
Commun. Comput. Phys.
doi: 10.4208/cicp.2009.08.206

Vol. 7, No. 2, pp. 317-332
February 2010

Numerical Investigation of Tumbling Phenomena Based

on a Macroscopic Model for Hydrodynamic Nematic

Liquid Crystals

Hui Zhang and Qichuan Bai∗

School of Mathematical Sciences, Beijing Normal University, Laboratory of
Mathematics and Complex Systems, Ministry of Education, Beijing, 100875, China.

Received 28 September 2008; Accepted (in revised version) 13 February 2009

Available online 24 August 2009

Abstract. This paper is concerned with the numerical investigation of a macroscopic
model for complex fluids in “1+2” dimension case. We consider the planar pressure
driven flow where the direction of the molecules is constrained in the shear plane. The
modified Crank-Nicolson finite difference scheme satisfying a discrete energy law will
be developed. By using this scheme, it is observed numerically that the direction of
the molecules will tumble from the boundary layer and later on the inner layer with a
much longer time period. This is consistent with the theoretical prediction. Moreover,
we find some complex phenomena, where the tumbling rises from boundary layer and
is then embedded into the interior area more clearly when the viscosity coefficient µ of
the macro flow has a larger value. The norm of the molecular director d will endure
greater change as well. This implies that the viscosity of flow plays the role of an
accelerator in the whole complex fluids. Comparing these results with the theoretical
analysis, we can find that the gradient of the velocity has direct impact on the tumbling
phenomena. These results show that the proposed scheme is capable of exploring
some physical phenomena embedded in the macro-micro model.

AMS subject classifications: 76T99, 76D05, 65M06
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1 Introduction

The special hydrodynamical properties of complex fluids have attracted many researchers
to build up mathematical models and to provide appropriate explanations, see, e.g.,
[1, 2, 5, 7, 8, 20] and references therein. Doi [2] introduced the Fokker-Plack equation [9]
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coupled with the Navier-Stokes equations, which is a well-known multi-scale model.
This model assumed that the fluid is homogeneous in space and excluded volume effect
by adopting either Onsager potential [23] or Maier-Saupe potential [2,6,21]. Later, Doi et
al. [3] extended the theory to model flows of nonhomogeneous liquid crystal polymers
by introducing a long-range intermolecular potential through a mean field calculation.
Marrucci and Greco [22] further improved the extended Doi theory and obtained an ap-
proximate potential depending on gradients of the second moments of the possibility
density function (PDF). Moreover, Wang et al. [24, 25] extended the Doi kinetic model
from the rodlike molecule at large aspect ratio to the discotic one at small aspect ratios.
Although these models are found useful, the computational cost is large since there are
seven variables in the kinetic model (or Fokker-Plack equation of PDF) and the Navier-
Stokes-like equations. Therefore, there have been attempts from the macroscopic point
of view.

For the macroscopic continuum description of the hydrodynamics of complex fluids,
such as the nematic liquid crystals, Ericksen and Leslie derived the following nonlinear
coupled system [5, 6, 14] for those materials with isotropic elastic energies:

ut+(u·∇)u+∇p=µ△u−λ∇·τ, in Ω, (1.1)

∇·u=0, in Ω, (1.2)

dt+(u·∇)d−ακ ·d−(α−1)κT ·d=γ(∆d−f(d)), in Ω, (1.3)

τ =∇d⊙∇d+α(d⊗∆d−d⊗f)+(α−1)(∆d⊗d−f⊗d), (1.4)

where u represents the velocity of the liquid crystal flow, p the pressure, κ = (∇u)T,
and d the orientation of the liquid crystal molecules. The domain Ω⊂R

n is a bounded
domain. The induced tensor τ shows the impact of the microstructure on the macro
fluid while the coupled term of velocity and director in (1.3) shows impact of the fluid
on the microstructure. In Eq. (1.4), the term ∇d⊙∇d denotes a 3×3 matrix whose (i, j)-
th entry is given by dxi

·dxj
, for 1 ≤ i, j ≤ 3, while the term d⊗∆d also denotes a 3×3

matrix whose (i, j)-th entry is given by di∆dj. Here, µ is the viscosity coefficient of the
macro fluid and γ is the diffusive parameter for the molecular direction d. Moreover, λ
is the competition ratio of the kinetic energy and the elastic energy, α ∈ [0,1] is a shape
parameter of the molecule, and f(d) may be seen as a penalty function to approximate
the constraint |d|=1. In this paper, we choose

f(d)=∇F(d), (1.5a)

where

F(d)=
1

ǫ2
(|d|2−1)2, (1.5b)

where the parameter ǫ is the penalty parameter. The transport of the director, dt+
(u·∇)d−ακ ·d−(α−1)κT ·d reflects the microscopic picture of those ellipsoid shaped
molecules moving in Stokes fluids with no slip boundary conditions on the particle sur-
face [10, 11]. It presents an effective stretching effect on the director d, the reader may
refer to [17] for the detail.
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The system (1.1)-(1.4) with the no-slip boundary condition

u=0 on ∂Ω, (1.6)

satisfies the energy law:

1

2

d

dt

∫

Ω

(

|u|2+λ(|∇d|2+2F(d))
)

dx=−
∫

Ω

(

µ|∇u|2+λγ|△d−f(d)|2
)

dx. (1.7)

In fact, multiplying (1.1) by u and integrating the resulting equation over Ω, multiplying
(1.3) by λ(−△d+ f (d)) and integrating the resulting equation over Ω, and then adding
the two results, we obtain

(u,ut)+(u·∇u,u)−µ(△u,u)+(∇p,u)+λ(τ,u)

+λ(dt,−△d+ f (d))+λ(u·∇d,−△d+ f (d))

+λ([ακ+(α−1)κT ]·d,△d− f (d))+λγ‖△d− f (d)‖2 =0, (1.8)

where (·,·) denotes the usual inner product of L2(Ω) and ‖·‖ denotes the corresponding
L2-norm. Using (1.2), (1.5)-(1.6), and the fact that

∇·(∇d⊙∇d)=∇
( |∇d|2

2

)

+△d·∇d,

yield

(u·∇u,u)=(∇p,u)=(u·∇d, f (d))=
(

u,∇(
|∇d|2

2
)
)

=0. (1.9)

Thus, by (1.4), we obtain (1.7). This energy law shows that this system is dissipative. The
analytical results in [13–15] indicate that these energy laws are particularly important
when singularities are involved in studying the hydrodynamical motions of these crystal
materials. The singularities are those energetically admissible ones. There have been
several previous attempts to track the physical singularities in numerical simulations
[4,13,16–20]. For example, a spectral approach is studied in [4], and the operator-splitting
methods are investigated for a liquid crystal model [7, 8]. In [18], a mixed finite element
method is applied to the system to avoid using the C1 elements. Recently in [16] a direct
weak formulation is introduced and a C0 finite element method is used. Lin et al. [17]
used the C0 finite element scheme to solve the whole system and revealed how the defect
is evolved. The main contribution in [17] was to construct numerical schemes satisfying
energy laws to track singularities. In this work, we will try to reveal some basic physical
phenomena such as tumbling with less computational efforts. We will consider the model
in the “1+2” dimension case by using a finite difference scheme.

Now we state the “1+2” dimension problem. A pressure driven flow acrossing the
y-z plane is given as in Fig. 1. Incompressibility indicates u = (0,V(z),0), z∈Ω = (0,π).
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Figure 1: A pressure driven flow acrossing the y-z plane.

We would like to study the velocity V(z) and the orientation d which is confined in the
y-z plane, i.e., d=(0,d2,d3)(z).

We set following conditions: ∂yP = C (constant), no-slip boundary condition for V,
i.e., V|∂Ω = 0, and anchoring condition for d, i.e., d is a given vector on the boundary.
Then (1.1)-(1.4) can be rewritten as follows:

∂tV+∂yP=µ∂zzV−λ∂zτ31, in (0,π), (1.10)

∂td2−α∂zVd3 =γ(∆d2− f2(d)), in (0,π), (1.11)

∂td3−(α−1)∂zVd2 =γ(∆d3− f3(d)), in (0,π), (1.12)

τ31 =αd3(∆d2− f2)+(α−1)d2(∆d3− f3), in (0,π), (1.13)

where f(d) is the same as in (1.5). The detailed initial conditions will be given in the next
section.

Firstly, we point out that the vector d in the system (1.10)-(1.13) would tumble in the
shear plane under some special case. Assume γ = 0 and ∂zV = ω which is a positive
constant. It follows from Eqs. (1.11) and (1.12) that

∂td2−(α−1)ωd3 =0,

∂td3−αωd2 =0.

A combination of these two equations yields

∂ttd3−α(α−1)ω2d3 =0.

The general solution of this equation is

d3 = Acos
√

α(α−1)ω2 t+Bsin
√

α(α−1)ω2 t,

where A and B are two parameters. This shows that d3 is periodic with respect to t. Using
the same method, it can be shown that d2 is also periodic and d is uniformly tumbling at
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each point z∈ (0,π). This theoretical analysis guides us partially to numerically investi-
gate the tumbling phenomena of the molecular director d. Here our goal is to investigate
the behavior of the vector d when the parameter γ is not zero and ∂zV is not a constant
in (1.10)-(1.13).

In this work, we will make some numerical investigations on the model (1.10)-(1.13).
We construct a simple finite difference scheme satisfying a corresponding discrete energy
law. It is expected that the physical singularities can be captured by using this scheme.
It is pointed out that the scheme to be employed is easier than the finite element method
although they use similar computational costs in numerical simulations. We use the fixed
point iteration during the linearization and implement the algorithm on a staggered grid.
We find the appropriate interval for the penalty parameter ǫ to ensure that the discrete
energy declines because theoretically the energy always decline for any positive value of
the parameter ǫ. Then we give some numerical examples which show that the molecules
will tumble first in the boundary layer and later on the inner layer with a longer time pe-
riod. It is shown by numerical simulations that the tumbling phenomena can be observed
more clearly when the viscosity coefficient µ is larger. We also find that the velocity gra-
dient is a direct driving factor through a comparison with the theoretical analysis earlier.

The rest of this paper is arranged as follows. In Section 2, we present a discrete system
in finite difference form and prove that this scheme satisfies an energy law. Implemen-
tation issues are discussed in Section 3, including the fixed point iteration strategy. In
Section 4, we present our numerical results and discussions. We draw a conclusion in the
final section.

2 The discrete system and energy law

In this section, we give a finite difference approach based on the modified Crank-Nicolson
scheme to solve the “1+2’ dimension problem. The scheme is similar to its counter part
in finite element form in [17]. We also present a corresponding discrete energy law which
is of great importance both theoretically and numerically.

Divide the interval (0,π) into N parts, and let ∆h=π/N. A mid-point finite difference
scheme similar to its counter part in the finite element scheme [17] is presented below:

Vn+1
t +∂yP=µ∆Vn+ 1

2 −
λ

γ
∂z

(

αdn,n−1
3 (d2t−α

∂Vn+ 1
2

∂z
dn,n−1

3 )

+(α−1)dn,n−1
2 (d3t−(α−1)

∂Vn+ 1
2

∂z
dn,n−1

2 )
)

, (2.1)

d2
n+1
t −α

∂Vn+ 1
2

∂z
dn,n−1

3 =γ
(

∆d
n+ 1

2
2 − f2(d)

)

, (2.2)

d3
n+1
t −(α−1)

∂Vn+ 1
2

∂z
dn,n−1

2 =γ
(

∆d
n+ 1

2
3 − f3(d)

)

, (2.3)
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where Vn stands for a 1×(N+1) vector when t=n∆t, and Vi =V(i∆h),

Vn+1
t =

Vn+1−Vn

∆t
, Vn+ 1

2 =
Vn+1+Vn

2
, (∆V)i =

Vi+1+Vi−1−2Vi

∆h2
, (2.4a)

∂V

∂z
=

Vi+1−Vi

∆h
, dn,n−1

2 =
3dn

2 −dn−1
2

2
; (2.4b)

other terms in (2.1)-(2.3) have similar definition. Moreover, f(d) allows different forms
to be discussed below. To avoid having too many derivatives, we here replace the terms

∆d−f in τ with the corresponding part in Eq. (2.3) and dn,n−1 is an approximation of dn+ 1
2

for d=(d2,d3). The discrete energy law is anticipated to be

(

1

2
‖Vn+1‖2

l2 +
γ

2
‖∇dn+1‖2

l2 +γ‖F(dn+1)‖l1

)

t

=−

(

µ‖∇Vn+ 1
2 ‖2

l2 +
λ

γ
‖dn+1

t +Dα(Vn+ 1
2 )dn,n−1‖2

l2 +(∂yP·V)l

)

, (2.5)

where we have some notation as follows

‖V‖2
l2 =

N−1

∑
i=1

V2
i , ‖∇V‖2

l2 =
1

∆h2

N

∑
i=1

(Vi−Vi−1)
2, (2.6a)

‖∇dn+1‖2
l2 =‖∇dn+1

2 ‖2
l2 +‖∇dn+1

3 ‖2
l2 , (2.6b)

‖F(dn+1)‖l1 =
N−1

∑
i=1

|F(dn+1)|, (∂yP·V)l =
N−1

∑
i=1

∂yP×V[i], (2.6c)

Dα(V)d=
(

α
∂V

∂z
d3,(α−1)

∂V

∂z
d2

)

, (2.6d)

where d2 and d3 share a similar definition with V.
Compared with the energy law in [17], we have an extra (∂yP·V)l term in Eq. (2.5).

This is because we assume ∂yP is a constant instead of a system variable in our model.
Thus the term (∂yP·V)l will appear to measure the external impact. When the imposed
pressure gradient ∂yP equals to zero, the discrete energy would decline according to the
energy law which indicates that the isolated system is dissipative.

Numerically, it is a criterion for us to recognize whether we are giving right numerical
solutions for the complex discrete system. When ∂yP equals zero, the total energy should
decline. Even when ∂yP does not equal to zero in our numerical tests, if we take the
initial condition for velocity zero and the term (∂yP·V)l positive, then this will accelerate
the declining of total energy. The numerical tests show that when the energy does not
decline, the solution is weird which we think is not physically reasonable. So we can use
energy declining property to check whether the discrete system is appropriately solved or
whether our parameters are well chosen. Now we will state and prove our main theorem
in the following.
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Theorem 2.1. The energy law (2.5) is satisfied under following conditions:

C1. V has non-slip boundary condition, i.e., V0 =VN =0;

C2. d has anchoring boundary condition, i.e., d is independent of time on the boundary, i.e.,

dn
0 =dn+1

0 =d0, dn
N =dn+1

N =dN ;

C3. f(d) bears a modified Crank-Nicolson scheme in the following sense:

fn(d)=
4

ǫ2

(|dn+1
h |2−1)+(|dn

h |
2−1)

2

dn+1
h +dn

h

2
. (2.7)

The proof can be obtained using the following.

Let Vt, Vn+ 1
2 , dn+ 1

2 etc are defined by (2.1)-(2.4), and F is defined by (1.5). Then

Vn+1
t ·Vn+ 1

2 =(
∥

∥

∥
Vn+1

∥

∥

∥

2
)t, ∆Vn+ 1

2 ·Vn+ 1
2 =−‖∇Vn+ 1

2 ‖2
L2 ; (2.8)

∆dn+ 1
2 ·dn+1

t =−
1

2

(

‖∇dn+1‖2
l2

)

t
; (2.9)

f(d)·dn+1
t =(|Fn+1(d)|)t, (2.10)

where fn(d) is defined by (2.7).
The detailed proof (2.8)-(2.9) can be found in [12], and (2.10) was derived in [17].

Summing both sides of ((2.1)×Vn+ 1
2 + λ

γ ((2.2)×d2
n+1
t +(2.3)×d3

n+1
t )), we can find that

some terms will eliminate and the rest terms form the energy law (2.5). On the other
hand, the coupled term ∂zV ·d appearing in Eqs. (2.2) and (2.3) is the convection term for
the molecule direction, i.e., it take into account the impact of the fluid on the microstruc-
ture. According to Newton’s third law, i.e., all forces in the universe occur in equal but
oppositely directed pairs, it is natural to expect that we can eliminate these terms and get
the desired equality.

Proof of Theorem 2.1. We first prove the result (∂z A)·B =−A·(∂zB),∀A,B∈R
n when the

condition C1 is satisfied:

(∂z A)·B=
N−1

∑
i=0

Ai+1−Ai

∆h
Bi

=−
1

∆h

(N−1

∑
i=1

Ai(Bi−Bi−1)−A0B0+ANBN

)

=−A·(∂zB),

provided that A0B0−ANBN =0. Now taking B=Vn+ 1
2 and

A=αdn,n−1
3

(

d2t−α
∂Vn+ 1

2

∂z
dn,n−1

3

)

+(α−1)dn,n−1
2

(

d3t−(α−1)
∂Vn+ 1

2

∂z
dn,n−1

2

)

,
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we have

λ

γ
∂z

(

αdn,n−1
3 (d2

n+1
t −α

∂Vn+ 1
2

∂z
dn,n−1

3 )

+(α−1)dn,n−1
2 (d3

n+1
t −(α−1)

∂Vn+ 1
2

∂z
dn,n−1

2 )
)

Vn+ 1
2

=−
λ

γ

(

(α
∂Vn+ 1

2

∂z
dn,n−1

3 )d2
n+1
t +(α−1)

∂Vn+ 1
2

∂z
dn,n−1

2 d3
n+1
t

−(α
∂Vn+ 1

2

∂z
dn,n−1

3 )2−((α−1)
∂Vn+ 1

2

∂z
dn,n−1

2 )2
)

.

Next we will prove the energy law (2.5) by calculating (2.1)×Vn+ 1
2 + λ

γ ((2.2)×d2
n+1
t +

(2.3)×d3
n+1
t ) and using (2.8)-(2.10). It can be verified that the left-hand side of (2.1)×

Vn+ 1
2 + λ

γ ((2.2)×d2
n+1
t +(2.3)×d3

n+1
t ) is

1

2

(

‖Vn+1‖2
l2

)

t
+(∂yP·V)l

+
λ

γ

(

‖dn+1
t ‖2

l −α
∂Vn+ 1

2

∂z
dn,n−1

3 d2
n+1
t −(α−1)

∂Vn+ 1
2

∂z
dn,n−1

2 d3
n+1
t

)

. (2.11)

Also, the corresponding right-hand side is of the form

−µ‖∇Vn+1‖2
l2 −

λ

γ

(

(α
∂Vn+ 1

2

∂z
dn,n−1

3 )d2
n+1
t +((α−1)

∂Vn+ 1
2

∂z
dn,n−1

2 )d3
n+1
t

−(α
∂Vn+ 1

2

∂z
dn,n−1

3 )2−((α−1)
∂Vn+ 1

2

∂z
dn,n−1

2 )2
)

−
γ

2

(

‖∇dn+1‖2
l2

)

t
−γ(|F(d)|)t. (2.12)

Combining (2.11) and (2.12) yields (2.5).

3 Implementation issues

In this section we will show how to solve the system (2.1)-(2.3). In our modified Crank-
Nicolson scheme, we adopt the fix point iteration to the nonlinearity of the f(d) term
during the linearization, which is introduced by Lin et al. in [17]. By taking this process,
we are able to decompose the overall highly non-linear system into two linear parts,
i.e., the velocity V part and the director d part. We solve these two parts alternatively.
Finally, we can get a sequence of the approximation of (V,d) on each time step. When
this sequence converges to one point, we mark that point as our desired solution. We
realize this algorithm on a staggered mesh to increase the stability of the algorithm.

Let Vs be the approximation of Vn+1 during the fixed point iteration. At each time
step, given Vn, we start from s = 1 and set Vs−1 = Vn,ds−1 = dn. We use the following
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scheme to compute V1,V2,··· and d1,d2,··· until ‖Vs−Vs−1‖+‖ds−ds−1‖ becomes small
enough. Then we find the fixed points of this time step and use the final values as Vn+1

and dn+1. The discrete scheme is as follows:

(Vs)t+∂yP=µ∆
Vn+Vs

2
−

λ

γ
∂zτ31, (3.1)

(d2s)t−
α

2

∂(Vn+Vs−1)

∂z
dn,n−1

3 =γ
(

∆
dn

2 +d2s

2
− f2(d)

)

, (3.2)

(d3s)t−
α−1

2

∂(Vn+Vs−1)

∂z
dn,n−1

2 =γ
(

∆
dn

3 +d3s

2
− f3(d)

)

, (3.3)

τ31 =αdn,n−1
3

(

(d2s)t−
α

2

∂(Vn+Vs−1)

∂z
dn,n−1

3

)

+(α−1)dn,n−1
2

(

(d3s)t−
α−1

2

∂(Vn+Vs−1)

∂z
dn,n−1

2

)

, (3.4)

where

f(d)=
4

ǫ2

(|ds−1|
2−1)+(|dn|2−1)

2

ds−1+dn

2
, (Vs)t =

Vs−Vn

△t
,

and (d2s)t and (d2s)t are defined similarly to (Vs)t. Moreover, dn,n−1 is replaced by
(dn+ds−1)/2 in order to obtain a time independent decomposition.

Remark 3.1. To improve the stability of the numerical scheme, we adopt a staggered
mesh. We assume that the unknown spatial area is (0,N△h), where N+1 is the number
of total grid points, and △h is the space step. We compute from t=0 until t=T△t. We set
the value of d=(d2,d3) on the integer points and mark them as d[0],d[1],··· ,d[N]. While
we set the value of V on the half points and mark them as V[0],V[1],··· ,V[N],V[N+1]
(see Fig. 2). Here V[0],V[N+1] are values at two ghost points imposed to ensure that
V =0 on the boundary. Thus

V[0]+V[1]=0, V[N]+V[N+1]=0,

∂V

∂z
[i]=

2(V[i+1]−V[i])

△h
, for i=0,1,··· ,N,

∂τ

∂z
[i]=

2(τ[i]−τ[i−1])

△h
, for i=1,2,··· ,N.

d[0] d[1] d[2] d[N−2] d[N−1] d[N]

V[0] V[1] V[2] V[N−1] V[N] V[N+1]

Figure 2: The staggered mesh.
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Luckily, here we do not have to regain the values of d on the half points or the values
of V on the integer points since each term involved has been presented using formulas
above.

4 Numerical results

Before investigating the molecular motion, we first find the appropriate area for the
penalty parameter ǫ in f(d). It is proved that the discrete energy will decline if the dis-
crete equations are solved exactly. However, to avoid computational error, we have to
pay special attention on ǫ; this issue will be discussed in Section 4.1. Then we begin
our investigation on d in Section 4.2. We get some numerical results showing that the
molecules tend to tumble stating from the boundary layer and then on inner layer after
a longer time period. We also test the effect of some parameters. When the viscosity µ of
the flow becomes larger, we can see the tumbling rising from boundary layer then deep
into the middle area more clearly. We also give a comparison of our results to some theo-
retical results, which indicates that the velocity gradient is the direct driving factor of the
tumbling phenomena.

4.1 Penalty parameter ǫ and the energy law

In this section, we wish to find out the appropriate values for the penalty parameter ǫ.
We have already shown that the discrete energy will decline provided that all the discrete
equations are solved accurately. However, the discrete equations can not be solved ex-
actly due to numerical errors. Since the f(d) term contains a factor of ǫ−2, we first check
this penalty parameter. We set N = 100, △h = 0.031416, Err = 10−10, △t = 10−5, ∂yP=0,
µ=0.1, γ=0.01, λ=0.005, α=0.22, which ensures that γ△t<ǫ2. After some tests, we can
see that ǫ is critical to guarantee the declining of the discrete energy. When ǫ=10−4, f (d)
increase dramatically and then the code breaks down. Fig. 3 presents two figures of the
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Figure 3: The energy evolution. Left: ǫ =0.01, right: ǫ =0.05, where the horizontal axis is the time while the
vertical axis is the energy.
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energy with respective to t, which corresponds to ǫ=0.01, ǫ=0.05.

From above, we can see that when ǫ is relatively small (when all the other parame-
ters are fixed), the energy will not decline, or even dramatically goes up and down even
when we take ∂yP=0. This shows that the numerical accuracy is somehow proportional
to 1/ǫ. So we fix ǫ to be around 0.05 or even a little bit larger according to other param-
eters. Without specific explanations, all our examples in the following ensure the energy
declining.

4.2 Tumbling results for molecule direction d

In this subsection, we will investigate the motion of the director d.

We take the time step as △t= 5e-4. Other parameters are set as: △h=0.06284, ∂yP=
1e6, T=100, µ=0.1, γ=0.01, λ=0.00050, α=0.5, and ǫ=0.05. Initial conditions are V=0,
(d2,d3)= (cosz,sinz). It is seen that there is the tumbling of several time periods on the
boundary as shown in Fig. 4.
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Figure 4: Motion of (d2,d3), where the horizontal axis is space parameter while the vertical axis is the time.
Here a clear tumbling layer appears in the neighbor of the boundary.

We tend to understand the long time behavior of the molecules by choosing larger
values of the time period T. However, as T becomes larger, it is difficult to recognize the
detailed patterns due to the limitation of the resolution of the overall image. We can just
vaguely observe that there may be a second layer where the molecules would tumble.
Luckily, our assumption is confirmed by enlarging the viscosity coefficient µ. In fact,
for most complex fluids, their viscosity coefficient may be very large. Now we enlarge
µ and check what will happen. We can see the arrangement of d will be experiencing
huge change as µ grows significantly. This implies that the macro fluid is really powerful
to have an impact on the microstructure of the liquid crystal solvent. In the remaining
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Figure 5: The motion of d when µ =1, α=0.5. It is observed that the distance between the second layer and
the third layer is changing with time.
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Figure 6: The motion of d when µ=10. Here the inner tumbling layer is shown very clearly.

figures of this subsection, to focus on µ we set T=100, △h=0.06284, △t=0.0004, ∂zP=1e6,
γ=0.01, λ=0.0005, ǫ=0.05.

Fig. 5 corresponds to µ = 1, α = 0.5. It is observed that the distance between the sec-
ond layer and the third layer is changing with time. We can see that the inner layer of
tumbling begins to appear.

Fig. 6 presents the motion of d as µ=10 and α=0.5. It is seen that the inner tumbling
layer is shown very clearly.

When µ = 100, α = 0.3, Fig. 7 shows that the tumbling of d grows stronger while the
total length of d is being distorted. The tumbling pattern grows even more complex. Also
we can see the director is enduring huge distortion. There are points where the norm of
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Figure 7: The motion of d when µ=100. The tumbling pattern becomes more complex.
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Figure 8: The norm of d. Some oscillations of the norm of the molecular director can be observed.

director shrinks below 1 while some other points show that the norm of the director
exceeds 1 by large extent, see Fig. 8.

4.3 The behavior of V and the driving factor for tumbling

The profile of V is similar in most of the previous numerical solutions in Section 4.2. A
typical case is plotted in Fig. 9.

In our numerical examples, however, when we chose γ = 0, we can see each point
tumble with different time period, which is really a long time for inner point. From the
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Figure 9: The profile of V, the horizontal axis is time while the vertical axis is the velocity.

theoretical analysis earlier, we assumed that ∂zV = ω > 0, which is not the case in our
numerical examples. From the profile of V in Fig. 9 we can clearly see that the gradient
of velocity ∂zV does not equal to zero only on the boundary layer for small viscosity µ.
When µ grows larger, the supporting area for ∂zV will extend into the inner area. So the
gradient of velocity is a kind of driven factor to make the director tumble. We can say
that µ is powerful to make tumbling happen, however, its power stems from its impact
on ∂zV which direct decides the tumbling of d.

5 Conclusions

In this work, we have made some numerical investigations on the nonlinear system (1.1)-
(1.4) in the “1+2” dimension case. We constructed a finite difference scheme paralleled
to the C0 finite element form in [17]. Our scheme satisfies a corresponding discrete en-
ergy law, which uses less computational cost than the finite element approach. We use
the fixed point iteration during the linearization and realize the algorithm on a staggered
mesh. We find the appropriate interval of penalty parameter ǫ to ensure that the discrete
energy declines. Then we give some numerical examples which show that the molecules
will tumble first on the boundary layer and later on the inner layer with a much longer
time period. We also notice that the tumbling phenomena can be observed more clearly
when the viscosity coefficient µ becomes larger. It is also found that the gradient of ve-
locity is a direct driving factor through a comparison with the theoretical analysis given
in Section 1.

We present a discrete energy law which is of great importance both theoretically and
numerically. Theoretically, it is a natural instinct of this system which should be pre-
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served by the discrete scheme. The induced tensor τ term shows the impact of the mi-
crostructure of molecules on the fluid while the coupled term of velocity and director
shows impact of the fluid on the molecules. These interaction terms should annihilate
according to the Newton’s third law. But compared to the energy law in [17], we have
an extra (∂yP·V)l term in our equality since we assume ∂yP is a constant instead of a
system variable in our model. Thus the term (∂yP·V)l will appear to measure the ex-
ternal impact. When the imposed pressure gradient ∂yP equals to zero, the energy law
indicates that the isolated system is dissipative. Numerically, it is a criterion for us to
recognize whether we are giving the right numerical solution for the complex discrete
system. Even when ∂yP does not equal to zero, in our numerical tests, if we take the
initial zero condition for velocity, the term (∂yP·V)l stays positive which accelerates the
declining of the total energy. The numerical tests show that the solution is weird when
the discrete energy does not decline. So we use energy declining to check whether the
discrete system is appropriately solved or whether our parameters are well chosen.

Based on the tumbling patterns of d, we find out that the molecules on the boundary
layer will tumble first while molecules on the inner layer would also join but after a
longer time period. The period of tumbling is related to the viscosity µ of the flow. The
larger µ will drive more molecules in the inner area to tumble and hasten their tumbling
periods. The norm of the director d endures more violent change as well. We point out by
theoretical analysis that d will uniformly tumble based on the assumption that ∂zV is a
positive constant. However, here ∂zV varies on each point which explains the molecules
have different tumbling periods. Numerical simulation shows that different µ values will
lead to a change of ∂zV. We then conclude that the gradient of velocity is a direct driving
factor for tumbling.
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