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Abstract. Many problems in engineering shape design involve eigenvalue optimiza-
tions. The relevant difficulty is that the eigenvalues are not continuously differentiable
with respect to the density. In this paper, we are interested in the case of multi-density
inhomogeneous materials which minimizes the least eigenvalue. With the finite el-
ement discretization, we propose a monotonically decreasing algorithm to solve the
minimization problem. Some numerical examples are provided to illustrate the effi-
ciency of the present algorithm as well as to demonstrate its availability for the case
of more than two densities. As the computations are sensitive to the choice of the
discretization mesh sizes, we adopt the refined mesh strategy, whose mesh grids are
25-times of the amount used in [S. Osher and F. Santosa, J. Comput. Phys., 171 (2001),
pp. 272-288]. We also show the significant reduction in computational cost with the
fast convergence of this algorithm.
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1 Introduction

Consider the least eigenvalue problem of

−∆u=λρ(x)u, x∈Ω,
u=0, x∈∂Ω,

(1.1)
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where Ω is a smooth, bounded and connected subset of R2. The density ρ(x) is a piecewise-
constant function

ρ(x)|Ωi
=ρi >0, i=1,2,··· ,m, (1.2)

where 0<ρ1 <ρ2 < ···<ρm are constants, and Ωi (i=1,··· ,m) are measurable subdomains
of Ω such that

Ω1∪Ω2∪···∪Ωm =Ω, Ωi∩Ωj =∅ (i 6= j).

This problem is modeled in structure engineering design [1,3,4,21]. For example, a struc-
ture is assigned to support a given load, but it must be as light as possible to satisfy a
compliance constraint (see [16] and therein references). Another example is to determine
the shape of the vibrating membranes, which are composed of the materials with differ-
ent densities (see [14, 18, 19, 23]).

Generally, such type of problems involving geometry or other constraints can be
viewed as constrained optimization. For (1.1) and (1.2), we focus on the constraints of
{Ωi}

m
i=1. Theoretically, we do not assume any topology on Ωi, except its area.

‖Ωi‖=γi‖Ω‖, i=1,··· ,m, (1.3)

where ‖Ωi‖ is the area of Ωi, all γi are given and

γ1+γ2+···+γm =1.

From the weak formula of (1.1)
∫

Ω
∇u·∇vdx=λ

∫

Ω
ρ(x)uvdx, ∀v∈H1

0 (Ω), (1.4)

there indeed exists a sequence of nontrivial eigenvalues [6]

0<λ1(Ω,ρ)≤λ2(Ω,ρ)≤···→∞.

The optimization problems related to the eigenvalues λ1(Ω,ρ) and λ2(Ω,ρ) can be (i)
minλ1; (ii) maxλ1; (iii) max(λ2−λ1), with the conditions (1.2) and (1.3).

In this paper, we only consider the optimal problem (i). That is, how to seek the sets
{Ωi} (i =1,··· ,m) such that the least eigenvalue λ1 of the problem (1.1)-(1.2) is minimiz-
ing. This problem also arises from the shape design of multi-density inhomogeneous
drum (see [7, 16]). Recalling the weak formula (1.4), we get the associated variational
characterization

λ1(ρ(x))= min
u∈H1

0 (Ω)

∫

Ω
|∇u|2 dx

∫

Ω
ρ(x)u2dx

. (1.5)

In order to shed the numerator in (1.5), we denote by H1
1(Ω) the class of H1

0(Ω) functions
with H1 seminorm 1. The optimization problem (1.5) can be simplified as

λ1(ρ)= min
u∈H1

1 (Ω)

1

R(u,ρ)
, (1.6)
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where

R(u,ρ)=
∫

Ω
ρ(x)u2dx.

The above expression illustrates the minimum is closely linked to ρ. Therefore, an equiv-
alent formula of the problem (i) is

min
ρ∈adγ(Ω)

λ1(ρ), (1.7)

where

adγ(Ω)=

{

m

∑
i=1

ρiχi(x) : Ωi ⊆Ω, ‖Ωi‖=γi‖Ω‖,
m

∑
i=1

γi =1 and γi >0, i=1,··· ,m

}

and χi is the characteristic function of Ωi, i=1,2,··· ,m,

χi(x)=

{

1, x∈Ωi,
0, x∈Ω\Ωi.

Typically, if ρ ≡ ρ1 and the area of Ω is fixed, the optimization problem (i) is then
min‖Ω‖=Aλ1(Ω). This problem comes first from the homogenous drum and an argument
is gotten in [2] that the appropriate disk is the minimizer. The mathematical proof can be
found in [10,12]. A numerical algorithm is also presented in [20] to compute eigenvalues
and eigenfunctions of this problem, even for the case of arbitrary bounded plane regions
Ω.

For the case of m=2, the density ρ is chosen from the class

ad(Ω)=
{

ρ1χ1(x)+ρ2χ2(x) : Ωi ⊆Ω, ‖Ωi‖=γi‖Ω‖, γ1+γ2 =1 and γi >0,i=1,2
}

.

The problem (i) over ad(Ω) has been considered in [13] where Ω is a disk. In order
to obtain the minimum, the material with high density has to be placed in the center
of the disk and the remaining annulus is filled by the low density material. Moreover,
this argument is strictly positive in one-dimensional case. The same problem has been
studied in [7] for the case of high-dimensional Ω. The results of [7] show that the interface
between the two materials occurs on a level set of the first eigenfunction. More precisely,
if ρ→λ1(ρ) over ad(Ω) attains its minimum, which is denoted by ρ̆, there exists a constant
ν>0 such that

ρ̆=

{

ρ1, if ŭ1(x)<ν,
ρ2, if ŭ1(x)>ν,

(1.8)

for almost every x ∈ Ω [8]. ŭ1(x) is the associated eigenfunction with respect to λ1(ρ̆).
Therefore, the optimal distribution of the densities is completely determined by its level
set

Γ≡
{

x∈Ω : ŭ(x)=ν
}

.
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Through the computation of Γ, an algorithm presented in [5] can be implemented to
search for the minimum.

In this paper, we consider the problem (i) in the case of the materials composed with
more than two densities. In general, the eigenvalues of these problems are not continu-
ously differentiable functions with respect to the parameter ρ. It may generate a consid-
erable amount of computation if the semi-definite programming techniques are merely
applied [9, 15]. Moreover, the unawareness of the topology of Ωi is a challenge to solve
this problem [11]. These motivate our monotonic algorithm for problem (1.1) with gen-
eralized m. Recalling R(u,ρ) defined in (1.6), we know that the key problem is to choose
ρ from adγ(Ω) such that R attains its extremum. Sparked by this interesting idea, we
present a monotonic decreasing sequence of ρ to search for the minimum. It is important
to note that the monotonic algorithm has the similar form compared with the method
of [5] in the case of m =2. But their motivations are different. The starting point in [5] is
to search the level-set line Γ, whereas the goal of the monotonic algorithm is to decrease
1/R(u,ρ). This is the reason that the monotonic algorithm may be naturally extended to
the case of m>2. Numerical experiments will demonstrate the good performance of the
monotonic algorithm for the cases of m≥2.

Recently, a level-set method has also presented in [16] to solve the optimal problem
(1.1) with two different densities. The level-set method is composed of the level set for-
mula [17], the variational level set calculus [25] and the projected gradient method [22].
Their approach requires the computation of the generalized eigenvalues problem at each
iteration, solving the Hamilton Jacobi equations which describe the surface evolution and
using level set technology to track the evolving interface. From an optimization point of
view, their method is equivalent to a steepest descent method and sometimes converges
slowly [11]. The numerical results in [16] confirm that the level set method reaches a
stable value after around 200 iterations or more. Compared with the level set method,
the monotonic algorithm converges faster and obtain a stable minimum of λ in fewer
iterations. Furthermore, we always implement these numerical algorithms in a discrete
way. Hence, choosing the discretization mesh sizes is important since the computation
of the least eigenvalue λ1 is sensitive to it. In [16], the mesh sizes in x- and y-direction
are ∆x=∆y=0.025, i.e., 40×60 mesh grids. In this paper, we adopt 200×300 mesh grids
which is 25-time the amount of those in [16]. The numerical results illustrate that the
smaller the mesh sizes are, the smaller the minimum λ1 is. Especially, for the more den-
sities case, the sensitivity to numerical results is much higher. Hence it is necessary to
compute the minimum λ1 on the enough smaller mesh sizes. However, such approach
may generally cause tremendous increases in the amount of computations as it requires
accurate evaluations of eigenvalues and eigenfunctions. Nevertheless, this does not af-
fect the monotonic algorithm too much since the algorithm still converges very fast.

The paper is organized as follows. In Section 2 we will introduce the monotonic algo-
rithm in the discretization way. And a monotonic convergence theory is also presented
there. Moreover, the algorithm is summarized in the pseudocodes. Numerical experi-
ments will be given in Section 3.
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2 The monotone algorithm

Based on (1.6) and (1.7), we obtain the following optimal problem of the least eigenvalue
λ̌

λ̌1(ǔ,ρ̌)= min
ρ∈adγ(Ω)

min
u∈H1

1(Ω)

1

R(u,ρ)
, (2.1)

where ǔ and ρ̌ are the values such that the least eigenvalue is minimized. In order to
solve (2.1), we consider the application of the finite element method.

First, we divide the domain Ω into finite elements {Tj}n
j=1 and confine the density ρ

to finite-dimensional spaces. So we can assume that ρ in every element Tj is a constant
θj. Introducing χTj

the characteristic function of Tj, we have

ρ(x)=
n

∑
j=1

θjχTj
(x), (2.2)

where θj ∈{ρi}
m
i=1 and

χTj
(x)=

{

1, x∈Tj,
0, else.

On the other hand, for a p-dimensional subspace of H1
0(Ω), we have a set of finite element

basis functions {ϕi}
p
i=1 defined in {Tj}n

j=1. The eigenfunction we search for has the form

u(x)=
p

∑
i=1

ui ϕi(x). (2.3)

Further, let
U =

(

u1,u2,··· ,up

)T
, Θ=(θ1,θ2,··· ,θn)

T .

Then, substituting (2.3) into the weak form (1.4), we get the following p×p eigensystem

KU =ΞMU, (2.4)

where K is the stiffness matrix

Kij =
∫

Ω
∇ϕi∇ϕjdx

and the mass matrix M,

Mij =
∫

Ω
ρ(x)ϕi ϕjdx.

U is the associated eigenvector and Ξ is one of the generalized eigenvalues of K with M.
From (2.2), we note that M is dependent on Θ

Mij =
n

∑
k=1

θk

∫

Ω
χ

Tk
(x)ϕi ϕjdx=

n

∑
k=1

θk

∫

Tk

ϕi ϕjdx.



570 Z. Zhang, K. Liang and X. Cheng / Commun. Comput. Phys., 8 (2010), pp. 565-584

Denoting by Ξ1(Θ) the least eigenvalue of (2.4), we consider the discrete variational
characterization [18]

Ξ1(Θ)= min
<KU,U>=1

1

R(U,Θ)
, (2.5)

where R(U,Θ)=< MU,U >. Then the finite-dimensional optimization problem of (2.1)
is

min
Θ∈ADγ

Ξ1(Θ), (2.6)

where

ADγ =

{

Θ

∣

∣

∣
θj ∈{ρi}

m
i=1, ∑

j∈Ii

‖Tj‖=γi‖Ω‖,
m

∑
i=1

γi =1, i=1,··· ,m, j=1,··· ,n

}

(2.7)

and Ii is the set of index j such that θj =ρi.

Ti

ϕi,1ϕi,2

ϕi,3 ϕi,4

Figure 1: The rectangle element Ti and its four basis functions {ϕi,k}
4
k=1.

In this paper, we consider the rectangle finite element. For every element Ti, we have
four bilinear basis functions {ϕi,k}

4
k=1, which are counter-clockwise arranged as shown

in Fig. 1. Furthermore, we suppose that the components of the eigenfunction U at four

nodes of Ti are {ui,k}
4
k=1 with respect to {ϕi,k}

4
k=1. Then R(U,Θ) is

< MU,U >=
n

∑
i=1

θi

∫

Ti

4

∑
k=1

4

∑
j=1

ϕi,kϕi,jui,kui,jdx.

Using the definitions of {ϕi,k}
4
k=1, we deduce that

∫

Ti

4

∑
k=1

4

∑
j=1

ϕi,kϕi,jui,kui,jdx

=
‖Ti‖

36

(

4u2
i,1+4ui,1ui,2+2ui,1ui,3+4ui,1ui,4+4u2

i,2

+4ui,2ui,3+2ui,2ui,4+4u2
i,3+4ui,3ui,4+4u2

i,4

)

. (2.8)
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For convenience we denote by Hi(U) the integral term in the left side of (2.8) and have

R(U,Θ)=
n

∑
i=1

θiHi(U). (2.9)

Recalling (2.6), we should make a maximum of R(U,Θ) with suitable combination be-
tween θi and Hi(U), i = 1,2,··· ,n. Sparked by this idea, we begin with the following
lemma to construct the monotone algorithm.

Lemma 2.1. If 0< a1 ≤ a2≤···≤ an and 0<b1≤b2≤···≤bn, then

a1bi1 +a2bi2 +···+anbin
≤ a1b1+a2b2+···+anbn

where {ik}
n
k=1 is any permutation of indexing set K={1,2,··· ,n}.

We note that when ρ is given, the least eigenvalue λ1 and the associated eigenfunction
u1 can be determined by (1.6). Now we consider a perturbation of {Ωi}

m
i=1. We (tinily)

change the locations of some part of or the whole {Ωi} and denote it by {Ω1
i }

m
i=1, but

the constrain (1.3) still holds. Then we get a new ρ defined over {Ω1
i }

m
i=1. And this

procedure may continue. Similarly, we consider the discretization case. We adopt the
uniform rectangle elements {Tj}

n
j=1 over the domain Ω, where ‖Tj‖=∆x×∆y, j=1,··· ,n,

∆x and ∆y are the sizes of Tj in x- and y-direction respectively. If ∆x and ∆y are so small
that Ωi is composed by some of {Tj}

n
j=1, the perturbation of {Ωi}

m
i=1 is regarded as the

permutation of {Tj}
n
j=1. Assume that Ωi is composed by Ti1 ,Ti2 ,··· ,Til

, where l=nγi; then

the subscript set {i1,i2,··· ,il} is a subset of K= {1,2,··· ,n} and θiξ
= ρi, ξ = 1,2,··· ,l. The

perturbation between Ωi and Ωj allows us to rearrange the subscript sets of Tiξ
and Tjη ,

where ξ =1,2,··· ,l and η =1,2,··· ,r. For example, if Ti
ξ
′ and Tj

η
′ are exchanged after the

perturbation, it follows that

Ω1
i =









⋃

ξ 6=ξ
′

ξ∈{1, 2, ···, l}

Tiξ









⋃

Tj
η
′ , Ω1

j =









⋃

η 6=η
′

η∈{1, 2, ···, r}

Tjη









⋃

Ti
ξ
′ .

We denote by ρk the density ρ with respect to {Ωk
i }

m
i=1, the k-th perturbation of {Ωi}

m
i=1.

Obviously, ρk ∈ adγ(Ω), where

Ω=
m
⋃

i=1

Ωk
i , ‖Ωk

i ‖=γi‖Ω‖, i=1,2,··· ,m.

For simplification of notation, we set the least eigenvalue λk
1 := λ1(ρk(x)) and the first

eigenfunction uk
1 :=u1(ρk(x)), where ρk(x)∈ adγ(Ω).

Based on the above analysis, we have the following conclusion:
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Theorem 2.1. The discrete problem (2.5) with the discrete constraint condition (2.7) exists at
most N(n) different values of Ξ1, where

N(n)=C
γ1n
n C

γ2n
(1−γ1)n

C
γ3n
(1−γ1−γ2)n

··· C
γmn
γmn, with C

j
i =

i!

j!(i− j)!
.

Proof. We use the above assumption that the domain is divided into uniform rectangular
elements {Tj}n

j=1. We choose γin elements from the divisions as Ωi and donate by Ii

the set of the elements’ subscript. Moreover, the elements of Ωi satisfy the constraint
condition

∑
j∈Ii

‖Tj‖=‖Ωi‖=γi‖Ω‖.

Obviously, there are C
γ1n
n different ways to select γ1n elements, which form Ω1. And,

from the rest (1−γ1)n elements, we have C
γ2n
(1−γ1)n

different ways to choose γ2n elements

as Ω2. By analogy, we accordingly have C
γmn
γmn choices to choose γmn elements from the

rest (1−γ1−γ2−···−γm−1)n = γmn ones, which form Ωm. Therefore, the number of
different combination of {Ωi =

⋃

j∈Ii
Tj}

m
i=1 is

N(n)=C
γ1n
n C

γ2n
(1−γ1)n

C
γ3n
(1−γ1−γ2)n

···C
γmn
γmn.

Note that once the {Ωi}
m
i=1 is determined, so as Θ. And Ξ1 and U1 are also determined.

Consequently, Ξ1 exist at most N(n) different values.

It is noted that if n→∞, so is N(n)→∞. By Theorem 2.1, we conclude that the least
eigenvalue Ξ1 of the discrete problem (2.5) and (2.7) exists infinite different values, when
n→∞. Therefore, we get a monotone decreasing subsequence of Ξ1 as follows:

Theorem 2.2. The discrete problem (2.5) with the discrete constraint condition (2.7) possesses a
monotonically decreasing sequence of Ξk

1, where Θk∈ADγ. Furthermore, the limit of this sequence
exists as k→∞.

Proof. Corresponding to Θk ∈ADγ and {Ωk
i }

m
i=1, we denote by Ξk

1 the least eigenvalue of
(2.5) with the associated eigenfunction Uk

1. That is

Ξk
1 =

1

R(Uk
1 ,Θk)

,

where

R(U,Θ)=
n

∑
i=1

θiHi(U).

We rearrange {θk
i }

n
i=1 as θk

s1
≤ θk

s2
≤···≤ θk

sn
and the sequence Hk

i (U) as

Hk
i1
(U)≤Hk

i2
(U)≤···≤Hk

in
(U),
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where both {s1,s2,··· ,sn} and {i1,i2,··· ,in} are the permutations of K = {1,2,··· ,n}. By
Lemma 2.1, we get

R(Uk,Θk)≤
n

∑
j=1

θk
s j

Hk
ij
(U).

With the pair
(

θk
s j

,Tij

)

, we introduce Θk+1 and
{

Ωk+1
i

}m

i=1
, where

Θk+1 =[θk+1
1 ,θk+1

2 ,··· ,θk+1
n ], θk+1

ij
= θk

s j

and
Ωk+1

i =
⋃

ij∈Ii

Tij
,

Ii is the set of index ij such that θk+1
ij

=ρi. It immediately follows

Ξk
1 =

1

R(Uk
1 ,Θk)

≥
1

R(Uk
1,Θk+1)

≥ min
<KU,U>=1

1

R(U,Θk+1)
=Ξk+1

1 .

Therefore, there exists a monotonically decreasing sequence of Ξk
1.

In addition, Θ>0, and the mass matrix Mij is symmetric and positive. Then

Ξ1(Θ)= min
<KU,U>=1

1

R(U,Θ)
= min

<KU,U>=1

1

< MU,U >
>0.

It implies that Ξ1(Θ) is lower bounded and its limit exists as k→∞.

We now return to (2.9) and present the monotonically decreasing iteration method
according to Theorem 2.2. We introduce Θold, Θnew, Uold

1 , Unew
1 , Ξold

1 and Ξnew
1 , where the

superscript ’old’ refers to the data in the previous iteration step and ’new’ means the data
updated. Consequently, Ξold

1 ≥Ξnew
1 , because

Ξold
1 =

1

R(Uold
1 ,Θold)

≥
1

R(Uold
1 ,Θnew)

≥ min
<KU,U>=1

1

R(U,Θnew)

=
1

R(Unew
1 ,Θnew)

=Ξnew
1 .

We list the monotonically decreasing algorithm as follows:

• initial guess for Θ(0)∈ADγ

• do while not optimal (Θ(j+1) 6=Θ(j))

– compute U(j), the minimizer of U 7→ R(U,Θ(j))
– compute Hi(U j) according to (2.8)

– update Θ(j)→Θ(j+1), according to Hi(U j)
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Remark 2.1. From the presented algorithm, it can be observed that if for any i ∈K =
{1,2,··· ,n} such that ρ(Ti)=ρj, then there exist two constants νj−1 and νj such that νj−1 <

Hi(U)≤νj. More precisely,

ρ(Ti)=ρ1 ⇒ 0< Hi(U)≤ν1,
ρ(Ti)=ρ2 ⇒ ν1≤Hi(U)≤ν2,

...
ρ(Ti)=ρm ⇒ νm−1≤Hi(U)≤νm,

(2.10)

where i=1,2,··· ,n.

If m=2, (2.10) implies that there exists a constant ν such that

{

ρ(x)=ρ1, if Hi(U)≤ν,
ρ(x)=ρ2, if Hi(U)≥ν.

(2.11)

Recalling (1.8), we note that (2.11) is the equivalence form of it. In fact, from Hi(U) =
∫

Ti
u2

1dx, it obviously follows

Hi(U)<ν ⇔ u(x)<ν′.

3 Numerical results

In this section we present some numerical experiments of the monotone algorithm for
the eigenvalue optimization problems in the two-dimensional shape design. To be more
specific, a discretization eigenvalue problem is obtained by the finite element discretiza-
tion. Based on the least eigenvalue and its associated eigenfunction, Hi(U) (i=1,2,··· ,n)
are sorted as an increasing sequence. Then Ξ1 and ρ are updated following the sorted
sequence Hi(U) (i = 1,2,··· ,n). And this procedure continues until the stop criterion is
satisfied. The whole algorithm is coded by ourselves, which includes the finite element
discretization and the sequence sorting, as well as the operations of the large scale sparse
matrix. The computations of eigenvalue and eigenfunction are carried out by the eigs

function found in MATLAB [24]. Throughout the numerical results we always adopt the
stop criterion Θ(j+1) =Θ(j).

Example 3.1. We first consider the structural vibration control problem of a drumhead
in a rectangular domain Ω=[0,1]×[0,1.5]. The densities of two materials are ρ=1, 2 and
presented by white and black respectively (see Fig. 2). We suppose the two materials
have equal areas, i.e., γwhite =γblack =1/2.

Our goal is to predict the minimum of the least eigenvalue λ1. The authors of [16]
have investigated it only in the mesh sizes ∆x = ∆y = 0.025 (40×60 mesh grids, see [16]
Fig. 5).
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Table 1: A comparison of our numerical prediction with existing result given in [16] when the densities ρ1=1 and
ρ2 =2 have the same half area. [16] has only listed the result in the mesh sizes 1/40×1/40 with 200 iterative
steps. We respectively compute five cases of different mesh sizes, where the minimal sizes ∆x=∆y=0.005 are
25 times smaller than those in [16].

the mesh sizes monotone algorithm method in [16]
∆x =∆y=h minλ1 iteration # minλ1 iteration #

h=1/40 7.3749 3 a little blew 7.4 200
h=1/80 7.3713 4

h=1/120 7.3707 4
h=1/160 7.3705 4
h=1/200 7.3704 4

In Table 1, we list our newly computed results together with the existing result for a
comparison. ’A little blew 7.4’ on ’minλ1’ (the right column) is the minimum of the least
eigenvalue λ1 estimated in [16]. The ’minλ1’ on the left column are our results for the
different mesh sizes. Especially, using the same 40×60 mesh grids, our algorithm finds
minλ1 = 7.3749 in the third iterative step which is greatly less than 200-th step in [16].
Even though we take smaller mesh sizes and more spatial grid points, our algorithm
converges still fast and obtains a stable minimum of λ1 in a few iterative steps.

On the other hand, we note a fact that the minimum of λ1 decreases as the mesh grids
increase. This shows the sensitivity of minλ1 to the choice of the mesh sizes. In Table
1, the difference between minλ1 = 7.3704 and minλ1 = 7.3749 is |∆λ1|= 4.5×10−3. The
mesh grids with respect to these two cases of minλ1 are respectively 200×300 and 40×60,
where the mesh sizes of the former are equal to 25-time refining of the latter. However,
the more times the mesh sizes refines, the less serious the sensitivity is. When the mesh
grids change from 40×60 to 80×120,

|∆λ1|= |7.3749−7.3713|=3.6×10−3 .

From 160×240 to 80×120, the refinement times of the mesh sizes are the same as that in
the case from 80×120 to 40×60, whereas

|∆λ1|= |7.3705−7.3713|=8.0×10−4 .

Hereafter, we always adopt 200×300 mesh grids to simulate the numerical results unless
otherwise stated. Certainly, we may further refine the mesh sizes if necessary and get a
smaller minλ1.

Fig. 2 shows the profiles of ρ in 200×300 mesh grids. The left subgraph in Fig. 2
shows the initial guess of the density distribution. The right subgraph is the situation of
ρ in which the algorithm gets a stable minimum λ1. Correspondingly, we may observe
the values of λ1 in Fig. 3. In the fourth iteration, minλ1 =7.3704 is found.
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Figure 2: The profiles of the density distribution ρ in 200×300 mesh grids. Ω = [0,1]×[0,1.5], ρ1 = 1 (in the
subdomain of white color), ρ2 =2 (in the black color) and γ1 = γ2 =1/2. Left: the initial density distribution.
Right: the density distribution at the stage of minλ1 =7.3704.
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Figure 3: The evolution of λ1. The algorithm finds the minimum of λ1 in the fourth iteration. λ1 at four stages
are respectively 7.7489, 7.3730, 7.3705 and 7.3704.

Example 3.2. This problem is a drumhead with three material densities. Suppose that
Ω = [0,1]×[0,1.5] and three material densities are ρ = 1 (presented by white color), ρ = 2
(red color) and ρ=3 (green color) respectively (see Fig. 4). Moreover, three materials have
equal areas, γwhite=γred=γgreen=1/3. The subgraph in the top-left corner of Fig. 4 shows
the initial guess of the density distribution.

Fig. 4 also shows the profiles of ρ in other five iterations. Note that the algorithm
finds the minimum of λ1 =5.1061 in the 6-th iteration. Moreover, the first eigenfunction
u1 is displayed in the bottom subgraph of Fig. 4. The contour map with two contour
lines is depicted on the right side of the subgraph of u1, where the contour lines are
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Figure 4: The evolution profiles of the density distribution ρ and the corresponding first eigenfunction u1 in
200×300 mesh grids (Ω=[0,1]×[0,1.5], ρ1 =1, ρ2 =2, ρ3 =3 and γ1 = γ2 = γ3 =1/3). Top: from the left to
the right, the profiles of ρ in the iteration n=1, 2, 3; Middle: from the left to the right, the profiles of ρ in the
iteration n =4, 5, 6; Bottom: the left subgraph is u1 with the density distribution ρ in the sixth iteration and
the corresponding eigenvalue minλ1 =5.1061. Two contour lines u1 =0.1828 and u1 =0.5144 are displayed in
the right subgraph.

u1 = 0.1828 and u1 = 0.5144 respectively. It can be observed that the contour lines do
almost coincide with the boundaries among the difference colors, which are listed in the
subgraph of the profile ρ, i.e., in the sixth subgraph of Fig. 4. We take 0.1828 and 0.5144
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Figure 5: The evolution of λ1. The algorithm finds the minimum of λ1 =5.1061 in the sixth iteration. minλ1
in the fourth and the fifth iteration are respectively 5.1072 and 5.1063.

as the approximations of ν1 and ν2, respectively. Let ν3 =maxu1 and we have the formula
(2.10) for three densities

Ω1 =
⋃

i

{Ti | ρ(Ti)=1}(white subdomain) ⇒ 0< Hi(U)≤ν1,

Ω2 =
⋃

i

{Ti | ρ(Ti)=2}(red subdomain) ⇒ ν1 ≤Hi(U)≤ν2,

Ω3 =
⋃

i

{Ti | ρ(Ti)=3}(green subdomain) ⇒ ν2 ≤Hi(U)≤ν3.

On the other hand, it is observed that the three subgraphs of ρ in the middle of Fig. 4
do not make such a difference. This illustrates that λ1 in the fourth and the fifth iterations
have approached the minimum of λ1. Correspondingly, we may find the values of λ1 in
Fig. 5 and confirm this by λ1 =5.1072 (n=4), 5.1063 (n=5), 5.1061 (n=6).

Example 3.3. Suppose that the drumhead includes much more different materials. What
happens about the minimization of the least eigenvalue and the process of minimizing?
The domain is still a rectangular domain Ω=[0,1]×[0,1.5], like that in Example 3.2. Each
of the ten densities, ρi = i (i = 1,··· ,10), is respectively presented by one of ten colors in
Fig. 6, where ρ1 is presented by white color and ρ10 by green color. And γ1 = γ2 = ···=
γ10 =1/10.

Fig. 6 shows the evolution of the density distribution ρ. The nine different stages of
ρ, i.e., the iteration from n = 1 to 9, are displayed. The subgraph in the top-left corner
of Fig. 6 shows the initial guess of the density distribution. Through nine iterations, the
algorithm finds the minimum of λ1, which is 1.6749 (see Fig. 8). Moreover, the eigenfunc-
tion u1, with respect to the minimum of λ1 and the corresponding ρ, is displayed in the
left subgraph of Fig. 7. It is observed that the contour lines u1 = 0.0190, 0.0483, 0.0845,
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Figure 6: The evolution profiles of the density distribution ρ in 200×300 mesh grids (Ω=[0,1]×[0,1.5], ρi = i,
(i = 1,··· ,10) and γ1 = ···= γ10 = 1/10). Top: from the left to the right, the profiles of ρ in the iteration of
n=1, 2, 3, 4, 5; Bottom: from the left to the right, the profiles of ρ in the iteration of n=6, 7, 8, 9.

Figure 7: The profiles of the solution u and the corresponding contour lines in 200×300 mesh grids (Ω =
[0,1]×[0,1.5], ρi = i, (i =1,··· ,10) and γ1 = ···= γ10 =1/10). Left: the first eigenfunction u1 in the minimum
of λ1 is displayed. Right: Nine contour lines are located in u1 =0.0190, 0.0483, 0.0845, 0.1283, 0.1797, 0.2400,
0.3100, 0.3918, 0.4870 respectively. Compared with the boundaries among different colors, these contour lines
almost coincide with them.

0.1283, 0.1797, 0.2400, 0.3100, 0.3918, 0.4870 in the right subgraph of Fig. 7 are almost the
boundaries among the different colors. Therefore, we may confirm that there are indeed
νi (i=1,··· ,10) such that (2.10) is satisfied.
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Figure 8: The evolution of λ1. The algorithm finds the minimum of λ1 in the ninth iteration. λ1 decreases
from 2.3554 in the first iteration to 1.6749 in the ninth iteration.

Example 3.4. We now consider the situation that the domain is a nonconvex region, a
L-shape domain. Suppose Ω = [0,1]×[0,1]\[0,1/2)×[0,1/2), That is a square domain
cutting off the one-fourth region in the bottom-left corner. We use three different colors
to present three densities of the materials (see Fig. 9), the same as in Example 3.2 the
case of the rectangular region with three densities. Moreover, three materials have equal
areas, i.e., γi =1/3, (i=1,2,3).

We choose △x =△y = 1/200 and there are 30,000 rectangular elements over the L-
shape domain. The subgraph in the top-left corner of Fig. 9 shows the initial guess of
density distribution. Following it, eight subgraphs in Fig. 9 are the profiles of the density
distribution ρ in the iterations from n = 2 to 9 respectively. And the least eigenvalue λ1

decreases from 4.3181 to 3.3958.
In the left subgraph of Fig. 10, the first eigenfunction u1 is displayed with respect to

the minimum of λ1 and the corresponding ρ. The right subgraph of Fig. 10 demonstrates
the contour lines u = 0.0960, 0.3251 respectively. Note that each contour line do almost
coincide with the boundary between two different colors. Hence we may confirm that in
a nonconvex domain, such as L-shape, there also exist νi (i = 1,2,3) such that piecewise
conditions (2.10) are satisfied.

In Table 2, we present the corresponding values of the minimal λ1 for the different

mesh sizes and the different {γi}
3
i=1. The first column of Table 2 shows that in the case of

γi =
1
3 , i = 1,2,3, if the mesh is refined 5-time in x-direction and y-direction respectively,

the corresponding minλ1 may have a big change

∆λ1 = |3.4080−3.3958|=1.22×10−2 .

In the second and the third columns, we fix γ1 = 1
3 and change γ2 and γ3. The difference

of minγ1 caused by the mesh refinement is

∆λ1 = |3.2902−3.2786|=1.16×10−2
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Figure 9: The evolution profiles of the density distribution ρ in L-shape with 30,000 elements. (Ω = [0,1]×
[0,1]\[0,1/2)×[0,1/2), ρi = i, (i =1,2,3) and γ1 =γ2 =γ3 =1/3). Top: from the left to the right, the profiles
of ρ in the iteration of n=1, 2, 3; Middle: from the left to the right, the profiles of ρ in the iteration n=4, 5, 6.
Bottom: from the left to the right, the profiles of ρ in the iteration of n=7, 8, 9.

Figure 10: The profile of the solution u and the corresponding contour lines in L-shape with 30,000 mesh grids.
(Ω=[0,1]×[0,1]\[0,1/2)×[0,1/2), ρi = i, (i =1,2,3) and γ1 =γ2 =γ3 =1/3). Left: the first eigenfunction u1
in the minimum of λ1 is displayed. Right: Two contour lines are located in u1 = 0.0960, 0.3251 respectively.
Compared with the boundaries among different colors, these contour lines almost coincide with them.
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Table 2: The minimum of the least eigenvalue are obtained, for different mesh sizes and different γi, via the
monotone algorithm when the materials have three different densities and the domain is the L-shape domain.

γ1 =γ2 =γ3 γ1 =1/3, γ2 =1/6, γ1 =1/3, γ2 =7/12,
the mesh size =1/3 γ3 =1/2 γ3 =1/12

iteration iteration iteration
∆x =∆y=h minλ1 number minλ1 number minλ1 number

h=1/40 3.4080 6 3.2902 6 4.1143 7
h=1/80 3.3991 8 3.2817 7 4.1028 7

h=1/120 3.3970 9 3.2797 8 4.1003 8
h=1/160 3.3962 9 3.2790 9 4.0993 10
h=1/200 3.3958 9 3.2786 9 4.0988 13

and

∆λ1 = |4.1143−4.0988|=1.55×10−2

in these two columns respectively. All three differences of minλ1 in Table 2 are a little
bigger than that in Example 3.1 where ∆λ1=4.5×10−3. In some sense, this shows that the
more densities are the more sensitive to the choice of the mesh sizes. We also note that
decreasing the greatest density γ3 does cause the bigger minλ1 and the more iteration
numbers.

From Examples 3.3 and 3.4 (see Figs. 6 and 9), we observe that the highest density (the
green color) assembles at the center of the domain. The lower the density is, the further
away from the center it is. This well agrees with the argument of [13] which places the
high density in the center and fills the remains by the low density. On the other hand, the
profiles of the densities keep a certain symmetry even though the initial densities do not.
The profile of ρ in Example 3.3 is symmetric with both x-axis and y-axis. Moreover, ρ in
Example 3.4 is symmetric with the line y= x.

4 Conclusion

In this paper, we propose a monotonically decreasing approach to minimize the least
eigenvalue in the shape design problem of multi-density inhomogeneous material. Its
motivation is not the same as that of [5]. The key point of [5] is to approach the level-set
line Γ. The main idea of the monotone algorithm in this paper is the sorting order. Based
on (1.6), the density ρ is chosen from adγ(Ω) such that R(u,ρ) attains its extremum. This
is also different from the level set method in [16] where tracking the front is important.
Compared with the level set method, the monotone algorithm converges faster and ob-
tain a stable minimum of λ1 in fewer iterations. Furthermore, the examples in this paper
have illustrated that the discretization mesh sizes are very sensitive to the computation
of minλ1. Hence, we adopt 200×300 mesh grids to accurately simulate the numerical
results, which is 25-time more than the mesh grids in [16].
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As we state in the section of Introduction, we only focus on the first optimal prob-
lem (i), i.e., minλ1, rather than dealing with all three optimal problems as does the level
set method in [16]. Although the monotone algorithm can not be assured of reaching a
global minimum, it has a significant speed-up. Moreover, this method is independent
of the initial guess, the complexity of the domain, and the number of different material
densities. The numerical examples are also presented to demonstrate the efficiency and
accuracy of the monotone algorithm. Furthermore, it can be observed that the numerical
results agree with the argument of [13] which has been strictly proved in the case of one
dimensional Ω.
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