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Abstract. In this note, we propose a new method to cure numerical shock instability
by hybriding different numerical fluxes in the two-dimensional Euler equations. The
idea of this method is to combine a ”full-wave” Riemann solver and a ”less-wave” Rie-
mann solver, which uses a special modified weight based on the difference in velocity
vectors. It is also found that such blending does not need to be implemented in all
equations of the Euler system. We point out that the proposed method is easily ex-
tended to other ”full-wave” fluxes that suffer from shock instability. Some benchmark
problems are presented to validate the proposed method.
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1 Introduction

In the last several decades, Godunov [1] schemes based on Riemann solvers are among
the most successful methods in computational fluid dynamics (CFD), which exhibit strong
robustness in most situations. However, there may have some problems in extending Go-
dunov methods to two-dimensional cases, for example, Roe solver [2] and HLLC solver
[3] for the Euler equations may suffer from ”carbuncle” and ”odd-even decoupling” phe-
nomena that are called numerical shock instability [4]. Some Flux-Vector-Splitting (FVS)
methods such as AUSMD [5] are also found to suffer from the same problems.
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Quirk [4] suggested a framework to deal with shock instability problems by employ-
ing two different types of flux functions: one is sharp in capturing discontinuities (”full-
wave” flux) and known to induce shock instability, and the other is dissipative but stable
for multidimensional shocks. Quirk’s approach is very useful but involves a user-defined
parameter which is to determine when and where to use the Riemann solver. From then
on some correction routines [6–9] have been proposed to cure the multidimensional nu-
merical shock instability. These corrections involve the detection for grid faces deemed as
susceptible to the shock instability. At grid faces, the original numerical flux functions are
either modified with some special procedures resulting from multidimensional consider-
ations, or replaced by more dissipative flux functions. These remedies have been proved
to be useful, but may fail when the underlying problem involves interactions of complex
flow features. Ren [10] presented a rotated Roe Riemann solver to eliminate the shock
instability, where the upwind direction is determined by the velocity-difference vector.
However, this method requires that the numerical flux is computed two times at each
grid face, which means less efficiency in computations. Nishikawa and Kitamura [11]
proposed a method which uses a weight based on the difference in velocity vector in the
form of rotated fluxes. However, their method can only be applied to the Roe solver.

In this paper, we propose a new method combining the Roe solver and the HLL
scheme. At first, our approach is to blend a full-wave flux ”Roe” and a less-wave flux
”HLL”. The combined coefficients are related to velocity difference in neighbor cells and
grid interface norm vector. Furthermore we find that such combination is required only
for the first and the third equations in one-dimensional extended Euler system. Through
the above elaborate procedure, the new method has higher resolution while keeping its
robustness.

2 The hybrid method

Consider the Euler equations in two dimensions,

∂U

∂t
+

∂F(U)

∂x
+

∂G(U)

∂y
=0, (2.1)

with

U =









ρ
ρu
ρv
E









, F(U)=









ρu
ρu2+p
ρuv
u(E+p)









, G(U)=









ρv
ρuv
ρv2+p
v(E+p)









,

where ρ is density, u and v are the velocities in x-direction and y-direction respectively,
E = 1

2 ρ(u2+v2)+ρe is the total energy and e is the specific inner energy. Here, we only
consider the ideal gas, which has a specifically equation of state: p=(γ−1)ρe, with p the
pressure and γ the specific heat ratio.
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Discretize system (2.1) with a finite volume method over a computational domain
dissected into structured quadrilateral control grid Ωi,j:

d

dt

∫

Ωi,j

Udxdy+
∫

∂Ωi,j

H ·ndl =0, (2.2)

where ∂Ωi,j is the boundary of Ωi,j, H = Fi+Gj is the tensor of the fluxes, n = nxi+nyj

is the outward unit vector normal to the surface ∂Ωi,j. Each grid Ωi,j has four faces Ii,j,k,
k=1,··· ,4, and

∫

∂Ωi,j

H ·ndl =
4

∑
k=1

∫

Ii,j,k

H ·ndl. (2.3)

The numerical scheme to fully discretize (2.2) is

Un+1
i,j =Un

i,j−
∆t

|Ωi,j|

4

∑
k=1

Φi,j,k|Ii,j,k|, (2.4)

where |Ωi,j| is the area of the cell Ωi,j, |Ii,j,k| is the length of grid interface Ii,j,k. In grid-
aligned finite volume method, the numerical flux Φi,j,k is determined by solving a Rie-
mann problem of the one-dimensional Euler equations in the normal direction of the
interface.

It is found that the numerical shock instability phenomenon is related to insufficient
dissipation of the contact and shear surfaces, see, e.g., [6–8]. To cure shock instability
for a ”full-wave” flux, a more dissipative term is added to the flux which resolve contact
surface in the domain of shock instability. In our method, the Roe flux and the HLL flux
are combined in grid-aligned framework. The numerical flux can be expressed by the
following formula:

Φnew(n)= β1ΦRoe(n)+β2ΦHLL(n), (2.5)

where ΦRoe(n) and ΦHLL(n) represent Roe flux and HLL flux respectively, β1,β2 are pos-
itive coefficients satisfying β1+β2 =1. The key problem is how to choose the coefficients
β1 and β2.

Numerical shock instability usually occurs when the shock crosses the computing
grid at an oblique angle. Denote shock direction as ns and α1 = |ns ·n|. Then an adaptive
weight can be chosen as

β1 =
1

2
+

1

2

α1

α1+α2
, β2 =

1

2

α2

α1+α2
, (2.6)

where α2 =
√

1−α2
1.

The shock direction is unknown in numerical calculation, but we can approximate it
with the velocity-difference vector between two adjacent grids [10]:

ns =

{

∆ui+∆vj
‖∆ui+∆vj‖ , if ‖∆ui+∆vj‖>ǫ,

n, otherwise,
(2.7)
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where ǫ is determined by
ǫ=10−4U∗.

where U∗ is a reference velocity at inlet of the flow field.

Remark 2.1. If the shock direction is the same as the interface norm direction (i.e., ns=n),
the hybrid scheme flux is degenerated to the Roe flux. If the shock direction is perpen-
dicular to the interface norm direction, the hybrid scheme flux is degenerated to the HLL
flux. So the dissipation in the proposed scheme is implemented mainly in shear disconti-
nuity. The dissipation in contact discontinuity can be added by entropy fix approach [12].

After many numerical tests, it is found that it is enough to eliminate the numerical
shock instability if the hybrid flux (2.5) is only implemented in the ”first” and the ”third”
equations of the one-dimensional Euler system. In fact, such procedure adds dissipation
on contact discontinuities and shear waves adaptively. The final hybrid Roe-HLL scheme
is expressed by



















Φnew(n)(1)= β1ΦRoe(n)+β2ΦHLL(n),

Φnew(n)(2)=ΦRoe(n),

Φnew(n)(3)= β1ΦRoe(n)+β2ΦHLL(n),

Φnew(n)(4)=ΦRoe(n).

(2.8)

Remark 2.2. If ΦRoe(n) in (2.8) is replaced by other full wave fluxes, e.g., AUSMD flux,
then the hybrid AUSMD-HLL method can also cancel the numerical shock instability.

3 Numerical results

In this section, we verify our method by using several numerical test problems. Numeri-
cal results of the first three benchmark problems show its ability of the hybrid method for
eliminating shock instability. The last two examples show the robustness of our method.

3.1 Odd-even decoupling problem

This test is well-known and first reported by Quirk in [4]. A plane shock travels right at
the speed of Mach 6. This problem is computed in a domain cover by 800×20 square unit
grids, except those on the centerline where the grid is perturbed in the following manner:

y(i,10)=

{

ymid+0.001, for i even,

ymid−0.001, for i odd,
(3.1)

where y(i,10) is the y coordinate of a cell vertex (i,10), ymid is the y coordinate of the
halfway line. Other condition can be found in [10].

Fig. 1 shows the density contour computed by Roe solver, AUSMD scheme, Roe-HLL
scheme and AUSMD-HLL scheme. It can be seen that the two new schemes do not suffer
shock instability and keep the shock all the way through.
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Figure 1: The contour of the density of odd-even grid perturbation problem.
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Figure 2: The contour of the pressure of Mach 20 hypersonic flow over a cylinder problem.

3.2 Mach 20 hypersonic flow over a cylinder

This is another well-known test to examine the catastrophic carbuncle failings of upwind
schemes. The numerical simulation of a Mach number 20 inviscid flow around a circular
cylinder, is considered a normal routine in CFD. In this test problem, 20×160 grids are
used and the pressure contour by Roe solver, AUSMD scheme, Roe-HLL scheme and
AUSMD-HLL scheme. From Fig. 2, we can see that the results by Roe and AUSMD
scheme are not correct, and both the hybrid schemes have good shock pictures.



H. Wu, L. Shen and Z. Shen / Commun. Comput. Phys., 8 (2010), pp. 1264-1271 1269

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROE

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUSMD

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ROE-HLL

x

y

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUSMD-HLL

Figure 3: The contour of the density of diffraction of a supersonic shock moving over a 90◦ corner problem.

3.3 The diffraction of a supersonic shock moving over a 90◦ corner

The shock diffraction problem is another test for which many Godunov-type schemes
are known to fail. The shock Mach number is 5.09 in this problem. The computational
domain is a unit square [0,1]×[0,1] that is discretized into a 400×400 uniform grids. The
corner is at (x,y)=(0.05,0.625). The shock is initially at x=0.05. Other conditions can be
found in [10]. Fig. 3 shows the results computed by Roe solver with entropy fix, AUSMD
scheme, Roe-HLL scheme and AUSMD-HLL scheme respectively. It is obvious that Roe
solver and AUSMD scheme suffer from shock instability. Our hybrid schemes do not
have such flaws.

3.4 Double mach reflection problem

The formulation of this problem, computational setup and detailed discussion of the flow
physics can be found in [14]. In computation, we chose ∆x = ∆y = 1

100 . Fig. 4 shows
the density contour computed by Roe solver and Roe-HLL scheme. The Mach stem in
Roe solver is inexplicably kinked giving rise to a spurious triple point (D). It should
be noted that this kinking is not related to the slight bulging that is often observed in
experiments. However, our method produced the flow pattern generally accepted in the
present literature as correct one and there is not kinking.
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Figure 4: The contour of the density of double mach reflection problem.
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Figure 5: The contour of the density of forward facing step problem.

3.5 Forward facing step problem

This problem was also studied in details by Woodward and Colella and all computational
conditions are also found in [14]. In computation, the grid size is ∆x = ∆y = 1

80 . The
computed density contour corresponding to the grid-aligned Roe solver and Roe-HLL
scheme in Fig. 5. Even in this case, the grid-aligned Roe solver exhibits instability in
regions after the normal shock. However, our scheme works well.
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4 Concluding remarks

In this note, a new hybrid method to combine ”full-wave” fluxes and HLL flux is pro-
posed. The main feature of our method is that the hybrid flux is only implemented in
the ”first” and ”third” equations in the original system. Although the mechanism of such
procedure is still unclear, the new method does cure numerical shock instability. Its ro-
bustness are verified in computing in double Mach reflection problem and forward facing
step problem.
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