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Abstract. Based on our continuum hydrodynamic model for immiscible two-phase
flows at solid surfaces, the stick-slip motion has been predicted for moving contact
line at chemically patterned surfaces [Wang et al., ]. Fluid Mech., 605 (2008), pp. 59-78].
In this paper we show that the continuum predictions can be quantitatively verified
by molecular dynamics (MD) simulations. Our MD simulations are carried out for
two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille
flow geometry. In particular, one solid surface is chemically patterned with alternat-
ing stripes. For comparison, the continuum model is numerically solved using ma-
terial parameters directly measured in MD simulations. From oscillatory fluid-fluid
interface to intermittent stick-slip motion of moving contact line, we have quantitative
agreement between the continuum and MD results. This agreement is attributed to
the accurate description down to molecular scale by the generalized Navier bound-
ary condition in our continuum model. Numerical results are also presented for the
relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis
based on the Onsager principle of minimum energy dissipation.

PACS: 68.08.-p, 83.50.Rp, 83.10.Mj, 83.10.Ff
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1 Introduction

The contact line denotes the intersection of the fluid-fluid interface with the solid wall in
immiscible two-phase flows. When one fluid displaces the other, the contact line moves
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along the wall. As a classical problem in continuum hydrodynamics, it has been known
for decades that the moving contact line is incompatible with the no-slip boundary con-
dition [1] — the latter leads to a non-integrable singularity in viscous dissipation [2-4].
In particular, molecular dynamics (MD) simulations have shown that near-complete slip
indeed occurs at the moving contact line [5, 6]. Numerous models were proposed to
address this problem, but none was able to give a quantitative account of the MD slip
velocity in the molecular-scale vicinity of the contact line [7-15].

Through analysis of extensive MD data, it was discovered that the slip velocity mea-
sured in nanoscale MD simulations satisfies the generalized Navier boundary condition
(GNBC) [16]. The GNBC states that the relative slip velocity between the fluid and the
solid wall is proportional to the total tangential stress — the sum of the viscous stress and
the uncompensated Young stress; the latter arises from the deviation of the fluid-fluid in-
terface from its static configuration. By the use of the Cahn-Hilliard (CH) hydrodynamic
formulation for two-phase flows [13, 14, 17], the implementation of the GNBC leads to
continuum solutions in quantitative agreement with MD simulation results [16, 18, 19].
Recently, it has been shown [20, 21] that the GNBC can be derived in a variational ap-
proach from the Onsager principle of minimum energy dissipation [22,23].

Recently, structured surfaces exhibiting lateral patterns of varying wettability have
become technically available. The morphologies of liquid on patterned surfaces with
hydrophilic and hydrophobic regions have been investigated experimentally and theo-
retically [24,25]. While the statics of wetting on patterned surfaces already leads to a large
variety of morphologies, the dynamics of wetting on these surfaces is even more compli-
cated. Cubaud and Fermigier carried out an experimental investigation on the advancing
contact lines of large drops spreading on chemically patterned surfaces [26]. In a numer-
ical study for an immiscible two-phase fluid driven to flow past chemically patterned
surfaces in a microchannel, Kuksenok et al. showed that the fluid exhibits morpholog-
ical instabilities giving rise to the formation of monodisperse droplets of one phase in
the other phase [27]. Through both numerical simulations and experiments, Kusumaat-
maja et al. explored the behavior of liquid drops moving past a surface patterned with
hydrophobic and hydrophilic stripes [28].

We would like to point out that in all the previous studies based on diffuse-interface
modeling [12-15,27, 28], the no-slip boundary condition is kept and the non-integrable
stress singularity is removed by introducing diffusive transport through the fluid-fluid
interface. By combining the GNBC with the diffuse-interface formulation, our continuum
model allows the coexistence of slip and diffusion, with their competition determined by
the relative magnitudes of relevant parameters [20]. For the systems simulated in our
MD study, it is the slip that dominates. A recent study by Ren and E [29], which focused
on a sharp interface model, also demonstrated that the stress singularity is regularized
by the existence of a slip region and the Young stress is dominant in the contact line
region. We have applied our model to further investigate the role of slip for contact line
motion at surfaces patterned with stripes of varying contact angle [30]. We found that as
the fluid-fluid interface is displaced along the patterned surface, its shape is periodically
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adjusted by the underlying pattern and the contact line undergoes a stick-slip movement
with an oscillatory slip velocity. Such an oscillatory movement leads to extra dissipation,
for which a scaling relation was found in the limit of slow displacement.

The purpose of this paper is to demonstrate that the continuum predictions in [30]
can be quantitatively verified by MD simulations. Our MD simulations are carried out
for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille
flow geometry. In particular, one solid surface is chemically patterned with alternat-
ing stripes. For comparison, the continuum model is numerically solved using material
parameters directly measured in MD simulations. From the oscillatory fluid-fluid inter-
face to the intermittent stick-slip motion of contact line, we have quantitative agreement
between the continuum and MD results. This agreement is attributed to the accurate de-
scription down to molecular scale by the GNBC. Numerical results are also presented for
the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis
based on the variational principle of Onsager.

The paper is organized as follows. In Section 2 the continuum hydrodynamic model
is introduced for contact line motion at chemically patterned surfaces. In Section 3 the
MD simulations are outlined for the systems modeled in our continuum formulation. The
technical details for continuum calculations are presented in Section 4, together with the
challenge we meet in making comparison of continuum and MD results. The numerical
results are presented in Section 5. The stick-slip motion of moving contact line is observed
with remarkable agreement between the continuum and MD results. The relaxational
dynamics of fluid-fluid interface is investigated numerically and theoretically. The paper
is concluded in Section 6 with some remarks.

2 Continuum hydrodynamic model

2.1 Modeling moving contact line

From numerical simulation to theoretical formulation, recent evidences have shown that
the GNBC can quantitatively account for the slip velocity measured in MD simulations
[16,18,20]. The GNBC has been combined with the Cahn-Hilliard (CH) free energy [17]
to formulate a phase-field description of immiscible two-phase flows. Below we briefly
present the continuum hydrodynamic model which is capable of not only reproducing
MD results but also simulating contact-line motion on a scale much larger than that ac-
cessible by MD simulations [18].
The CH free energy functional is of the form

Flel= [ dr |5 (Vo7 +5(0)], @1

introduced to energetically stabilize the diffuse fluid-fluid interface between the two im-
miscible fluid phases. Here ¢(r) is the phase field, locally defined from ¢=(p2—p1)/ (p2+
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p1), with p; and p; being the local number densities of the two fluid phases;
f(@)==r9*/2+up*/4,

in which K, r, and u are parameters that can be determined from the characteristic interfa-
cial thickness {=+/K/r, the interfacial tension y :2\/§r2§ /3u, and the two homogeneous
equilibrium phases

¢$p+==+Vr/u (==£1here),

all being measurable quantities in MD simulations. To determine ¢, the normalized den-
sity difference between the two immiscible fluids is measured in MD simulations and
then fitted by tanh[(x—xp)/v/2¢], the profile minimizing the Cahn-Hilliard free energy
(for a flat interface parallel to the yz plane and centered at x(), as shown in Fig. 1. The
value of 7y is measured in MD simulations by integrating the stress anisotropy across
the fluid-fluid interface along the interface normal. The two coupled equations of mo-
tion are the convection-diffusion equation for ¢(r) and the Navier-Stokes equation in the
presence of the capillary force:

d

a_(f”‘ V=MVy, (2.2)
d

Om [8_:+(V-V)V] =-Vp+V o' +uVe+f., 23)

together with the incompressibility condition V-v=0. Here y = —KV?¢—r¢p+u¢’(=
OF /6¢) is the chemical potential, M is the mobility coefficient, p,, is the mass density of
the fluid, p is the pressure, % =7 [(Vv)+(Vv)T] is the Newtonian viscous stress tensor
with 7 being the viscosity, uV¢ is the capillary force density, and f, is the external force
density. The boundary conditions at the solid surface are the kinematic impermeability
conditions 0,4 =0, v, =0, the dynamic relaxational equation for ¢ at surface:

¢

E—I—marcp: —TL(¢p), (2.4)

and the GNBC governing the fluid slip at solid surface:

B(¢)07 " =~ (3y0r+3:0,) +L(¢)3c. 2.5)

Here T denotes the direction tangent to the solid surface (for two-dimensional flows),
n denotes the outward pointing surface normal, I' is a positive phenomenological pa-
rameter, L(¢) = Ko,¢+07r(¢)/9¢ with £,(¢) being the fluid-solid interfacial free en-
ergy per unit area, B(¢) is the slip coefficient which may locally depend on ¢ at surface,
and L(¢)0.¢ is the uncompensated Young stress. The slip length is locally defined as

Is(p)=n/B(¢). We use
Vs(9) = (Dyss/2)sin(rd/2)
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Figure 1: The normalized density difference between the two immiscible fluids (oo —p1)/p is plotted as a function
of x along the interfacial normal. The interface is parallel to the yz plane and centered at xyp =59.90. It is

seen that the MD profile (circles) is well fitted by tanh[(x—2x()/+/2&] with &=0.33¢ (solid line). Here ¢ is
the range parameter in the Lennard-Jones potential for fluid-fluid interactions (see Section 3 for details). The
system in MD simulation is large enough to avoid any undesired boundary effects on interfacial profile. The
data are collected from bins that measure 0.1¢ along x, 9.00 along y, and 1.0¢ along z. Time averaging has
been used to reduce the statistical fluctuations (which can be further reduced by longer time averaging).

which is a smooth interpolation from 7 ¢5 (¢ ) =AY /2 to v (1) =A7 s /2. According
to the Young’s equation for the static contact angle 6,:

’st(¢+) +7ycosts = ’)’fs(q)*)/

we have A7y s = —7cosb;s. In the sharp interface limit [16,31], the uncompensated Young
stress satisfies

/ dt[L(¢)dr¢] =y (cosb; —cosb), (2.6)
int

where [, dT denotes the integration across the fluid-fluid interface along the T direction
and 6, is the dynamic contact angle. Physically, it is clear that the uncompensated Young
stress arises from the deviation of the fluid-fluid interface from its static configuration.
We want to point out that in “standard” diffuse-interface model(s), the no slip con-
dition is applied and the stress singularity is relaxed /removed by diffusion only. In our
diffuse-interface model, however, the diffusion mechanism is kept and the slip mecha-
nism is added through the application of the GNBC. The two mechanisms coexist in the
model and the relative importance of each can be tuned by the relevant physical param-
eter (the mobility coefficient M or the slip coefficient B). There can be two extreme cases,
one with diffusion only and the other with slip only. The difference between these two
extremes is qualitative in terms of the flow field in the close vicinity of the moving con-
tact line. (If there is diffusion only, then the relevant length scale is the diffusion length
li=+/Mpn. If there is slip only, then the relevant length scale is the slip length I;=17/p.)
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We want to emphasize that in modeling the systems in our MD simulations, diffusion is
considered negligible while slip is dominant.

2.2 Modeling chemically patterned surfaces

We consider a two-phase fluid flowing through a two-dimensional channel (a slit pore)
in which the top surface is homogeneous (labeled by c) while the bottom surface is chem-
ically patterned. The two-phase fluid consists of two immiscible phases A and B. The
bottom surface is patterned by the A-like and B-like stripes, labeled by a and b respec-
tively. The A phase is more attracted to the A-like stripe than the B phase is while the B
phase is more attracted to the B-like stripe than the A phase is, as illustrated in Fig. 2. The
properties of each stripe are specified by a static contact angle (defined on the side of the
B phase): 6 at the A-like stripe (a) or 6 at the B-like stripe (b), and two slip lengths: 17,
and 1% at the A-like stripe or I?, and 1%, at the B-like stripe for the two phases. To reduce
the number of independent parameters, we further assume 62 =180° — 94 (with 62 <90°),
17, =1, and I?, =17%,. Physically, larger slip length is associated with less wetting, i.e.,
less attractive fluid-solid interaction [32]. Therefore, we use I?,, <1 f A

For an inhomogeneous patterned surface, the static contact angle and slip lengths
appear in the continuum model as locally defined phenomenological material parame-
ters. For the patterned surfaces consider here, each of these parameters varies as a step
function across the stripe boundary. In general, the patterning may be modeled by other
oscillating behaviors. In the study of single-phase flow past a chemically patterned sur-
face [33-38], we have shown through both MD and continuum simulations that the slip
length can be locally defined for a continuum hydrodynamic description as long as the
fluid-solid interaction does not change too fast compared to the pattern period [38]. Phys-
ically, a continuum hydrodynamic model describes those variations hat are slow in both
space and time and the parameters involved in such model can be locally defined in a
coarse-grained sense.

3 Molecular dynamics simulations

MD simulations have been performed for two immiscible fluids confined in a slit pore
by two planar solid walls parallel to the xy plane (see Fig. 3). The top wall has a ho-
mogeneous surface at z= H and the bottom wall has a patterned surface at z=0. Each
wall is constructed by two [001] planes of an fcc lattice, with each molecule attached to a
lattice site by a harmonic spring. The two fluids are labeled by A and B, respectively, and
the top wall is labeled by c. The bottom wall is periodically patterned with the stripes
formed by A-like and B-like solid molecules, labeled by a and b. The A-like and B-like
stripes are of widths A, and A, as already set in the continuum model. The dimension of
MD simulation box in the x direction is set as an integral multiple of the pattern period
A=A+ Ap.



C. Wuet al. / Commun. Comput. Phys., 7 (2010), pp. 403-422 409

Z
2o A
|
y X

A B A B
a ¢ qa b
A A L (A 8

a4

o

A-like stripe (a) B-like stripe (b)

Figure 2: Schematic illustration for the chemically patterned surface with alternating A-like and B-like stripes.
Each stripe is characterized by a contact angle and two slip lengths. The A-like and B-like stripes are of widths
Ag and Ay and the patterning period is A=A;+Ay,.

Figure 3: MD simulation sample for the immiscible Poiseuille flows. The colored symbols indicate the instanta-
neous molecular positions projected onto the xz plane. Here the fluid A is blue, the fluid B is red, the solid a
is red, the solid b is green, and the solid c is yellow. The fluid B appears to be sandwiched by the fluid A due
to the periodic boundary condition along the x direction. While there are two fluid-fluid interfaces, we collect
the data for the one with the fluid B right to the fluid A.

In our MD simulations, interaction between any two molecules separated by distance
ris modeled by a modified Lennard-Jones potential U, g(r)=4€,5((0up/7)'2—0up(0up/1)°],
where the subscriptions « and  denote the molecule species, i.e., A, B, a, b, and c. The en-
ergy parameters €,5 and the range parameters 0,4 for fluid-fluid interactions are given by
€ and o, respectively, while those for fluid-solid interactions are given by 1.16€ and 1.04c,
respectively. Here € and ¢ are the energy and length scales for all the intermolecular
interactions. The dimensionless parameter 6,4 is introduced to ensure the immiscibility
between the different fluids and also to modify the wetting property of each fluid as well.
We use 644 =0pp=1 for fluid molecules of the same species, § y.p=0Jp4 = —1 to ensure the
immiscibility between the two fluids, and 64, > dp, >0 and dp; > 4, >0 for fluid-solid in-
teractions. The last two expressions mean that the fluid A is more attracted to the A-like
stripe than the fluid B is while the fluid B is more attracted to the B-like stripe than the
fluid A is. To reduce the number of independent parameters, we further assume 6 4,=0dpy,
and d4, = 6p,. The two fluids have the same interaction with the top wall, and hence
d ac =0gc. The mass of each fluid molecule and that of each wall molecule are both m. The
average number density of fluid molecules is p =0.81¢~3 while the number density of
wall molecules is p,, =1.860 3. The temperature is controlled at 1.4¢/kp by the Langevin
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Figure 4: The fluid-fluid interface is located by the condition p; =p3, i.e., ¢ =0. By fitting the static interface
(squares) using a circular arc (solid line, with a 90° contact angle at the top surface), the static contact angle at
the A-like or B-like stripe can be determined. Shown here is the fluid-fluid interface between the solid surfaces

b (bottom) and c (top), from which the static contact angle §? =57° is determined. Parameters used are
Spaa=0Bpy=04,=0B.=0.7 and é 4, =0p,=0.2.

thermostat, where kg is Boltzmann constant. The equations of motion are integrated us-
ing the velocity Verlet algorithm with a time step At =0.001T where T = v/mo?/e. The
interaction potential U, is cut off at r.=2.5¢". Periodic boundary conditions are imposed
in the x and y directions. As a consequence, there is always one fluid sandwiched by the
other fluid along the x direction.

To simulate the immiscible two-phase Poiseuille flows, a body force mgX is applied to
each fluid molecule in the x direction. In our simulations, the two fluids are separated by
a clear interface while flowing past the patterned surface. The region for sampling and
measurement is divided into small bins along the x and z directions. In both the static and
dynamic states, the average molecular densities p; and p, for the two fluids are measured
to locate the interface (by the condition p; = p2, i.e.,, ¢ =0). From the time evolution
of interface, the velocity of the moving contact line is calculated by differentiating the
contact line position with respect to time.

In accordance with the continuum model, the properties of each solid surface (a, b,
or ¢), physically determined by the corresponding intermolecular fluid-solid interactions,
can be specified by two slip lengths (for the two fluids) and a static contact angle (defined
on the side of fluid B). Given the fluid-solid interaction for one fluid at one solid surface,
the slip length can be measured from non-equilibrium MD simulations in single-phase
Couette-flow geometry [39]. Given the fluid-solid interactions for two fluids at one solid
surface, the static contact angle can be measured from equilibrium MD simulations, as il-
lustrated in Fig. 4. Results from various MD measurements are listed in Table 1. It is seen
that larger slip length is associated with less attractive fluid-solid interaction (smaller J,4
parameter) [32]. The shear viscosity 7=2.0y/ent/c? and the fluid-fluid interfacial tension
v =4.75¢/0? are also measured for the continuum modeling and simulation.
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Table 1: Static contact angles and slip lengths measured from MD simulations for continuum hydrodynamic
calculations. In our MD simulations, the parameters Jaﬁ are set to ensure that the fluid A is more attracted

to the A-like stripe than the fluid B is while the fluid B is more attracted to the B-like stripe than the fluid A
is. To reduce the number of independent parameters, é 4, =0Jpg;, and d 4, =9Ip, are also assumed. Consequently,

we have 02 <90°, 62 =180°—6?, l;’A:lfB, lfA:lgB as used in continuum calculations. The two fluids have the
same interaction with the top wall, i.e., 4. =g, and hence 6; =90° and ¢, =I¢p.

Parameters for MD simulations | Parameters for continuum calculations
640=0.7,04,=02,00.=07 | 01~57°,1%,~190,1°,~14.30,1¢,~1.9¢
64,=08,04,=02,04.=08 | 0~47°,1%, ~1.20,1",~14.30,1¢,~1.20
04a=0.7,04,=0.3,64,=0.5 9? ~66% 12, ~1.90, lfA ~10.3c, [ , ~=4.60

4 Continuum hydrodynamic calculations and comparison with
MD simulations

In continuum calculations, we use =0 /3 as the length unit, V=0.25v/€/m as the velocity
unit, and 17V /&2 as the force density unit. We can measure in MD simulations the number
density p, the shear viscosity #, the interfacial tension 7, the static contact angle, and
the slip length. As for the two phenomenological parameters M and I', we use M =
0.0230* / /me and T=0.660/ \/me, values optimized for earlier comparison of continuum
and MD results [16,18]. With ¢+ = +r/u=+1and y= 2\/§r2§ /3u, six dimensionless
parameters appear in the continuum model: £;=Mr/¢V =4.17, R=mpcV /1 =0.0338,
B=r%¢/ unV =10.1, Vs =KI'/V =4.43, the static contact angle 65, and the dimensionless
slip length £, =15/¢=1/B¢. The two fluid phases may have different interactions with
the solid, and hence the slip coefficient f may vary with ¢ at surface. For a particular solid
surface (one of the three different solid surfaces, a, b or ¢), we use f(¢) = (1—¢)B1/2+
(14+¢)B2/2 with ¢ varying between —1 and +1 across the fluid-fluid interface. Here ;
and S, are the slip coefficients for the two fluid phases (with ¢ =+1) on that surface, to
be obtained from the slip lengths measured in MD simulations. In their dimensionless
forms, Egs. (2.2), (2.3), (2.4), and (2.5) become

W v VY=LV 4, @)
R [aa—:+(V~V)v]  Vpt VRV B(— V2 p D)Vt fo, (42)
8_4) +0,0xp=—Vs [an¢— QCOSQSS,Y(q))] , 4.3)
ot 3

[55(4))]710?(”;7 =—0,0x+B |dnp— §c059557(¢)] ox¢Q, 4.4)

with s, (¢) = (71/2)cos(rt¢p/2). These equations show explicitly the dimensionless pa-
rameters in control of the hydrodynamic behaviors. We use a pressure-Poisson solver
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for the Navier-Stokes equation and a semi-implicit scheme for the diffusion equation.
For direct comparison with the MD results, the continuum results will be presented in
the reduced units defined from the Lennard-Jones energy scale €, length scale ¢ and the
molecular mass m.

Continuum calculations are carried out for an immiscible two-phase fluid flowing
through a slit pore with homogeneous top surface and patterned bottom surface. We
consider two driving modes: (i) The flow is driven by applying an external force density
f, = f.X along the x direction. This is for direct comparison with results from MD simu-
lations in which an external force mgx is applied to each fluid molecule. (ii) The flow is
driven by imposing an average displacement velocity U along the x direction. This is the
driving mode we used in [30]. For either driving mode, appropriate velocity boundary
conditions are applied at the left and right boundaries of the channel in the computational
domain. They are given by the Poiseuille-type quadratic profile v, (z), satisfying

agvx +fe — 0

for the first mode or
H
—9,p+0%v, =0 with / dzvy(z)=UH
0

for the second mode, and is consistent with the slip boundary conditions at the top and
bottom surfaces.

It is worth emphasizing that, for contact-line motion at patterned surfaces, the com-
parison of continuum and MD results can no longer be made for stationary states in
which the continuum hydrodynamic variables, e.g., ¢ and v, are time-independent. In-
stead, the stick-slip motion of the moving contact line requires such comparison to be
done for transient states in which the fluid-fluid interface takes oscillatory shape while
the contact line moves at oscillatory velocity. Technically, in order to resolve the time
evolution in continuum hydrodynamics, the time averaging in MD simulations has to be
performed within time intervals that are short enough compared to the characteristic time
scales shown in the continuum solutions. To further remove the statistical fluctuations,
we also average the velocity and density variables over an ensemble of similar systems,
generated by a series of simulations consistent with the “macroscopic” restraints.

For the results presented in Section 5, each interface profile is obtained by averaging
over 17 (i.e., 1000 time steps) because the moving interface only covers a very small dis-
tance in this short time interval. Each contact line position is also obtained by averaging
over 17. Contact line positions at different times are recorded every 27. Differentiating
the contact line position with respect to time yields the contact line velocity. Ensemble av-
eraging over 10 to 30 systems is employed to reduce the statistical fluctuations, with each
system prepared using a very small random perturbation at the initial time. In particular,
we have 10 to 30 sets of data in obtaining the contact line velocity as a function of the
contact line position. With each pattern period A divided into many narrow segments,
each of 0.5¢ along x, the contact line velocities measured within a narrow segment are
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collected from different systems and then averaged. This gives the contact line velocity
in the middle of that segment.

5 Results and discussion

Now we present the numerical results of both continuum hydrodynamic calculations
and MD simulations. The remarkable agreement between the continuum and MD results
affirms the stick-slip motion of moving contact line at patterned surfaces, from which a
special scaling relation is derived for energy dissipation [30]. From extensive continuum
calculations, we also study the physical mechanism controlling the contact-line slip and
fluid-fluid interface relaxation.

5.1 Stick-slip motion of moving contact line

5.11 Comparison of continuum and MD results

Comparison of continuum and MD results is made for Poiseuille flows driven by external
force. Here we start from patterned surfaces of large period. Figs. 5 and 6 show the
variations of fluid-fluid interface and contact line velocity along the patterned surface (at
the bottom of the channel). For the large period used here (A =800), it is observed that
the fluid-fluid interface moves with constant shape and velocity when it is away from
the boundaries between different stripes. Close to each of these boundaries, however,
the contact line shows a fast variation in velocity, either a sharp increase followed by a
decrease or a sharp decrease followed by an increase. As a consequence, the contact line
is forced into an intermittent stick-slip motion by the patterned surface. It is readily seen
that the fast variation of contact line velocity is always accompanied by the adjustment in
shape of fluid-fluid interface when it crosses a boundary between two different stripes.
Therefore, the stick-slip motion arises from the contrast in wetting property (i.e., static
contact angle) between the two different types of stripes. Although it is relatively hard to
suppress statistical fluctuations in measuring transient behaviors in MD simulations, we
have excellent agreement between the continuum and MD results, from interface shape
to contact line velocity, down to molecular length scales (a few molecular diameters).

To display the stick-slip motion, the contact line velocity v is plotted as a function of
the contact line position x in Figs. 5 and 6. This is to show how v varies along the pat-
terned surface, e.g., where the velocity extrema take place in space. From v as a function
of x, it is ready to obtain x as a function of time ¢, by integrating dt =dx/v.

5.1.2 Scaling for energy dissipation: MD evidences

The fluid-fluid interface has to adjust its shape when crossing a boundary between two
different stripes, a direct consequence of the switch of static contact angle (illustrated in
Fig. 2). The stick-slip motion of contact line results from such periodic shape adjustment.
As the origin lies in the switch of an equilibrium wetting property, it is expected that the
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Figure 5: (a) Moving fluid-fluid interface in MD simulation. The time interval between two neighboring interfaces
is 8. (b) Moving fluid-fluid interface in continuum calculation. The time interval between two neighboring
interfaces is 77. (c) Contact line velocity at the lower patterned surface, plotted as a function of the contact
line position, with symbols for MD results and line for continuum results. The parameters used for interaction
potentials are d4, =g, =04, =g =0.7 and J4, =Jp, =0.2. The external force on each fluid molecule is
mg=0.015e /0. The distance between the bottom and top walls is H=17c. The pattern period is A =800 with
Ag=Ayp.

&% @
N

0 20 40 60 80 100 120 140 160

2 1 (b)
N
4,

1(©

0 20 40 60 80 100 120 140 160
x(0)

Figure 6: Same as for Fig. 5 except that the parameters used for interaction potentials are § 4,=0p, =04 =05 =
0.8 and 64, =0p,=0.2. Compared to Fig. 5, the contact line velocity is reduced in the “plateau” region due to
the reduced slip lengths (e.g., lgA and ISCA, see Table 1). The peak of the velocity, however, is increased because
of the increased difference in static contact angle between the two different types of stripes, from 95257" and
02 =180° — 6! to # =47° and 67 =180° — 6 (see Table 1).
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stick-slip motion would persist for vanishingly small driving force or average displace-
ment velocity, as shown by our earlier continuum calculations [30]. Here we present re-
sults from MD simulations to show the limiting behavior of stick-slip contact line motion.
Fig. 7 shows the MD and continuum results for contact line velocity for three different
driving forces. Besides their remarkable agreement, it is seen that, as the driving force is
continuously reduced, the velocity in the plateau region is also reduced. (Theoretically,
the plateau velocity is proportional to the driving force if the stripes are wide enough.)
Meanwhile, the dip in velocity (as the interface moves from the A-like stripe to the B-
like one) becomes shallower. However, the velocity peak, which appears as the interface
moves from the B-like stripe to the A-like one, persists. In particular, the height of the
peak, defined as the difference between the maximum velocity and the plateau velocity,
actually approaches a constant as the driving force approaches zero. Therefore, in the
limit of zero driving force or average displacement velocity, the contact line velocity is
everywhere close to zero except around the boundaries where the interface moves from
the B-like stripe to the A-like one.

For an immiscible two-phase flow over a homogeneous surface with a steady dis-
placement velocity U, the rate of energy dissipation scales as U? for small U, following
the general rule governing the entropy production in irreversible thermodynamic pro-
cesses. On patterned surfaces, however, the fluid-fluid interface undergoes a periodic
stick-slip movement with an oscillatory shape, from which extra dissipation arises in-
evitably. Based on the limit of stick-slip motion shown above, the extra dissipation ac-
quires an unconventional scaling with the average displacement velocity. For slow flows
on surfaces patterned with wide stripes, the rate of energy dissipation still scales as U? in
the plateau region of velocity (away from the boundaries between different stripes). The
contribution to time-integrated dissipation over a time period T scales as UT=U?(A/U),
which is linear in U. On the other hand, the stick-slip motion has been shown to be in-
dependent of U as U — 0. Therefore, the time-integrated extra dissipation incurred by
the fluid-fluid interface crossing a boundary is independent of the average displacement
velocity. Comparing the above two contributions to time-integrated dissipation, we see
that the extra dissipation dominates. As a consequence, the time-averaged rate of energy
dissipation is linear in the average displacement velocity for slow flows.

5.1.3 Suppressed stick-slip motion: Approach to homogeneous surface

The numerical results presented above are obtained for patterned surfaces of large pe-
riod. Over each stripe, the interface moves steadily when it is sufficiently away from
the two boundaries of that stripe. When a boundary is crossed, however, the interface
has to adjust its shape due to the sudden change of static contact angle, an equilibrium
property that can be locally defined. This adjustment in shape is fully manifested in slow
flows on surfaces patterned with wide stripes, which allow a full relaxation of fluid-fluid
interface. As shown in Section 5.1.2, the time scale associated with the full interfacial
relaxation is well defined in the limit of slow flows and wide stripes. When the pattern
period is made smaller and/or the interface displacement is made faster, the time for
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Figure 7: Contact line velocity at the lower patterned surface, plotted as a function of the contact line position,
with symbols for MD results and lines for continuum results. The parameters used for interaction potentials
are 64, =0pp,=04.=0.=0.7 and 4, =B, =0.2. The external force on each fluid molecule is mg=0.015¢/c
(diamond, cyan), 0.01e/0 (triangle, magenta), and 0.005¢ /¢ (circle, blue). The distance between the bottom
and top walls is H=17c. The pattern period is A =600 with A, =A,.
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Figure 8: (a) Contact line velocity at the lower patterned surface, plotted as a function of the contact line
position, with symbols for MD results and line for continuum results. The parameters used for interaction
potentials are § 4, =g, =0.7, 64 =05,=0.3, and d4. =05, =0.5. The external force on each fluid molecule is
mg=0.012e /0. The distance between the bottom and top walls is H=30.80. The pattern period is A =24¢
with Az =A;. (b) Same as for (a) except that the pattern period is A=160. (c) Same as for (a) except that
the pattern period is A=8c. (d) Moving fluid-fluid interface from the MD simulation for (c). The time interval
between two neighboring interfaces is 47. (e) Moving fluid-fluid interface from the continuum calculation for
(c). The time interval between two neighboring interfaces is 3.67.
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the interface to cover a period may become smaller than the interfacial relaxation time.
As a consequence, the interface can only partially respond to the change of static con-
tact angle when displaced along the patterned surface. If such partial response is further
suppressed, then the interface moves as if over an almost homogeneous surface with
nearly constant velocity and shape. According to [30], an effective contact angle 6 can be
introduced in this limit in the form of

cos8S=(A;/A)cost?+(Ay/A)6E,

which means it is the Cassie contact angle. Using both the MD and continuum results
with remarkable agreement, Fig. 8 shows the approach to an effectively homogeneous
surface as the pattern period is reduced. It is seen that the amplitude of velocity oscilla-
tion decreases with decreasing period. Moreover, the interface shape changes very little
when the pattern period is small enough. Note that a relatively large distance H=30.8¢c
(compared to H=17c before) has been used to make the interfacial relaxation slower and
thus the approach to homogeneous surface easier. Our numerical results (not presented
here) also show that, if the pattern period is fixed, then the suppressed oscillation in both
contact line velocity and interface shape can be achieved as well through accelerated in-
terface displacement.

5.2 Relaxational dynamics of fluid-fluid interface

The results presented in Section 5.1 have demonstrated the fundamental importance of
the time scale associated with the full interfacial relaxation in slow flows over surfaces
patterned with wide stripes. The other time scale is that required for the interface to
cover a period along the patterned surface. If the latter is much larger than the former,
then the interfacial relaxation can be fully manifested, as seen from the fast ascent and
more importantly the slow descent of contact line velocity in Fig. 7. If the latter time
scale is made smaller than the former (e.g., by shortening the period), then the interfacial
relaxation is suppressed and the surface is effectively homogenized. Below we present
the numerical results from continuum calculations to investigate the relaxational dynam-
ics of fluid-fluid interface with a focus on its time scale. Here the system setup is a bit
different from above, using two identical patterned surfaces for the two walls [30].

To reveal the relaxational nature of the slow descent of contact line velocity in Fig. 7,
we plot in Fig. 9(a) the contact line velocity vcy, = Xcp as a function of the contact line
position xcp, for a very slow flow (the dimensionless average displacement velocity set
at U= —0.0075). It is readily seen that in approaching the final equilibrium contact line
position xy, the contact line velocity v¢y, is proportional to the distance xcp, —xo. Note that
because of the finite value of U, the contact line is always moving and thus has no real
equilibrium position. However, here U is extremely small, and hence the displacement
due to U is negligible over the time scale T, of interfacial relaxation. This leads to an
“equilibrium” position of contact line with negligible uncertainty, as clearly exhibited in
Fig. 9(a).
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That vcy, = Xcr., is proportional to xcr, —xo shows the approach to xy to be exponential
in time:

xcL —xgoce /T,

in which 1/T,,, the inverse of relaxation time, can be directly measured from the (nearly
constant) slope in Fig. 9(a). To investigate the physical mechanism controlling the interfa-
cial relaxation, we have carried out extensive continuum calculations, seeking the depen-
dence of T, on those dimensionless parameters listed in Section 4. The major finding is
the following. With £;=5, R=0.03, V;=5, L ,=1¢,/{=3.8, and £§A :lé’A /¢=10 all fixed
(close to the parameter values used for comparison with MD results, see Section 4), the re-
laxation time T is inversely proportional to the dimensionless parameter B=r2¢/unV,
as shown in Fig. 9(b). According to v = 21/2r2&/3u for the interfacial tension, we have
2v/2B/3=7/nV. Therefore, the relaxation time T, is proportional to 7V /v, the capillary
number with V the velocity unit used in de-dimensionalizing the system. To go from the
dimensionless Ty to the dimensional one, we note that the time unit is ¢/ V. Therefore,
the (dimensional) relaxation time T, is actually proportional to (yV/v)(&/V)=n¢/7.
Physically, the interfacial thickness ¢ can’t be the length scale controlling T;;. The discus-
sion below indicates that the length scale in control is actually the distance between the
two walls H, in agreement with the numerical results.

To explain why T, is proportional to #V /<, we consider an overdamped system de-
scribed by one single variable g [20] and governed by the Onsager principle of minimum
energy dissipation (entropy production) [22,23]. The equation of motion v4g=—dF(q)/dq
can be obtained by minimizing

®(4,4)+F(9,4) =vq*/2+ (dF /dg)q

with respect to 4. Here 4 is the rate corresponding to ¢, v is the damping coefficient, F(q)
is the free energy function, ®(4,4) =v4*/2 is the dissipation function (defined as half the
rate of energy dissipation) quadratic in g, and F(g,4) = (dF /dq)4 is the rate of change of
the free energy. The above equation of motion describes the balance of two forces, one
originating from the free energy while the other from the energy dissipation. Physically,
the variational principle of minimum energy dissipation yields the most probable course
of a dissipative process as long as the displacement from equilibrium is small.

The present system is overdamped (with negligible inertia effect), but the number
of degrees of freedom is infinite. Nevertheless, for the linear relation between T, and
nV /v, we may simply consider one variable only — the contact line position xcr.. That
is, the rate of total energy dissipation is assumed to be quadratic in X, while the total
free energy is assumed to be a function of xcy,. Moreover, the free energy is quadratic in
xcL,—Xp (up to a constant) as xcp, —xp — 0. (This condition for quadratic approximation
is better satisfied for smaller contrast in wettability, i.e., 95’ closer to 90°, which leads to
a shorter distance traversed by the contact line.) A simple dimension analysis gives the
dissipation function (per unit length along the y direction) in the form of ci7x2; and
the free energy (per unit length along the y direction) in the form of Jco7y(xcL—x0)?/H,
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Figure 9: (a) Contact line velocity plotted as a function of contact line position, obtained using the dimensionless
parameters £;=5, R=0.03, B=5, Vs=5, L ,=1%,/¢=38, and LY, =1Y, /¢=10. The channel has H=40 and
A=100 with A;=A; (A-like stripe on the right and B-like stripe on the left, separated by x=50). The three lines
are for three different static contact angles: 8 =65° (dotted), 60° (dashed), and 54° (solid). In approaching the
final equilibrium contact line position x(, the contact line velocity vcy is proportional to the distance xcp, — .
The inverse of relaxation time is measured from the slope in this linear regime. (b) 1/T, plotted as a function
of B, with all the other parameters fixed (for 82 =65°). The dotted line indicates 1/ Ty 3.
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Figure 10: Contact line velocity plotted as a function of contact line position, obtained using the dimensionless
parameters £;=>5, R=0.03, B=5, Vs =5, and 6! =65° with £?,/L!, =0.38 fixed. The channel has H=40
and A=100 with A,=A; (A-like stripe on the right and B-like stripe on the left, separated by x=50). The four
lines are for four different slip lengths: L£{, =2 (dotted), 4 (dashed), 6 (dot-dashed), and 8 (solid). It is seen
that 1/ T, (absolute value of the slope in the linear regime) increases with increasing slip length.

with ¢; and c; being two numeric factors. Note that the distance between the two walls
H enters into the free energy expression as the only relevant length scale. (Since the
free energy comes from the one fluid-fluid interface and the two fluid-solid interfaces in
the channel, it depends on a few parameters only: the static contact angle (through the
factor cy), the interfacial tension v, the contact line position xcr, (through the quadratic
term (xcL —Xp)?), and the only length scale H.) Applied to this one-variable system, the
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variational principle leads to the balance of the “elastic” force —c2y(xcr, —Xo)/H and the
dissipative force —cinxcr:

] c
cinXeL = —% (xcL—x0),

from which Ty is found to be (c1/c2)yH /7. This analysis shows H to be the length
scale controlling the magnitude of Ty, in agreement with the numerical results. The
slope of the line in Fig. 9(b) is measured to be 0.028, i.e., 1/ Ty = 0.028(3/2v/2)y/5V in
dimensionless form, from which we obtain T, ~#(34¢) /v in dimensional form, where
34¢ is of the same order of magnitude as H =40¢.

We choose to express the dissipation function as 3¢1742, considering that viscous dis-
sipation in the bulk dominates among the four physically distinct sources of dissipation:
the shear viscosity in the bulk, the fluid slipping at the solid surface, the composition
diffusion in the bulk, and the composition relaxation at the solid surface [30]. The nu-
meric factor c; is affected by the contributions of the latter three compared to the viscous
one. It has been shown that for the parameters used here, the second largest contribution
is from the slipping. Physically, increasing the slip length (i.e., decreasing the slip co-
efficient) makes the fluid-solid coupling less viscous and hence reduces its contribution
to total dissipation. Fig. 10 shows that increasing the slip length can indeed reduce T
(xcq) by making c; smaller. As the fluid slipping only contributes a small part of the total
dissipation, the dependence of T on the slip length is weak.

6 Concluding remarks

In this paper, we have carried out both continuum calculations and MD simulations to
study the stick-slip motion of contact line at chemically patterned surfaces, with remark-
able agreement between the continuum and MD results. Such agreement is attributed
to the accurate description down to molecular scale by the generalized Navier boundary
condition in our continuum model. The fact that our continuum model can reproduce
the results of numerical experiments (MD simulations) should not be a surprise from the
point of view that by requiring the continuum hydrodynamics to be consistent with the
same statistical mechanical principle as that underlying molecular dynamics, the same
(time-averaged) dynamic behavior is expected.

Compared with many previous tests of our continuum model in steady states [16,
18,20], the present problem offers challenges in two different fronts. The first is that
the stick-slip motion requires the comparison to be made for transient states with time-
varying interface shape and contact line velocity. The second is that the stick-slip motion
may involve contact line velocity that is of the same order of magnitude as that of thermal
velocity if the difference between the two static contact angles is sufficiently large. The
results presented in this paper affirm the validity of our model once again, under the
more demanding conditions imposed by the present problem.
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