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Abstract. The goal of efficient and robust error control, through local mesh adaptation
in the computational solution of partial differential equations, is predicated on the
ability to identify in an a posteriori way those localized regions whose refinement will
lead to the most significant reductions in the error. The development of a posteriori error
estimation schemes and of a refinement infrastructure both facilitate this goal, however
they are incomplete in the sense that they do not provide an answer as to where the
maximal impact of refinement may be gained or what type of refinement — elemental
partitioning (h-refinement) or polynomial enrichment (p-refinement) — will best lead
to that gain. In essence, one also requires knowledge of the sensitivity of the error to
both the location and the type of refinement. In this communication we propose the
use of adjoint-based sensitivity analysis to discriminate both where and how to refine.
We present both an adjoint-based and an algebraic perspective on defining and using
sensitivities, and then demonstrate through several one-dimensional model problem
experiments the feasibility and benefits of our approach.
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1 Introduction

The use of adaptivity is widely accepted as an essential component in the efficient and
reliable implementation of finite element (FE) algorithms for the solution of a wide range
of partial differential equations (PDEs) [4, 12]. In particular, for problems whose solu-
tion exhibits steep fronts or sharp layers (e.g. boundary layers), so-called h-refinement
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is usually an appropriate strategy for producing a mesh size that is of the same order as
the feature in question [3, 9, 10]. Conversely, once the mesh size is suitable, polynomial
enrichment (also known as p-refinement) is generally the most accurate and cost effec-
tive form of refinement [1, 11]. In the last three decades, as practitioners have sought to
develop algorithms that both incorporate and drive these adaptive procedures fully auto-
matically, there has been an enormous research focus on the development of reliable and
accurate a posteriori error estimates [2–5]. These estimates typically provide information
on the total error of a computed solution, the distribution of this error throughout the
domain and/or information on the error in some derived solution-dependent quantity.
Traditionally, this information has been used both to decide when a computed solution
is of sufficient accuracy for no further calculations to be required and, in the case where
the accuracy is deemed to be insufficient, to decide how to adapt the FE trial space. Typ-
ically, the approach used is to refine in those regions where the estimated error is the
greatest: either by refining those elements whose error is within a certain percentage of
the total [3], or refining the elements with the greatest error until the cumulative total is
within a given percentage of the estimated error [12]. The criteria for deciding whether
this refinement should be in h or p is rather more varied but is typically based upon some
form of estimate as to which is likely to be the most beneficial [1, 8].

This short communication introduces a new approach for controlling local adaptivity
within an hp-finite element code. The goal is to explore whether it is possible to use more
information from the estimated error for deciding both where to adapt and/or how to
adapt. The approach is based upon the assumption that we have a reliable a posteriori
error estimate (E say), that is easily computable, and then to attempt to compute the sen-
sitivity of this estimate to the addition of further p- or h- degrees of freedom. A standard
adjoint approach is used to compute these sensitivities efficiently and it is demonstrated
that an adaptive strategy based upon these values can have advantages over other, more
traditional, approaches.

2 Notation and formulation

Consider as our model problem a linear second-order two-point boundary value problem
(BVP) of the form:

d

dx
(a(x)

du

dx
)+b(x)

du

dx
+c(x)=0 (2.1)

subject to Dirichlet boundary conditions on the domain (x0,xN), where a(x) > 0. Sup-
pose the domain is divided into N intervals, x0 <x1 < ···<xN−1 <xN , and let {φ1

0,··· ,φ1
N}

be the usual basis (of local hat functions) for the space of continuous piecewise polyno-
mials of degree one on this mesh. For simplicity assume that u(x0) = u(xN) = 0, so the
corresponding piecewise linear FE trial function takes the form:

u1(x)=
N−1

∑
i=1

u1
i φ1

i (x), (2.2)
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where the coefficients u1
i are prescribed by the usual FE weighted residual equations:

Rj =
∫ xN

x0

(

−a(x)
du1

dx

dφ1
j

dx
+b(x)

du1

dx
φ1

j +c(x)φ1
j

)

dx=0 for j=1,··· ,N−1. (2.3)

Now consider the possibility of adapting a computed solution of this form by increas-
ing the polynomial degree locally (p-refinement) or by bisecting some of the elements
(h-refinement). On element e, for e = 1,··· ,N, let φ2

e (x) be a bubble function of degree 2
and let ψe(x) be the piecewise linear hat function associated with bisecting element e (i.e.,
ψe(x) is equal to 1.0 at the midpoint of element e and to 0.0 at the end points, and is zero
on every other element). Note that it is possible to write (2.2) as:

u1(x)=
N−1

∑
i=1

u1
i φ1

i (x)+
N

∑
i=1

(

u2
i φ2

i (x)+viψi(x)
)

(2.4)

provided that we impose 0=u2
1 = ···=u2

N =v1 = ···=vN . If we now make the definitions
u∈ℜN−1 =(u1

1,··· ,u1
N−1)

T and s∈ℜ2N =(u2
1,··· ,u2

N,v1,··· ,vN)T, then equations (2.3) may
be expressed as

R(u,s)=0 , (2.5)

where s = 0. The system (2.5) is the same as (2.3) except u1 is now of the form (2.4) and
the test functions are φ2

j and ψj for j = 1,··· ,N, as well as φ1
j for j = 1,··· ,N−1. Having

computed the finite element solution (i.e. solved (2.3)) it is then possible to compute an a
posteriori error estimate E=E(u,s) (again, this is computed for the value s=0). This error
estimate will typically take the form of a single number (see for example [2, 4, 5]).

Suppose that we can evaluate dE/ds. Then it would be possible to assess to which of
these additional degrees of freedom the error is most sensitive, and to use this informa-
tion to decide both where to refine and how to refine. Of course, the practicality of this
approach is dependent upon being able to compute dE/ds both reliably and efficiently.
Fortunately this may be achieved through the use of adjoint-based methods [6, 7].

3 Sensitivity via the adjoint solution

Suppose we have successfully computed an FE solution and a corresponding error esti-
mate. That is, we have solved R(u,s=0)=0 and then computed E(u,s=0). Note that

dE

ds
=

∂E

∂u
·
∂u

∂s
+

∂E

∂s
. (3.1)

However, we are only interested in calculating E when the FE equations are satisfied,
which means that R(u,s)=0 for all s, and so

dR

ds
=

∂R

∂u
·
∂u

∂s
+

∂R

∂s
=0. (3.2)
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From (3.2) it follows that, for any Ψ∈ℜ2N ,

(

ΨT ∂R

∂u

)

·
∂u

∂s
+ΨT ∂R

∂s
=0. (3.3)

In particular, we may choose Ψ such that it satisfies

ΨT ∂R

∂u
=

∂E

∂u
, (3.4)

so that combining (3.1), (3.3) and (3.4) yields:

dE

ds
=−ΨT ∂R

∂s
+

∂E

∂s
. (3.5)

Note that using (3.5), the derivative dE/ds may be computed by: evaluating ∂R/∂u, eval-
uating ∂E/∂u, solving (3.4), evaluating ∂R/∂s and evaluating ∂E/∂s. Significantly, there
is no need to compute ∂u/∂s. Furthermore ∂R/∂u, the Jacobian of the FE equations, will
already have been computed as part of the solution process and the other expressions are
straightforward to evaluate: where ∂E/∂u and ∂E/∂s depend upon the precise choice of
error estimate, E.

It is also possible to consider the above argument from a more algebraic perspective
for the finite element equations discussed in the previous section. For example, the sys-
tem (2.3) may be expressed in matrix from as

K11u1 = f 1, (3.6)

where u1 is the vector of unknown coefficients. Similarly, the system (2.5) may be written
in matrix form as

[

K11 K12

K21 K22

][

u
s

]

=

[

f 1

f 2

]

, (3.7)

where one may view the solution of the smaller problem (3.6) as being equivalent to
solving the larger problem (3.7) but with the vector s constrained to be 0. That is, when s=
0 in (3.7), u=u1. This view may be extended by thinking of u in (3.7) as depending upon
the prescribed value of s. That is, u = u(s), where u(0) = u1. The goal of the sensitivity
analysis is therefore to calculate the sensitivity of u(s) in the region of s =0 (this in turn
allows the sensitivity of E to be obtained via (3.1)).

Note that in (3.1) the terms dE/ds, ∂E/∂u and ∂E/∂s are all assumed to be row vectors:
re-writing (3.1) with each of these terms assumed to be column vectors gives

dE

ds
=

(

(

∂E

∂u

)T ∂u

∂s

)T

+
∂E

∂s
. (3.8)
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Observing that, from (3.7), u(s)=(K11)−1( f 1−K12s), one can compute the derivative of u
with respect to s and so it follows from (3.8) that,

dE

ds
=−(K12)T(K11)−T ∂E

∂u
+

∂E

∂s
. (3.9)

This last expression is equivalent to (3.5) in the case where R is the discretization of a
linear elliptic operator. Furthermore, in the special case where the PDE is self-adjoint, so
the stiffness matrix is symmetric, (3.9) simplifies further to

dE

ds
=−K21(K11)−1 ∂E

∂u
+

∂E

∂s
. (3.10)

4 Some corroborating numerical tests

The first test problem that we consider in this section takes the form:

−
d2u

dx2
= f (x), −1< x<1, (4.1)

where f (x) and the Dirichlet boundary conditions at x =−1 and x = 1 are chosen so as
to permit the exact solution u(x)= (cos(nπx))/(1+25x2). In the calculations described
here, we take n = 4 and the sensitivities of the exact error are computed with respect to
both h-refinement and p-refinement on each element. It is also important to remark that
all calculations are undertaken using high degree quadrature to ensure that quadrature
errors are not a factor in any of these results. In what follows, we compare h-refinement,
through adding a linear bubble function, versus p-refinement, through adding a polyno-
mial (quadratic) bubble function (ψe and φ2

e respectively) as previously described.
Initially we computed a piecewise linear solution on ten equally-spaced elements.

The resulting L2 error, along with the errors and sensitivities on each element, are shown
in Table 1(top), where Ẽe is L2

2 error on each element. The table shows that the largest L2
2

error is found on the centre two elements, and therefore the conventional adaptive ap-
proach would be to refine these elements first. On the other hand, the sensitivities suggest
that most benefit will be gained by refining elements 3 and 8 (with slightly more impact
resulting from p-refinement). Table 1(bottom) shows the errors actually observed in the
computed solutions when different refinement strategies are compared. It is apparent
from this table that refining the elements with the largest error is not the best short-term
strategy in this case and that, as predicted by the sensitivity calculations, it is better to
refine elements 3 and 8. Furthermore, also as predicted by the sensitivity calculations, it
is better to employ p-refinement in this case.

A further set of computational tests were undertaken for this problem, this time to
illustrate performance on non-equally-spaced grids. Initially (4.1) was solved using five
equally-spaced piecewise linear elements. Table 2 shows the resulting errors and sen-
sitivities. This table clearly shows the need to refine the middle element first and, on
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Table 1: (Top) For a piecewise linear solution of (4.1) using ten elements the global L2 error, E, is 0.089354,

with contributions from each element as shown below, followed by the entry of dE2/ds corresponding to h- and
p-refinement respectively; (Bottom) Actual total L2 errors obtained following different refinement strategies.

Elements 1 and 10 2 and 9 3 and 8 4 and 7 5 and 6

Error, Ẽe 3.835×10−5 2.854×10−4 8.935×10−4 8.657×10−4 1.909×10−3

h-Sensitivity −9.833×10−4 2.734×10−3 −4.790×10−3 4.210×10−3 1.934×10−3

p-Sensitivity −9.905×10−4 2.758×10−3
−4.841×10−3 4.283×10−3 1.824×10−3

Refinement scheme Total L2 error Refinement scheme Total L2 error
h-ref (elements 3 and 8) 0.079548 p-ref (elements 3 and 8) 0.078911
h-ref (elements 4 and 7) 0.081982 p-ref (elements 4 and 7) 0.081293
h-ref (elements 5 and 6) 0.087786 p-ref (elements 5 and 6) 0.087990

Table 2: For a piecewise linear solution of (4.1) using five elements the total L2 error, E, is 0.55404, with
contributions from each element as shown below, followed by the entry of dE2/ds corresponding to h- and
p-refinement respectively.

Element 1 2 3 4 5

Error, Ẽe 1.611×10−3 1.122×10−2 2.813×10−1 1.122×10−2 1.611×10−3

h-Sensitivity 8.417×10−3 −2.251×10−2
−1.217×10−1 −2.251×10−2 8.417×10−3

p-Sensitivity 8.467×10−3 −2.208×10−2 −1.187×10−1 −2.208×10−2 8.467×10−3

Table 3: For a piecewise linear solution of (4.1) using six (unequally-spaced) elements the total L2 error, E, is

0.17617, with contributions from each element as shown below, followed by the entry of dE2/ds corresponding
to h- and p-refinement respectively.

Elements 1 and 6 2 and 5 3 and 4

Error, Ẽe 1.6×10−3 1.12×10−2 1.9×10−3

h-Sensitivity 8.4×10−3
−2.25×10−2 1.9×10−3

p-Sensitivity 8.5×10−3 −2.21×10−2 1.8×10−3

this occasion, it is predicted by the sensitivities that h-refinement will be superior to p-
refinement. This is indeed confirmed by experiment, where h-refinement of the centre
element leads to a new total L2 error of 0.17167 whereas p-refinement yields a total L2

error of 0.21070. We may now repeat the error estimation and sensitivity calculations for
the solution on the new mesh (consisting of six piecewise linear elements of two different
sizes). The results of this are shown in Table 3. This shows that the error is now greatest
in elements 2 and 5, and the sensitivity calculations imply that these are also the best el-
ements to refine. Furthermore, it is predicted that h-refinement will again be superior to
p-refinement in this case. Additional numerical tests verify all of these conclusions: for
example, the total L2 error after h-refinement of elements 2 and 5 is 0.10276, as opposed
to 0.10630 using p-refinement on these elements.

Finally in this section we present illustrative results for the solution of a second test
problem, namely:

−

(

d

dx
(π+x)

du

dx

)

= f (x), −1< x<1, (4.2)
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Table 4: For a piecewise linear solution of (4.2) using five elements the total L2 error, E, is 0.50505, with

contributions from each element as shown below, followed by the entry of dE2/ds corresponding to h- and
p-refinement respectively.

Element 1 2 3 4 5

Error, Ẽe 1.012×10−1 2.74×10−2 2.8×10−3 4.27×10−2 8.09×10−2

h-Sensitivity −7.24×10−2 3.83×10−2 −1.9×10−3 −4.41×10−2 6.58×10−2

p-Sensitivity −7.32×10−2 3.85×10−2 −2.0×10−3 −4.468×10−2 8.467×10−3

where f (x) and the Dirichlet boundary conditions are chosen so that u(x) = sin(2πx).
We again see that the sensitivity calculations provide excellent predictions as to how
and where to refine. For example, when five equally-spaced linear elements are used,
the computed total L2 error is 0.50505, and Table 4 shows the errors and sensitivities for
each element. The computed errors for different refinements of the mesh rank just as
predicted by the sensitivities in Table 4. For example, p-refinement of element 1 leads to
the smallest total L2 error (0.40076), followed by h-refinement of element 1 (0.40559), then
p-refinement of element 5 (0.40943), h-refinement of element 5 (0.41588), etc.

A significant number of additional computational tests have been undertaken on
these and other equations. In each case they demonstrate that the sensitivity calcula-
tions give reliable predictions as to how and where to refine. Indeed, tests have been car-
ried out with p-refinement up to degree ten, and numerous examples have been found
where refining the elements with the largest error is less effective than refining different
elements, for which the sensitivity is greater.

5 Discussion

In this paper we suggest that using the sensitivity of an error estimate, with respect to
additional FE degrees of freedom, may have potential value in informing the adaptive
strategy used within an hp-refinement algorithm. In particular, we note that simply re-
fining where the error is greatest is not always the optimal strategy, and that assessing
where the estimated error is most sensitive to the addition of degrees of freedom can
provide an effective alternative criterion for deciding where to refine. Furthermore, we
have demonstrated that this approach may also be used successfully to decide which of
two different refinement procedures (h-refinement or p-refinement) should be employed.
Future work will consider these observations within the context of an overall refinement
algorithm. For example, rather than adapting a percentage of the elements with the great-
est errors one might adapt a percentage of the elements with the greatest sensitivities. It
will also be necessary to consider the use of a wide variety of a posteriori error estimates:
preliminary work using a simple estimate from [5] is very encouraging.

Finally we make three observations on sensitivity values that are computed through-
out this work. Firstly, the sign of dE/dsj is not important (only its magnitude). Secondly,
the basis that is used for the sensitivity calculations need not be the same as that used for
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subsequent FE calculations after refinement. For example, when h-refinement occurs we
always use the usual basis functions with support over just two elements rather than a
hierarchical basis. Finally, and perhaps most importantly, it is essential to appreciate that
the values of the entries in dE/ds depend upon the scaling of the basis functions that are
used. In order to be able to make a comparison between h-refinement and p-refinement,
for example, we scaled the basis functions such that on each element e: ‖φ2

e‖
2
2 = ‖ψe‖2

2.
Note however that these values must be different for different choices of e when the ele-
ment sizes are different (with ‖ψe‖2

2 proportional to the length of e).
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