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Abstract. To obtain fine distributing calculation about the time, space and energy of
neutron flux for a kind of non-stationary particle transport problem, the scheme of
global Monte Carlo variance reduction is developed. In order to provide the founda-
tion for this scheme, it is necessary to analyze its effectiveness before putting it to use.
This paper fulfills this through analyzing the effectiveness of its core which is Monte
Carlo transport importance biased calculation. By decomposing the arithmetic and
calculating the representative objectives, the effectiveness of the Monte Carlo trans-
port importance biased calculation is demonstrated.
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1 Introduction

It is important to obtain the fine distributing of the neutron flux about the time, space and
energy for a kind of non-stationary neutron transport problem whose scale of time, space
and energy is far less than that of the average transport problem. For such problems, it
is quite difficult to reach the precise result with Monte Carlo (MC) non-biased transport
calculation, and then how to get the global solution precisely with MC is put forward.
However, most of existing MC variance reduction skills are designed for calculating the
local quantity of the steady system, which are not adapted to be applied in this problem
except the implicit capture. Therefore the method of MC variance reduction for global
solution requires to be studied and developed.
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The study on global solution traces back to the 1990s. Prigarin [1], Voytishek [2]
and Heinrich [3, 4] obtained some theoretical results. Spanier et al. [5–7], Cooper and
Larsen [8], and Shangguan [9] developed several MC methods which have been applied
successfully to some simple models.

Zero variance theory points out a direction of designing the MC simulating scheme,
which is capable of reducing the variance of the objective if the approximate importance
function is to be found. Based on this idea, different kinds of MC variance reduction
techniques were presented by many scholars, such as Booth [10–13], Liu and Gardner
[14], Tang [15, 16], Turner and Larsen [17], and Wagner and Haghighat [18], but their
research fields were only limited in the local solution of the steady system.

For global MC variance reduction, a scheme [19] is proposed based on zero variance
theory through breaking up the whole into parts and coupling MC method with dis-
crete ordinates method. Its core is MC transport importance biased calculation guided by
the approximate importance function obtained from the deterministic calculation. This
guidance behaves mainly at two aspects: to guide the source function sampling by direct
biasing and to guide the transform function sampling by indirect biasing. How about
the effectiveness of directly biasing the source function and indirectly biasing the trans-
form function? It is necessary to study and analyze its respective effectiveness to better
understand the MC transport importance biased calculation.

The remainder of this paper is organized as follows. The scheme of MC transport
importance biased calculation and its decomposed strategy are outlined first. Then the
choice of representative objectives is discussed. In Section 4, the numerical results are
presented and analyzed statistically. Section 5 summarizes the results of this paper with
a conclusion.

2 Biased calculation scheme and its decomposed strategy

The integral Boltzmann transport equation for particle emission density in the phase-

space ~P=(~r,E,~Ω,t) is given by

Q(~P)=S(~P)+
∫

Q(~P′)K(~P′
→~P)d~P′, (2.1)

where K(~P′
→ ~P) is the transform function, K(~P′

→ ~P)d~P is the expected number of par-
ticles emerging in d~P about ~P from an event in ~P′, and S(~P) is the source function or the
source density. This is also the starting equation of MC simulation, in which there are
two terms contributing to the particle emission density: one is from the source term, and
the other from the transform term.

The scheme of MC transport importance biased calculation is developed based on the
zero variance theory. Let ϕ+(~P) be the importance function with respect to the required
objective about the emission density. Multiply Eq. (2.1) by ϕ+(~P)/

∫

S(~P)ϕ+(~P)d~P and
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define

Q̂(~P)=
Q(~P)ϕ+(~P)

∫

S(~P)ϕ+(~P)d~P
, Ŝ(~P)=

S(~P)ϕ+(~P)
∫

S(~P)ϕ+(~P)d~P
,

K̂(~P′
→~P)=K(~P′

→~P)
ϕ+(~P)

ϕ+(~P′)

=T
(

~r′,t′→~r,t
∣

∣E′,~Ω′

)

C
(

E′,~Ω′
→E,~Ω

∣

∣~r,t
)

ϕ+(~r,E,~Ω,t)

ϕ+(~r′,E′,~Ω′,t′)
,

where T is the transfer kernel and C is the collision kernel, and then yield the following
transformed equation:

Q̂(~P)= Ŝ(~P)+
∫

Q̂(~P′)K̂(~P′
→~P)d~P′. (2.2)

Theoretically a zero variance can be attained starting from Eq. (2.2), but it cannot be re-
alized in practice because the precise importance function cannot be obtained. However,
reduced variance can be achieved when using the importance function to bias every sam-
pling (source and transport).

Generally speaking, the source function is the analytic function which has a partic-
ular expression and so the biased source function is sampled directly, which is called
the scheme of direct biasing. It is very difficult to bias directly the transform function,
because the collision term involves so many kinds of reactions of different kinds of nu-
clides at different energy that its expression is quite complicated especially in the case of
the continuous-energy neutron interaction data being adopted. So the scheme of indirect
biasing is used to manage the transform function biasing, which first manages transfer
and collision just like non-biasing mode does and then performs splitting or Russian
roulette according to the size of the importance of the two adjacent emission point.

Splitting and Russian roulette are realized through the weight window which varies
with space, energy, time, and direction, which originally come from [18] and have been
developed further by adding the two independent variables — time and direction in this
paper.

For convenience of description, the following terms are defined as follows:

• Full-biased Transport

=Source Function Biased Directly+Transform Function Biased Indirectly;

• Semi-biased Transport

=Source Function Biased Directly+Transform Function Non-biased;

• Non-biased Transport

=Source Function Non-biased+Transform Function Non-biased.

”Biased Transport” is the biasing skills used during the MC particle calculation, which
comprises the two transport modes: a ”full-biased transport” and a ”semi-biased trans-
port” listed above. This paper analyzes the results from different transport modes and
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demonstrates the effectiveness of biasing the source function directly and biasing the
transform function indirectly.

3 Choice of representative objectives

For performance testing, a one-dimensional sphere test problem was developed. This
problem comprises two material zones constructed with twenty spatial cells. The ob-
jectives are to calculate fine distributing of the neutron flux about the time, space and
energy, that is to calculate the neutron flux integrated in every cell, every energy group
and every time range. Usually these objectives have great difference in difficulty in ob-
taining its associated convergent results. Fixing a certain time range, three representative
objectives are selected according to its degree of difficulty in converging after simulating
105 histories with non-biased transporting. Table 1 shows the relative errors and effi-
ciency histories of these three objectives and indicates that the objective flux g1k1 is the
most difficult to calculate, and calculating the objective flux g4k1 is moderately difficult,
and the objective flux g4k19 is the easiest to calculate.

Table 1: Partial results of representative objectives with non-biased transport.

Objective Relative Error Efficiency Historiesa

Flux g1k1b 0.0c 0
Flux g4k1 0.2830 15
Flux g4k19 0.0162 5988

a Refers to the histories contributing to the objective in process of MC transporting.
b Refers to the neutron flux integrated in the 1th energy group and the 1th cell.
c 1σ uncertainties.

4 Numerical results

Three transport modes — ”full-biased transport’, ”semi-biased transport” and ”non-
biased transport” are used to calculate three representative objectives through simulating
105 histories. To assess the statistics of the mean (the average value of the scores for all
the histories calculated in the problem), several statistical quantities are calculated, in-
cluding the efficiency histories, the ratio of the largest score of each history to the mean
(reflect directly the fluctuation of the scores), the relative error, VOV (relative variance of
variance) [18], FOM (figure of merit) [20, 21], and the intrinsic error (intrinsic spread of
the nonzero scores) and the efficiency error (nonzero history-scoring efficiency error) [21]
which make up the relative error. The results are shown in Tables 2-4 and Figs. 1-3. For
brevity, in Figs. 1-3, ”error” refers to the relative error, ”erint” refers to the intrinsic error,
”ereff” refers to the efficiency error, and ”flux gmkn *” refers to the value of the quantity
”*” obtained in the process of calculating the objective flux gmkn.
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Table 2: Main results of objective flux g1k1.

Full-biased Transport Semi-biased Transport Non-biased Transport
Efficiency Histories 12217 11091 0

Mean 3.496E+11a 5.945E+11 0.0
(Relative Error) (0.1447) (0.3095) (0.0)
Intrinsic Error 0.1444 0.3094 0.0

Efficiency Error 0.0085 0.0090 0.0
FOM 692 119 0
VOV 0.4071 0.4182 0.0

Largest Score/Mean 11383 22683 0.0
a Read as 3.496×1011.

The mean from the MC simulation varies with the number of histories and thus the
statistic analysis of the MC results comprises two parts: one is the statistics analysis to
be done after all the histories are finished, the other is the statistics analysis varying with
the number of histories. In general, during simulating the first half of all the histories, it
should be normal that the mean, the relative error, the intrinsic error, the efficiency error,
FOM and VOV all fluctuate in different degree since MC result does not converge yet;
but after that, the converged and reliable result is thought to be obtained, if the mean and
FOM stabilize gradually, and at the same time the relative error, the intrinsic error, the
efficiency error and VOV decrease with rise of the histories, and in addition the values
of the relative error, the intrinsic error, the efficiency error and VOV are all less than
0.1. High FOM, low relative error, low intrinsic error, low efficiency error, and low VOV
ordinarily predicate high efficiency and good stability.

Table 2 shows eight statistical quantities of the objective flux g1k1 from full-biased
transport, semi-biased transport and non-biased transport respectively after finishing 105

histories, and reveals that semi-biased transport which only use the source biasing skill
has a high efficiency compared with non-biased transport and further using the trans-
form biasing skill can increase the computational efficiency more.

Fig. 1 shows the behavior of six statistical quantities of the objective flux g1k1 from
three transport modes with the number of histories. There are no any scores with non-
biased transport. With biased transport, not only it has the scores but also the statistics of
the mean stabilizes comparatively. Although a reliable mean is not got yet, this indicates
that it should be got by adding the histories. Compared with that from semi-biased trans-
port, the relative errors, the intrinsic errors, FOMs, and VOVs from full-biased transport
are improved except that the efficiency errors are almost identical.

Table 3 lists eight statistical quantities of the objective flux g4k1 from three transport
modes after finishing 105 histories. Its relative error from biased transport recedes by
about ten times and 107 histories need to be calculated with non-biased transport to reach
the same performance. These results further demonstrates the effectiveness of biasing the
source function and biasing the transform function.
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(a)

0 20000 40000 60000 80000 1000000.00E+0002.00E+0124.00E+0126.00E+0128.00E+0121.00E+0131.20E+0131.40E+013
fl ux _g1k1 _mean

histories
mean_full%biasmean_semi0biasmean_non8bias

(b)

0 20000 40000 60000 80000 1000000.00.10.20.30.40.5
0.60.70.80.91.0fl ux _g1k1 _error histories

error_full̀ biaserror_semilbiaserror_nontbias

(c)

0 20000 40000 60000 80000 1000000.00.10.20.30.40.50.6
0.70.80.91.0fl ux _g1k1 _eri nt histories

erint_full¡biaserint_semibiaserint_non·bias
(d)

0 20000 40000 60000 80000 1000000.000.020.040.060.080.10
fl ux _g1k1 _ereff histories

ereff_fullÙbiasereff_semiåbiasereff_nonîbias

(e)

0 20000 40000 60000 80000 1000000200040006000800010000
f l ux _g1k1 _FO M histories

FOM_full�biasFOM_semi�biasFOM_non(bias
(f)

0 20000 40000 60000 80000 10000030.10.00.10.20.30.40.5
0.60.70.80.91.0fl ux _g1k1 _VOV

histories
VOV_fullPbiasVOV_semi\biasVOV_nondbias

Figure 1: Results for flux g1k1, (a) mean, (b) relative error, (c) intrinsic error, (d) efficiency error (e) FOM, (f)
VOV, versus number of histories.

Fig. 2 presents six statistical quantities of the objective flux g4k1 vary with the number
of histories. With non-biased transport the mean of 105 histories does not converge yet,
but with biased transport the mean stabilizes quickly and the behavior of its relative
error, intrinsic error, efficiency error further shows the reliability of the mean. Biasing
indirectly the transform function brings about a rise of FOM and also a little rise of VOV,
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(a)

0 20000 40000 60000 80000 100000o5.00E+0130.00E+0005.00E+0131.00E+0141.50E+0142.00E+0142.50E+0143.00E+0143.50E+014
fl ux _g4k1 _mean histories

mean_full�biasmean_semi�biasmean_non¤bias
(b)

0 20000 40000 60000 80000 100000®0.10.00.10.20.30.40.5
0.60.70.80.91.01.1fl ux _g4k1 _error

histories
error_fullÎbiaserror_semiÚbiaserror_nonâbias

(c)

0 20000 40000 60000 80000 1000000 .000 .050 .100 .150 .200 .250 .300 .350 .400 .45
f l ux _g4k1 _eri nt histories

erint_full�biaserint_semi�biaserint_non$bias
(d)

0 20000 40000 60000 80000 1000000 .00 .20 .40 .6
0 .81.0f l ux _g4k1 _ereff histories

ereff_fullGbiasereff_semiSbiasereff_non\bias

(e)

0 20000 40000 60000 80000 10000005000100001500020000250003000035000
fl ux _g4k1 _FOM

histories
FOM_full�biasFOM_semi�biasFOM_non�bias

(f)

0 20000 40000 60000 80000 100000¤0 .10 .00 .10 .20 .30 .40 .5
0 .60 .70 .80 .91.01.1fl ux _g4k1 _VOV

histories
VOV_fullÂbiasVOV_semiÎbiasVOV_nonÖbias

Figure 2: Same as Fig. 1, except for flux g4k1.

but the influence on VOV is not much and VOV is still in the standard of the reliability
evaluation.

Table 4 shows main results of the objective flux g4k19 from three transport modes.
Semi-biased transport increases more than ten times efficiency compared with non-biased
transport, and this demonstrates the effectiveness of source biasing. In addition, biasing
indirectly the transform function can improve FOM and VOV. Both VOV and the ratio
of the largest score of each history to the mean from biased transport are larger than
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Table 3: Main results of objective flux g4k1.

Full-biased Transport Semi-biased Transport Non-biased Transport
Efficiency Histories 22095 20433 15

Mean 4.481E+13 4.559E+13 8.688E+13
(Relative Error) (0.0289) (0.0357) (0.2830)
Intrinsic Error 0.0283 0.0352 0.1159

Efficiency Error 0.0059 0.0062 0.2582
FOM 20100 11682 100
VOV 0.0798 0.0413 0.1049

Largest Score/Mean 1437 1283 11573

Table 4: Main results of objective flux g4k19.

Full-biased Transport Semi-biased Transport Non-biased Transport
Efficiency Histories 72284 72337 5988

Mean 3.837E+16 3.847E+16 4.319E+16
(Relative Error) (0.0075) (0.0075) (0.0162)
Intrinsic Error 0.0073 0.0073 0.0102

Efficiency Error 0.0020 0.0020 0.0125
FOM 506388 411651 30669
VOV 0.0338 0.0435 0.0007

Largest Score/Mean 269 275 90

that from non-biased transport, and this indicates for some objectives using biasing skills
can produce larger fluctuation of the scores due to correcting the statistical weight of the
particles, thus biasing skills should be used more carefully.

For the objective flux g4k19, its main statistical quantities varying with the histories
is plotted in Fig. 3. The mean from non-biased transport fluctuates at beginning and
quickly stabilizes after simulating ∼ 2×104 histories, which is thought to be compara-
tively reliable according to the behavior of the mean, the relative error, the intrinsic error,
the efficiency error and VOV. It is observed that FOM is lower than that from the bi-
ased transport. Compared with non-biased transport, the means from biased transport
converge faster and almost stabilize only after simulating 104 histories, and at the same
time its relative errors, intrinsic errors and efficiency errors have already met with reli-
able requirements, although VOVs do not until 3×104 or 5×104 histories are complete
respectively with full-biased transport or with semi-biased transport. FOMs from biased
transport are always higher than those from the non-biased transport, which demon-
strates that the efficiency of biased transport is higher than that of non-biased transport.
The means from biased and non-biased transport are different by a factor of 11%∼12%,
which goes beyond its error range, and more investigations should be carried out to ex-
plain this in the future. For biased transport, whether biasing indirectly the transform
function or not almost has no effects on the means, the relative errors, the intrinsic errors
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(a)

0 20000 40000 60000 80000 1000003.00E+0163.50E+0164.00E+0164.50E+0165.00E+0165.50E+016
fl ux _g4k19 _mean

histories
mean_full�biasmean_semi�biasmean_non�bias

(b)

0 20000 40000 60000 80000 1000000.000.010.020.030.040.050.060.070.080.090.100.110.120.130.140.150.160.170.180.19
f l ux _g4k19 _error

histories
error_full@ biaserror_semiL biaserror_nonT bias

(c)

0 20000 40000 60000 80000 1000000.000.010.020.030.040.050.060.070.080.090.100.110.12
f l ux _g4k19 _eri nt

histories
erint_full� biaserint_semi� biaserint_non� bias

(d)

0 20000 40000 60000 80000 1000000 .000 .020 .040 .060 .080 .100 .120 .14
f l ux _g4k19 _ereff

histories
ereff_full½ biasereff_semiÉ biasereff_nonÒ bias

(e)

0 20000 40000 60000 80000 10000002000004000006000008000001000000120000014000001600000
fl ux _g4k19 _FOM

histories
FOM_fulløbiasFOM_semi�biasFOM_non�bias

(f)

0 20000 40000 60000 80000 1000000.00.10.20.30.40.50.6
0.7

f l ux _g4k19 _VO V
histories

VOV_full6biasVOV_semiBbiasVOV_nonJbias
Figure 3: Same as Fig. 1, except for flux g4k19.

and the efficiency errors. However, biasing indirectly the transform function can raise
FOMs and reduce VOVs, which reveals that biasing indirectly the transform function is
capable of improving the efficiency and stability.

To sum up, for three representative objectives, the semi-biased transport shows im-
provement by comparing with the non-biased transport. Based on this, the full-biased
transport that further biases indirectly the transform function obtains lower errors and
higher efficiency than the other two transport modes.
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5 Conclusions

This paper decomposes the scheme of MC transport importance biased calculation into
two schemes of full-biased transport and semi-biased transport. The representative ob-
jectives are chosen and calculated respectively with different transport modes, and the
effectiveness of biasing the source function directly and biasing the transform function
indirectly is analyzed and studied.

The simulation results show that semi-biased transport has improved a lot compared
with non-biased transport: the ratios of the efficiency histories to all the histories in-
crease, and the relative errors are reduced and FOMs are improved. Based on semi-biased
transport, further biasing indirectly the transform function is able to obtain the better ef-
ficiency and stability. If the fast and simple method of biasing directly the transform
function is found, the effectiveness of MC transport importance biased calculation will
reach the optimization. This work provides the foundation for studying the method of
global MC variance reduction on particle transport problem.
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