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Abstract. Accurate simulations of metamaterial devices are very important in the anal-
ysis of their electromagnetic properties. However, it is very difficult to make full-wave
simulations of three-dimensional (3D) metamaterial devices due to the huge memory
requirements and long computing time. In this paper, we present an efficient finite-
element method (FEM) to analyze 3D axisymmetric electromagnetic devices designed
by the transformation-optics approach, such as invisibility cloaks and concentrators.
In the proposed method, we use the edge-based vector basis functions to expand the
transverse field components, and the node-based scalar basis functions to expand the
angular component. The FEM mesh is truncated with a cylindrical perfectly matched
layer. We have applied the method to investigate the scattering from spherical and el-
lipsoidal invisibility cloaks and circularly cylindrical concentrators, in which the per-
mittivity and permeability are both inhomogeneous and anisotropic. Numerical re-
sults are presented to show the validity and efficiency of the method.
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1 Introduction

Recently, invisibility cloaks based on metamaterials have aroused great interest [1–5].
Pendry et al. first proposed a coordinate transformation approach to provide a new
method to control electromagnetic (EM) fields, by which a space consisting of the free
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space can be squeezed into a new space with different volume and space-distributed
constitutive parameters [1]. Following this approach, a two-dimensional (2D) microwave
invisibility cloak was experimentally realized [2], and some other metamaterial devices,
such as the EM-wave concentrators [6,7], rotators [8], and hyperlens [9,10] have also been
investigated by similar methods.

Besides experiments, the numerical simulation is the other important approach to an-
alyze the EM properties of metamaterial devices. So far, several methods have been used
to simulate the invisibility cloaks. The ray-tracing simulations [1, 2] supporting the con-
clusions by Pendry et al. [1] were reported in the geometric optics limit. The full-wave
finite-element simulations [3] were performed to study the effects of cloaking material
perturbations to the propagation of the incident waves in a 2D cylindrical case. A rigor-
ous solution to Maxwell’s equations for a spherical cloak has been reported in [5]. The
discrete dipole approximation method has been applied to simulate three-dimensional
(3D) spherical cloaks and irregular 3D cloaks approximately [11, 12]. However, the full-
wave analysis and simulations of complicated 3D cloaks are still limited due to the large
amount of computational burden and memory requirements. For example, the com-
mercial software, COMSOL Multiphysics, which has been widely used in 2D situations,
cannot be used to analyze large 3D cloaks and other metamaterial devices since the huge
memory requirements and computational time.

The finite-element method (FEM) is characterized by the very flexible material han-
dling capabilities and is often preferred for problems involving complex structures and
inhomogeneous anisotropic materials [13,14]. By taking advantage of the rotational sym-
metry, the 3D problem can be reduced to a 2D computational domain. In this paper, an
efficient FEM is proposed and applied to investigate the scattering from 3D axisymmet-
rical metamaterial devices designed by the transformation-optics approach, such as the
invisibility cloaks and concentrators, whose permittivity and permeability are both inho-
mogeneous and anisotropic. In the proposed method, we use the edge-based vector ba-
sis functions to expand the transverse field components and the node-based scalar basis
functions to expand the angular component, which automatically constrains the tangen-
tial field components to be continuous and eliminate the problem of spurious solutions
without the need for a penalty factor. Triangular elements are applied to conveniently
and accurately model arbitrary shapes of body of revolution. The FEM mesh is truncated
with a cylindrical perfectly matched layer (PML) [13–15], which is much more efficient
for arbitrarily-shaped scatterers than is a spherical boundary. The accurately numerical
results are presented to show the validity and efficiency of the method.

2 FEM formulations for 3D axisymmetrical metamaterial

devices

A metamaterial device with the PML enclosure is shown in Fig. 1. It is assumed here
that the symmetric axis of axisymmetric metamaterial device with inhomogeneous and
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Figure 1: Slice of a metamaterial device with the PML enclosure.

anisotropic permittivity and permeability is the z-axis for a right-handed cylindrical co-
ordinate system (ρ,φ,z). For the anisotropic metamaterial, the relative permittivity tensor
¯̄ǫa and permeability tensor ¯̄µa have the following symmetric forms

¯̄ǫa =
1

ǫ0





ǫρρ 0 ǫρz

0 ǫφφ 0
ǫρz 0 ǫzz



, ¯̄µa =
1

µ0





µρρ 0 µρz

0 µφφ 0
µρz 0 µzz



. (2.1)

The domain is truncated with a cylindrical PML, which is conveniently interpreted as an
anisotropic medium with ¯̄µp and ¯̄ǫp a diagonal tensor. Thus the relative permeability and
permittivity tensors for PML can be written as

¯̄µp = ¯̄ǫp =
1

ǫ0

(

ρ̂ρ̂ǫ
p
ρρ+φ̂φ̂ǫ

p
φφ+ ẑẑǫ

p
zz

)

,

and a discussion of appropriate functions for ǫ
p
ρρ, ǫ

p
φφ, and ǫ

p
zz can be found in [13–15].

The PML to air interface is reflectionless in the cylindrical coordinates, and waves which
propagate through the PML is attenuated. Hence any convenient boundary condition can
be applied on the outer mesh boundary. In the following derivation and simulations, the
medium parameters of the core anisotropic metamaterial, the intermediate air region,
and the outer PML can be generally expressed by ¯̄ǫr and ¯̄µr, as shown in Fig. 1. The
tensors ¯̄µr and ¯̄ǫr also contain the information of isotropic medium, for which ǫρρ =ǫφφ =
ǫzz =ǫ0ǫr , µρρ =µφφ =µzz =µ0µr, and ǫρz =µρz =0.
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From the Maxwell’s equations, the vector wave equation for the inhomogeneous and
anisotropic medium can be derived as

∇×( ¯̄µ−1
r ·∇×E)−k2

0
¯̄ǫr ·E=0, (2.2)

where k0 = ω
√

µ0ε0 is the free space wavenumber. If the metamaterial device contains
a perfectly electric conductor (PEC), for example, an invisible cloak, the PEC boundary
conditions are used with

n̂×E=0, on S1, (2.3)

where S1 is the PEC surface, as shown in Fig. 1. According to the generalized variational
principle [16], the functional for this problem is given by the following equation

F(E)=
1

2

∫∫∫

V

[

(∇×E)· ¯̄µ−1
r ·(∇×E)−k2

0E· ¯̄ǫr ·E
]

dV. (2.4)

For the scattering problem, it is more efficient to calculate the scattering field than the
total field. Thus, E=Ei+Es is substituted into Eq. (2.4), and terms that do not depend on
Es are dropped. This yields

F(Es)=
1

2

∫∫∫

V

[

(∇×Es)· ¯̄µ−1
r ·(∇×Es)−k2

0Es · ¯̄ǫr ·Es
]

dV

+
∫∫

Vsc

[

(∇×Es)· ¯̄µ−1
r ·(∇×Ei)−k2

0Es · ¯̄ǫr ·Ei
]

dV

−
∫∫

Ssc

Es ·(n̂×∇×Ei)dS, (2.5)

in which Ssc is the surface of penetrable scatterer Vsc (the metamaterial device), and n̂ on
Ssc points from the free space region into the scatterer region.

To take advantage of the rotational symmetry of the problem, the fields are expanded
in the Fourier modes as [13, 17]

E=
+∞

∑
m=−∞

[

Et,m(ρ,z)+φ̂Eφ,m(ρ,z)
]

ejmφ, (2.6)

where

Es
φ,0 =

3

∑
i=1

ee
φ,iN

e
i , Es

t,0 =
3

∑
i=1

ee
t,iN

e
i , for m=0, (2.7a)

Es
φ,±1 =

3

∑
i=1

ee
φ,iN

e
i , Es

t,±1 =
3

∑
i=1

[

∓ jρ̂ee
φ,iN

e
i +ee

t,iρNe
i

]

, for m=±1, (2.7b)

Es
φ,m =

3

∑
i=1

ee
φ,iN

e
i , Es

t,m =
3

∑
i=1

ee
t,iρNe

i , for |m|>1, (2.7c)
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in which Ne
i is a standard 2D nodal-element basis function, and Ne

i is a standard 2D edge-
element basis function. The expansions in Eq. (2.6) are substituted into Eq. (2.4) and the
functional is differentiated with respect to the unknown coefficients and then the result
is set to zero. This process yields a sparse, symmetric matrix equation

(

Am
tt Am

tφ

Am
φt Am

φφ

)

(

em
t

em
φ

)

=

(

Bm
t

Bm
φ

)

, (2.8)

where m=0,±1,±2,··· .
The FEM matrix for a given mode number m is stored compactly and the matrix

equation can be solved according the techniques described in [18]. The above procedure
should in principle be carried out for each of the Fourier modes, where m=0,±1,±2,··· .
In practice, however, a rule of truncating the infinite Fourier modes is Mmax=k0ρmaxsinθ+
6 [19], where ρmax is the largest cylindrical radius of the scatterer. This rule is valid for
k0ρmaxsinθ > 3. Furthermore, as shown in [13], the solution for each negative modes
(m <0) is simply related to that of the corresponding positive modes (m >0). Hence the
solutions need to be computed for the nonnegative modes only (m=0,1,2,···).

3 Full-wave simulations of 3D axisymmetrical invisibility

cloaks and concentrators

A number of numerical results are presented to show the validity and capability of the
proposed FEM technique for 3D axisymmetrical metamaterial devices. Because of the
strong inhomogeneity and anisotropy of the scatterer, the mesh length for each example
is about λd/20, where λd is the equivalent wavelength in medium. After the assembly
and solution of the finite element system matrix to obtain the degrees of freedom for
every mode m, the scattered electric field for arbitrary position (ρ,φ,z) near the scatterer
is calculated by Eq. (2.6). The total field can be obtained by adding the incident electric
field to the scattered electric field, which can be transformed into Cartesian coordinate by
Eq. (3.1):





Ex

Ey

Ez



=





cosφ −sinφ 0
sinφ cosφ 0

0 0 1









Eρ

Eφ

Ez



. (3.1)

For the following examples, the total field in the two orthogonal cuts on the x-z plane
and x-y plane is illustrated and information about the resources to compute the results is
given in Table 1. The commercial software COMSOL Multiphysics can be used to analyze
3D cloaks and other metamaterial devices using 3D finite element method. However, it
is very inefficient since the huge memory requirements and computational time. For
example, about seventy thousands unknowns, 5GB memory and 3 hours are needed to
simulate the 8/3λ cylindrical concentrator.
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Table 1: Computational statistics to compute near field.

Target
Number of
unknowns

Memory
(MB)

CPU time
(s)

6λ spherical cloak 148,261 570 44
6λ spherical cloak with thickness 0.6λ 197,765 711 39
10λ spherical cloak 394,848 1,700 182
8λ rotating spheroidal cloak 197,129 748 72
16λ rotating spheroidal cloak 404,059 1,200 107
8/3λ cylindrical concentrator, parallel
incidence/oblique incidence

92,588 350 14/171

First, we consider a spherical cloak with free space inside so that we compare the
simulation results with Mie-series analytical results [5] to validate the accuracy of the
proposed FEM technique. Fig. 2 shows the resulting simulated real part of electric field
in the vicinity of the spherical cloak with the permittivity and permeability tensors de-
scribed by [1]

¯̄µa = ¯̄ǫa = r̂r̂ǫr + θ̂θ̂ǫθ +φ̂φ̂ǫθ , (3.2)

where

ǫr =
R2

R2−R1

(r−R1)
2

r2
, ǫθ =

R2

R2−R1
,

and R1 and R2 are the inner and outer radii of the spherical cloak, respectively. The above
equations can be transformed into the cylindrical coordinate as

¯̄µa = ¯̄ǫa =





ǫr sin2θ+ǫθ cos2 θ 0 (ǫr−ǫθ)sinθcosθ

0 ǫθ 0

(ǫr−ǫθ)sinθcosθ 0 ǫθ sin2θ+ǫr cos2 θ



, (3.3)

where we choose R2 =2R1 =3λ, and the cloaked region is free space.

Fig. 2 illustrates the real parts of Ex in the two orthogonal cuts on the x-z plane and
x-y plane. From the figure, we clearly observe that the cloaking effect is very clear and
the plane wave is almost unaltered outside the cloaking shell, which is nearly the same
as the analytical result [5]. Also, the electric field inside the cloaked region is nearly zero,
in which a maximum leakage about 3.3% of the radiating field into the cloaked region is
observed due to the discretization error of material properties.

Fig. 3 demonstrates the simulation result of an electrically large cloaked PEC sphere,
whose diameter is 4.8λ with a cloaked layer of thickness 0.6λ. Clearly, the result remains
accurate for the electrically larger object with thinner cloaking shell. From Figs. 2 and 3,
we also find that the fields outside the cloaking shells are not sensitive to the medium
inside the cloaked region. Fig. 4 shows the electric-field distribution for a bigger cloak
with R2 = 2R1 = 5λ. There is a maximum leakage of 12% of the radiating field into the
cloaked region, which is lager than that in Fig. 2.
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(a) (b)

Figure 2: The real part of the electric field Ex in the vicinity of the cloaked sphere with R2 = 2R1 = 3λ. The
incident plane wave propagates from the left to the right. (a) The electric-field in x-z plane. (b) The electric-field
in x-y plane.

(a) (b)

Figure 3: The electric field distribution in the vicinity of the larger cloaked PEC sphere with thinner cloaking
shell. (a) The electric-field in x-z plane. (b) The electric-field in x-y plane.

(a) (b)

Figure 4: The electric field distribution of the spheroidal with R2=2R1=5λ. The incident plane wave propagates
from the left to the right. (a) The electric-field in x-z plane. (b) The electric-field in x-y plane.
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(a) (b)

Figure 5: The electric field distribution of the spheroidal cloak with b=2a=2λ, and k=2. (a) The electric-field
in x-z plane. (b) The electric-field in x-y plane.

(a) (b)

Figure 6: The electric field distribution of the spheroidal cloak with b=2a=4λ, and k=2. (a) The electric-field
in x-z plane. (b) The electric-field in x-y plane.

Next we consider a rotating spheroidal cloak, which is an extension of 2D elliptical
cloaks [20, 21]. Assume that the semi-axes of the inner and outer ellipsoid are a and b
in the x and y directions, and the semi-axes are ka and kb in the z direction. Based on
the transformation equation given in [22], the permittivity and permeability tensors are
derived in the cylindrical coordinates as

¯̄µa = ¯̄ǫa =
b

(b−a)t6





(t3−κ1)
2+κ2

2 0 −(t3−κ1)κ3−κ2(t3−κ4)
0 t6 0

−(t3−κ1)κ3−κ2(t3−κ4) 0 (t3−κ4)
2+κ2

3



, (3.4)

where t =
√

k2ρ2+z2, κ1 = k3aρ2, κ2 = kaρz, κ3 = k3aρz, κ4 = kaz2, and ρ =
√

x2+y2. In
our simulations, we set b = 2a = 2λ, and k = 2. The cloaked region is free space. Fig. 5
illustrates the electric field distributions of the rotating spheroidal cloak. Clearly, the
plane waves outside the cloak keep their original propagation directions. The maximum
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leakage of the radiating field into the cloaked region is slightly larger than that of the
spherical cloak because of the stronger inhomogeneity and anisotropy of the spheroidal
cloak. Fig. 6 demonstrates the results of larger spheroidal cloak when b=2a=4λ and the
cloaked region is PEC, from which we see that the cloaking effect is also very clear.

a

b

c

z

x

Figure 7: A circularly cylindrical concentrator with inner diameter and height equal to 2a and outer diameter
and height equal to 2c.

Finally, to show the application of the method to other kinds of metamaterial devices
designed by the transformation optics, we consider a circularly cylindrical concentrator
illuminated by the plane waves. It is impossible to get the analytical results by solving
Maxwell’s equations due to the very irregular structure of the scatterer. The cylindrical
concentrator can be considered as an extension of 2D square concentrator [23]. The trans-
formation equation for the cylindrical concentrator with inner diameter and height equal
to 2a and outer diameter and height equal to 2c (see Fig. 7) are expressed as

x′=
{

ax/b, 0≤ρ≤b,

(k1−k2c/
√

x2+y2)x, b<ρ≤ c,
(3.5)

y′ =
{

ay/b, 0≤ρ≤b,

(k1−k2c/
√

x2+y2)y, b<ρ≤ c,
(3.6)

z′ =
{

az/b, 0≤ρ≤b,

(k1−k2c/
√

x2+y2)z, b<ρ≤ c,
(3.7)

for |z|<ρ and 0≤φ≤2π, in which k1=(c−a)/(c−b), k2=(b−a)/(c−b), and ρ=
√

x2+y2.
Here, (x,y,z) are the Cartesian coordinates of the original space, while (x′,y′,z′) are the
Cartesian coordinates of the transformed space. The corresponding transformation for-
mulas for the upper and lower domain of the cylindrical concentrator are then given by

x′=
{

ax/b, 0≤|z|≤b,
(k1−k2c/|z|)x, b< |z|≤ c,

(3.8)
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y′ =
{

ay/b, 0≤|z|≤b,
(k1−k2c/|z|)y, b< |z|≤ c,

(3.9)

z′ =
{

az/b, 0≤|z|≤b,
(k1−k2c/|z|)z, b< |z|≤ c.

(3.10)

From the above transformation equations, the space is compressed into a cylindrical
region with radius a at the expense of an expansion of the space between a and c. Then the
permittivity and permeability tensors are derived. We have eliminated any dependence
on the components of (x,y,z) in the original space, hence we can now drop the primes
for aesthetic reasons. For a<ρ≤ c, −c≤ z≤ c, |z|<ρ and 0≤φ≤2π, the permittivity and
permeability tensors are expressed as

¯̄µa = ¯̄ǫa =







k1t2 0 k2czt/ρ2

0 1
k1

0

k2czt/ρ2 0 1
k1

(

1+(k2cz/ρ2)2
)






, (3.11)

where t=1/k1 +k2c/k1ρ. The permittivity and permeability tensors for upper and lower
truncated cone are shown as

¯̄µa = ¯̄ǫa =







1
k1

(

1+(k2cρ/z2)2
)

0 ±k2cρt/z2

0 1
k1

0

±k2cρt/z2 0 k1t2






, (3.12)

where t = 1/k1±k2c/k1z, and the sign ”+” is for the upper truncated cone, and ”−” for
the lower truncated cone. The permittivity and permeability for the inner cylinder are
µr =ǫr =b/a.

Figs. 8 and 9 illustrate the electric field distributions of the cylindrical concentrator
when the incident elevation angle is 0◦ and 45◦, respectively. 10 modes are needed for
45◦ incident elevation angle. It is obvious that the field intensities are strongly enhanced
in the inner cylindrical region within the concentrator material. The simulated intensity
enhancement factor for the chosen structure with b=3a=λ and c=4/3λ is 3.0, which is
very consistent with the expected ratio b/a.

4 Conclusions

An efficient FEM approach was presented and applied to investigate 3D axisymmetric
metamaterial devices with inhomogeneous and anisotropic permittivity and permeabil-
ity. Such problems cannot be solved by the conventional commercial software due to the
huge amount of memory requirements and computing time. As examples, the spherical
and ellipsoidal invisibility cloaks, and cylindrical concentrators have been analyzed. The
method can also be used to analyze other devices such as rotators, hyperlens, etc.
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(a) (b)

Figure 8: The electric field distribution of the cylindrical concentrator when the incident elevation angle of plane
wave is 0◦. (a) The electric-field in x-z plane. (b) The electric-field in x-y plane.

(a) (b)

Figure 9: The electric field distribution of the cylindrical concentrator when the incident elevation angle of plane
wave is 45◦. (a) The electric-field in x-z plane. (b) The electric-field in x-y plane.
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