). To get an insight into the interaction of a vortex pair and as a
background against the results found for the weakly and strongly interacting condensate,
we first consider the interaction when β = 0. Since the support region of a single vortex
is small when β = 0, to apply the initial setup in (2.13), the initial distance between two
centers can not be too large.

Fig. 1 shows the trajectory of a vortex pair with different initial positions. We can
rewrite the wave function into the form

ψ(x,t)=
√

ρ(x,t)exp(iS(x,t)) , x∈R
2, t≥0, (3.5)

and define ρ(x,t)= |ψ|2 and S(x,t)=arg(ψ) as the position density and the phase of the
wave function, respectively. Fig. 2 displays the time evolution of the phase S(x,t) and
the density |ψ(x,t)| for the case with x0

1,2 = (±1,±0.5) and m1 = m2 = 1. In all trajectory
figures, we use ‘+’ and ‘×’ to represent the initial position of the vortices which have the
winding number +1 and −1, respectively. While in the plots of the phase and position
density, these symbols represent the position of the vortex centers at a specified time.

From Figs. 1-2, we find that the two vortices having the same winding number never
collide with each other. During the dynamics, they would rotate (clockwise when m =
−1 and counter clockwise when m = +1) around the trap center with period T = 2π.
Furthermore, if initially the two vortices are symmetrically located with respect to the
trap center, then their trajectories are exactly the same and x1(t) =−x2(t) for any time
t≥0 (c.f. Fig. 1a). In addition, our additional simulations show that during the dynamics
there are always two vortices in the condensate.

In fact, when β=0, we have the following lemma for the dynamics of a vortex pair in
nonrotating BECs:
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t = 0 t = 1.5 t = 3.5 t = 6

t = 0 t = 1.5 t = 3.5 t = 6

Figure 2: Plots of the phase S(x,t) (above) and the density |ψ(x,t)| (down) for a vortex pair with x0
1,2 =

(±1,±0.5) and β=0, where the displayed domain is [−5,5]×[−5,5].

Lemma 3.1. When β = 0 and Ω = 0 in (2.4), if the initial data ψ0(x) is chosen as (2.13) with
n=2 and m1 =m2 =m, then the dynamics of the vortex centers can be described by the following
second-order ODE system:

x′′j (t)+xj(t)=0, y′′j (t)+yj(t)=0, t≥0, (3.6)

xj(0)= x0
j , yj(0)=y0

j , x′j(0)=m(y0
k−y0

j ), y′j(0)=m(x0
j −x0

k), (3.7)

where xj(t) represents the center of the j-th vortex at the time t≥0, and j,k=1,2 but k 6= j.

Different from the dynamics of a single vortex described in (3.1)-(3.2), at time t=0 the
vortex pair has a nonzero velocity which depends on the relative location of their centers
and their winding numbers.

The situation gets more complicated when a finite interaction parameter β is taken
into account. To the best of our knowledge, there is still no literature addressing the
interaction of vortices in strongly interacting BECs, i.e. when β≫ 1. Next we will start
by considering the interaction in weakly interacting BECs to get an insight about the
nonlinear effect on the interaction. To make the discussion easier, we assume that initially
the two vortices are located at x0

1=(x0,0) and x0
2=(−x0,0) for x0>0, and that their winding

number are m1 =m2 =m=+1.
Fig. 3 displays the trajectory of the vortex pairs in weakly (e.g. β = 1) and strongly

(e.g. β=1000) interacting BECs. Similar to the case of β=0, if initially the two vortices are
symmetric with respect to the trap center, then for any time t≥0 we have x1(t)=−x2(t).
Thus for simplicity, Fig. 3 only depicts the trajectory for x1(t) with x0

1 = (1,0). It shows
that when β 6=0, the dynamics and interaction of a vortex pair is no longer periodic. For
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Figure 3: Trajectory of the vortex center x1(t) for time t∈[0,100], where x0
1=(1,0), and β=1 (left) and β=1000

(right).
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Figure 4: Average number of vortices 〈Nv〉 present in time interval [0,25] (left) and the time evolution of Nv(t)
for β=15 (right), where x0 =1.

any time t≥0, the distance between two vortex centers is always larger than their initial
distance d0=2x0. In contrast to the case of β=0, the two vortices have different trajectories
even though their initial locations satisfy x0

1 =−x0
2. However, their trajectories have the

same envelopes which are two homocentric circles with radii r1=x0<r2(x0,β), where the
radius r2(x0,β) depends on both x0 and β.

In addition, our numerical results show that when β 6= 0, during the dynamics there
may be additional vortices generated in the condensate. To understand the presence of
these additional vortices, we denote Nv(t) as the number of vortices appearing in the
condensate at time t, and define

〈Nv〉=
1

T

∫ T

0
Nv(t)dt, T >0 (3.8)

as the average number of vortices present during the time interval [0,T]. Fig. 4 displays
the average number 〈Nv〉 in the time interval [0,25] for different β. It also shows the time
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t = 0 t = 6 t = 18.5 t = 22

t = 0 t = 6 t = 18.5 t = 22

Figure 5: Plots of the phase S(x,t) (above) and the density |ψ(x,t)| (down) for a vortex pair with x0
1,2 =(±1,0)

and β=15, where the displayed domain is [−5,5]×[−5,5].

t = 0 t = 15 t = 30 t = 50

Figure 6: Plots of the density |ψ(x,t)| for a vortex pair with x0
1,2 = (±1,0) and β = 500, where the displayed

domain is [−8,8]×[−8,8].

evolution of Nv(t) for β = 15 and x0 = 1. In addition, Fig. 5 plots the time evolution of
the phase S(x,t) and the density |ψ(x,t)| for β=15, and Fig. 6 shows the density plots for
β=500.

We see that for any time t ≥ 0, there are always two vortices in the condensate, i.e.
〈Nv〉≡ 2, if the interatomic interaction parameter β is too small or too large. Otherwise,
the average number 〈Nv〉 > 2 and it reaches the maximum value at β ≈ 30. The time
evolution of Nv(t) for β = 15 shows that after some time (e.g. t > 9), there are two addi-
tional vortices appearing in the condensate and they keep coming and going during the
dynamics. Furthermore, Fig. 5 illustrates that the two additional vortices are always gen-
erated from the boundary of the condensate, and both of them have the same winding
number as that of the vortex pair, i.e., m = +1. On the other hand, the results in Fig. 6
again confirm that for large β, there are always two vortices during the dynamics.
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Figure 7: Trajectory of vortex dipoles for different x0 (left) (from inside to outside x0 =0.4,
√
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3,
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2/2, 1
and 1.5) and the average number of vortices 〈Nv〉 present in the time interval [0,20] (right), where β=0.

3.2 Interaction of vortex dipole

A vortex dipole consists of two vortices which have the opposite winding number, i.e.,

m1 =−m2 =m, with m=+1 or −1. (3.9)

Compared to the vortex pair, the dynamics and interaction of a vortex dipole highly
depend on their initial distance |x0

1−x0
2|. Similarly, for the convenience of discussion,

we assume that at t = 0, the two vortices are located symmetrically with respect to the
potential center (0,0). Without loss of generality, we assume that the positive vortex, i.e.,
the vortex with m=+1, is initially located at x0

1=(x0,0), and the negative one with m=−1,
located at x0

2 =(−x0,0) with x0 >0, so that the initial distance between two vortex centers
is d0 = |x0

1−x0
2|=2x0.

We start our discussion by considering the case with β =0. Fig. 7 displays the trajec-
tory of the two vortex centers for different x0, and it also shows the average number of
vortices appearing in the condensate during the time [0,20]. From it, we find that when
β = 0, the dynamics of a vortex dipole is periodic with period T = 2π, and there exists

a critical initial distance d0,c = 2
√

2−
√

3. When d0 ≥ d0,c, the two vortices move ‘paral-
lel’ and never collide with each other. Especially, when d0 =d0,c, their trajectories are two
straight lines parallel to the y-axis; when d0=

√
2, they move along the x-axis. In addition,

there are always two vortices in the condensate, i.e., Nv(t)≡2, for d0 ≥d0,c. On the other
hand, when the initial distance d0<d0,c, the two vortices attract each other, and then they
collide and disappear on the y-axis. The average number of vortices 〈Nv〉 implies that for
some time after collision, there is no vortex existing in the condensate.

In addition, Figs. 8-9 present a dynamics study of the phase and the position density
for vortex dipoles with x0 = 0.4 and x0 = 1, respectively. When x0 = 0.4, at t = 0 the two
vortices attract each other and start moving ’down’. They meet on the y-axis within a
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t = 0 t = 1.0048 t = 1.57 t = 2.0724

t = 0 t = 1.0048 t = 1.57 t = 2.0724

t = 3.14 t = 3.7680 t = 4.71 t = 6.28

t = 3.14 t = 3.7680 t = 4.71 t = 6.28

Figure 8: Plots of the phase S(x,t) (above) and the density |ψ(x,t)| (down) for a vortex dipole with x0
1,2 =

(±0.4,0) and β=0, where the displayed domain is [−5,5]×[−5,5].

short time, e.g. t≈0.26. Then for the time t∈ (0.26,2.88), no vortex exists in the conden-
sate. At time t≈2.88, two vortices appear at the location where they annihilate, but their
winding numbers are different from which they have before annihilating. For example,
initially the vortex at the right half-plane has the winding number m = +1, while after
reappearing it becomes m=−1. After it, the two vortices move back along the old trajec-
tories and reach their initial positions at time t=π, and immediately the next half-period
starts with the two vortices moving ’up’. Finally, at t=2π the vortex dipole reaches their
initial position with the initial winding numbers.
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t = 0 t = 1.0048 t = 1.57 t = 2.0724

t = 0 t = 1.0048 t = 1.57 t = 2.0724

t = 3.14 t = 3.768 t = 4.71 t = 6.28

t = 3.14 t = 3.7680 t = 4.7100 t = 6.28

Figure 9: Plots of the phase S(x,t) (above) and the density |ψ(x,t)| (down) for a vortex dipole with x0
1,2=(±1,0)

and β=0, where the displayed domain is [−5,5]×[−5,5].

The dynamics of the vortex dipole with x0 = 1 is quite different. When t = 0, the
two vortices start moving ’up’ along two hyperbolas. At t = π/2, they have the largest
distance, and at the same time they change their winding numbers to be opposite (i.e.,
from +1 to −1 or from −1 to +1). After it, the two vortices move back along the old
trajectories and reach the original positions (±x0,0) at time t = π. The similar dynamics
is repeated for t ∈ [π,2π], but during this half period, they move along the hyperbolas
which is below the x-axis.

Similarly, we have the following lemma for the dynamics of the vortex dipole when
β=0 and Ω=0:



340 Y. Zhang / Commun. Comput. Phys., 8 (2010), pp. 327-350

−2 −1 0 1 2

−1

−0.5

0

0.5

1

x

y 0 5 10 15
−1

0

1

2

x 1(t)
 o

r y
1(t)

0 5 10 15
−2

−1

0

1

t

x 2(t)
 o

r y
2(t)

Figure 10: Trajectory (left) and time evolution (right) of xj(t) (solid line) and yj(t) (dashed line) for two vortex

centers when the initial data is x0
1 =(0.9,0.1), x0

2 =(−1.1,0) and m1 =−m2 =1, where β=0.

Lemma 3.2. When β = 0 and Ω = 0 in (2.4), if the initial data ψ0(x) is chosen as (2.13) with
n=2, x0

1,2 =(±x0,0) and m1,2 =±1, then the trajectory of the two vortex centers can be given by

y(t)=
2x2

0−1

x0
sin(t), x1,2(t)=±

√
x2

0[1+3sin2(t)]−y2(t), t≥0. (3.10)

It is easy to see when x0≥
√

2−
√

3, the solutions in (3.10) are always real and x1(t) 6=x2(t) for

any t≥0, which indicates that the two vortices never meet. While when x0 <

√
2−

√
3, for some

time t the solutions x1(t) and x2(t) become complex. By requiring that x1(t)= x2(t), we obtain

|sin(t)|=
√∣∣∣∣

x4
0

x4
0−4x2

0+1

∣∣∣∣, (3.11)

that is, the solution t of (3.11) is the time when the two vortices meet each other. Furthermore,
in every half-period [kπ,(k+1)π] (for k=0,1,···) the first possible solution tk,c is the time when
they collide and annihilate, while the second one tk,r represents the time when the two vortices
reappear. For t∈ [tk,c , tk,r], there is no vortex in the condensate.

In addition, we also study the case with asymmetric initial setup, and Fig. 10 displays
the trajectory of a vortex dipole with x0

1 =(0.9,0.1), x0
2 =(−1.1,0) and m1 =−m2 =+1. It

shows that the slight change in the initial position may change the vortex trajectories con-
siderably, but they are still confined to one half-plane of the condensate. This dynamics
is still periodic with period T =2π.

When β 6=0, the interaction of a vortex dipole becomes more complicated due to the
effect of nonlinear term β|ψ|2ψ in (2.4). To get an insight about it, we first consider vortex
dipoles in weakly interacting BECs with β = 1. Fig. 11 illustrates the trajectory of their
centers for different initial distance d0. In contrast to the situation when β = 0, for any
initial distance d0 the two opposite vortices always collide and annihilate each other on
the y-axis, and then a new vortex dipole is generated somewhere but different from their
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Figure 11: Trajectory of vortex dipoles in weakly interacting BECs with β=1, where from left to right: d0 =0.6,

2
√

2−
√

3,
√

2 and 2.

−4 −2 0 2 4
−4

−2

0

2

4

x

y

−4 −2 0 2 4
−4

−2

0

2

4

x

y

−4 −2 0 2 4
−4

−2

0

2

4

x

y

−4 −2 0 2 4
−4

−2

0

2

4

x

y

Figure 12: Trajectory of vortex dipoles in strongly interacting BECs with β = 500, where from left to right:

d0 =0.6, 2
√
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√

3, 2 and 3, and the symbol ’o’ represents the first collision position of two vortices.

t = 0 t = 8 t = 16 t = 19

Figure 13: Plots of the density |ψ(x,t)| for a vortex dipole with x0
1,2=(±0.3,0) and β=500, where the displayed

domain is [−8,8]×[−8,8].

t = 0 t = 15 t = 30 t = 50

Figure 14: Plots of the density |ψ(x,t)| for a vortex dipole with x0
1,2 =(±1,0) and β=500, where the displayed

domain is [−8,8]×[−8,8].
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collision location. The dynamics is periodic with period T≈2π, and for different periods
their trajectories are slightly changed.

Similarly, Fig. 12 plots the trajectories of vortex dipoles in strongly interacting BECs
for time t∈[0,50], where the interaction parameter β=500. Furthermore, Figs. 13-14 show
the dynamics of the position density |ψ(x,t)| for x0 = 0.3 and x0 = 1, respectively. From
them and our additional simulations, we find that if the initial distance d0 is small, e.g.
d0 = 0.6, the two vortices meet each other in a short time and then they separate. After
it, the two vortices still carry the same winding number as that they have before colli-
sion, which is quite different from the cases with small or zero β. On the other hand, if
d0 is large, they move in their own half-plane for a long time, and within our computa-
tional time, e.g. t∈ [0,200], they never meet each other. In addition, there are always two
opposite vortices showing up in the condensate when β≫1.

3.3 Interaction of more vortices

In this section, we generalize our study on one or two vortices to n≥ 3 vortices which
have the same or opposite winding numbers. For simplicity, we will focus only on the
cases that at time t=0, the vortices are symmetrically located with respect to the potential
center (0,0). Typically, we consider the following three initial setups, and for each setup
the interaction with β=0 and β≫1 (i.e. strongly interacting case) will be studied.

Case I: at t =0, the n≥2 vortices are uniformly located on a circle and they have the
same winding number, i.e., for j=1,2,··· ,n,

x0
j = r0cos

(
2jπ

n

)
, y0

j = r0sin

(
2jπ

n

)
, with mj =m, (3.12)

with r0 >0 the radius of the circle and the winding number m=+1 or −1.

Case II: at t=0, the n−1 (n≥3) vortices are uniformly located on a circle, i.e.,

x0
j = r0cos

(
2jπ

n−1

)
, y0

j = r0sin

(
2jπ

n−1

)
, with mj =m (3.13)

for j=1,2,··· ,n−1, and the n-th vortex is located at the center,

x0
n =y0

n =0, with mn =m (3.14)

with r0 >0 and m=+1 or −1.

Case III: the initial condition of the n−1 vortices satisfies (3.13) and

x0
n =y0

n =0, with mn =−m, (3.15)

i.e., the vortex at the center of the circle has the opposite winding number.
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Figure 15: Trajectory of more vortices when β = 0, r0 = 0.6 and m = +1, where a) Case I with n = 3 or 4; b)
Case II with n=4 or 5.

When β = 0, Fig. 15 displays the trajectory of the vortices in Case I and Case II for
different number n. For any time t≥0, the n vortices are always symmetric with respect
to the trap center, and their dynamics is periodic with period T = 2π. In Case I, if the
number n is odd, then each vortex has a unique trajectory which is an ellipse. While if n
is even, there are only n/2 different trajectories, and the j-th (1≤ j≤n/2) and (j+n/2)-
th vortices share the same trajectory. In Case II, the motion of the first n−1 vortices is
quite similar to that in Case I. Especially, the vortex initially located at (0,0) never moves
during the dynamics.

Similar to the vortex pair and vortex dipole, we have the following lemma for the
interaction of more vortices in Case I and Case II:

Lemma 3.3. When β=0 and Ω=0 in (2.4), if the initial data ψ0(x) is given by (2.13) with x0
j ,

for j=1,2,··· ,n, satisfying (3.12) or (3.13)-(3.14), then the dynamics of the n vortex centers can
be described by the following second-order ODE system:

x′′j (t)+xj(t)=0, y′′j (t)+yj(t)=0, t≥0, j=1,2,··· ,n, (3.16)

with

xj(0)= x0
j , yj(0)=y0

j , x′j(0)=−nmy0
j , y′j(0)=nmx0

j . (3.17)

Especially, if we choose n =2 in Case I, then (3.16)-(3.17) collapses to the ODEs (3.6)-(3.7) in
Lemma 3.1 with x0

1 =−x0
2.
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Figure 16: Trajectory of the 1-st vortex, i.e. x1(t), for t∈ [0,100], when β=200, r0 =1.2 and m=1, where a)
Case I with n=3 or 4; b) Case II with n=4 or 5.
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Figure 17: Trajectory of more vortices in Case III with a large r0 = 0.85, m = 1 and β = 0, where from left to
right: n=3, 4, 5 and 6.

Fig. 16 presents the similar results for strongly interacting BECs, where β=200. Again
it shows that the n vortices in Case I (or the first n−1 vortices in Case II) are always
symmetric with respect to (0,0), and especially in Case II, xn(t)≡ (0,0) for any time t≥0.
When β 6= 0, each vortex has its unique trajectory, which is different from the case with
β=0.

If the n vortices carry different winding numbers, their interaction highly depends on
the initial distance. For simplicity, Fig. 17 shows the trajectory of the vortex centers only
for a large r0 =0.85 and β=0. In addition, Fig. 18 plots the time evolution of the position
density |ψ(x,t)| for the case with n=5.

From it and our additional computations, we find that the vortex initially located
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t = 0 t = 0.7536 t = 1.57 t = 2.8888

t = 3.4540 t = 3.8308 t = 4.71 t = 6.28

Figure 18: Plots of and the density |ψ(x,t)| for 5 vortices in Case III, where r0 =0.85, β=0, and the displayed
domain is [−8,8]×[−8,8].

t = 0 t = 3.5 t = 7 t = 9.5

Figure 19: Plots of the density |ψ(x,t)| for 5 vortices in Case III, where r0 = 0.85, β = 200, and the displayed
domain is [−8,8]×[−8,8].

at the center never moves for any time t ≥ 0. If r0 is small, the other n−1 vortices are
attracted to the center and collide there; after some time, new vortices are generated in
the condensate. This dynamics is repeated periodically. While if r0 is large, they move
periodically but never collide with each other, and the n−1 vortices initially on a circle
share exactly the same trajectory. In addition, to compared with the dynamics when β=0,
Fig. 19-20 show the time evolution of the density |ψ(x,t)| and the trajectory of the vortex
centers for the case with β = 200. When β is large, there are always 5 vortices in the
condensate. The first 4 vortices are always on a circle with its center at (0,0). Different
from the case with β = 0, each vortex has a unique trajectory, and the dynamics is not
periodic.
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Figure 20: Trajectory of the vortex centers (left) and their distance to the trap center (right) in Case III, where
n=4, r0 =0.85, and β=200.

4 Vortices in rotating BECs

As we have seen, in nonrotating condensates, the dynamics and interaction of vortices
highly depends on the nonlinearity parameter β. If the vortices have opposite winding
numbers, it also depends on the initial distance between vortex centers. In rotating BECs,
i.e., an angular rotation is imposed on the condensate, the situation becomes much more
complicated and interesting. We find the following lemma to describe the relation of the
vortex interaction in nonrotating and rotating BECs:

Lemma 4.1. Choose the initial data ψ0(x) as (2.13). For any fixed β≥0, assume that (xj(t),yj(t))
describes the trajectory of the j-th vortex in nonrotating BECs, and respectively, (x̃j,Ω(t), ỹj,Ω(t))
is that in rotating BECs with the rotation speed Ω and the same nonlinearity β. Then we have

x̃j,Ω(t)= xj(t)cos(Ωt)+yj(t)sin(Ωt), (4.1)

ỹj,Ω(t)=yj(t)cos(Ωt)−xj(t)sin(Ωt), t≥0, j=1,2,··· ,n. (4.2)

It is easy to get

[
x̃j,Ω(t)

]2
+
[
ỹj,Ω(t)

]2
=
[
xj(t)

]2
+
[
yj(t)

]2
, t≥0. (4.3)

That is, at time t≥ 0, the distance between the j-th vortex and the trap center is independent of
the rotational speed Ω.

Thus if we know the dynamics of the vortices in nonrotating BECs, we can easily
generalize it to rotating BECs by applying (4.1)-(4.2). To verify the conclusions in Lemma
4.1, we numerically study the dynamics and interaction of vortices by solving the GPE
(2.4)-(2.5) in a rotating frame.
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Figure 21: Trajectory of vortex pairs in rotating BECs with β = 0 and x0
1,2 = (±1,±0.5). From left to right:

Ω=1/3,1/2,
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3/2, and 1.
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Figure 22: Trajectory of vortex dipoles in rotating BECs with β=0 and Ω=0.5. From left to right: d0=0.8,
√

2,2,
and 3.

To compare with the analytical results in (4.1)-(4.2), Figs. 21-22 illustrate the numerical
results for a vortex pair and a vortex dipole, respectively. In addition, Fig. 23 presents the
phase and density plots for a vortex dipole with x0

1,2 = (±1,0), β = 0 and Ω = 0.5. From
Fig. 21 and our additional results not shown here, we find that the vortices having the
same winding numbers never collide, and if their initial position are symmetric with
respect to the potential center, then they preserve the symmetry for any time t≥0. As we
have known, if β =0, the dynamics in nonrotating BECs is periodic with period T =2π.
However, for rotating BECs the periodicity also depends on Ω. For example, when β=0,
if Ω is a rational number, i.e., |Ω|= q/p with q and p positive integers and no common
factor, the two vortices rotate periodically. Furthermore, if both p and q are odd integers,
the period T = pπ, and the trajectories of two vortex centers are different; otherwise T =
2pπ, and they have exactly the same trajectories. While if Ω is irrational, the vortices
would move within a bounded region. Similar to the nonrotating case, the interaction of
a vortex dipole highly depends on their initial distance, and the critical distance for β=0

is still d0,c = 2
√

2−
√

3. The phase and density plots in Fig. 23 show that when Ω = 1/2
(q=1,p=2), the period is T =2pπ =4π, which confirms our analytical results in Lemma
4.1.
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Figure 23: Plots of the phase S(x,t) (above) and the density |ψ(x,t)| (down) for a vortex dipole with x0
1,2 =

(±1,0), β=0 and Ω=0.5, where the displayed domain is [−5,5]×[−5,5].

5 Summary and conclusion

We have studied the dynamics and interaction of vortices in Bose-Einstein condensates
(BECs) based on the two-dimensional Gross-Pitaevskii equation (GPE) with/without an
angular momentum rotation term.

In nonrotating BECs, the interactions of two vortices were investigated in detail for
different interatomic interaction β. If the two vortices have the same winding number,
they would rotate (clockwise if m =−1 or counter clockwise if m =+1) around the trap
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center for any t ≥ 0 but never meet each other. In contrast, the interaction of a vortex
dipole highly depends on the initial distance between their centers. When β=0, we found
that the dynamics of both the vortex pair and vortex dipole are periodic with period
T =2π. Furthermore, some analytical results were derived to describe the motion of the
vortex centers. The situation becomes considerably different if β 6=0, and we numerically
studied the interaction in both weakly and strongly interacting condensates. When β≫1,
there are always two vortices in the condensate. Some important findings were obtained
to provide the further understanding of vortex interactions in BECs. We also generalized
the study of two vortices to more vortices with some symmetric initial setup.

The interaction of vortices in rotating BECs becomes more interesting, and it depends
not only on the winding number m and the parameter β, but on the rotation speed Ω.
We found the analytical expressions to describe the relation between the interaction in
nonrotating and rotating BECs. Some numerical results were also provided to verify the
analytical findings.
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