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Abstract. We investigate the dynamics of a system coupled to an environment by av-
eraged semiquantum method. The theory origins from the time-dependent variational
principle (TDVP) formulation and contains nondiagonal matrix elements, thus it can
be applied to study dissipation, measurement and decoherence problems in the model.
In the calculation, the influence of the environment governed by differential dynam-
ical equation is incorporated using a mean field. We have performed averaged semi-
quantum method for a spin-boson model, which reproduces the results from stochastic
Schrodinger equation method and Hierarchical approach quite accurately. Moreover,
we validate our results with noninteracting-blip approximation (NIBA) and general-
ized Smoluchowski equation (GSE). The problem dynamics in nonequilibrium envi-
ronments has also been studied by our method. When applied to the harmonic oscil-
lator model coupled to a heat bath with different coupling strengths and dimensional-
ities of the bath, we find that the loss of coherence predicted by semiquantum method
is identical to the result of master equation with different initial state (Gaussian wave
packet and superposed wave packets).

PACS: 05.45.Mt, 03.65.Yz, 03.65.Ud

Key words: Quantum chaos, spin-boson model, decoherence, harmonic oscillator system, envi-
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1 Introduction

The system-bath dynamics of open quantum systems at finite temperatures has long been
a central problem in chemistry and physics [1, 2], which is usually associated with re-
duced density matrix evolving in time according to the Liouville von-Neumann equation.
The understanding of the nonequilibrium dynamics of open quantum systems has also
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been a main challenge in the last decades [3]. In recent years the subject has particularly
gained considerable interest due to experimental progress which allows for the tailoring
and manipulation of quantum matter on ever larger scales. In mesoscopic physics, for
instance, superconducting circuits have been realized to observe coherent dynamics and
entanglement [4]. Similar advance has been achieved on molecular scales with the detec-
tion of interferences in wave packet dynamics and the control of the population of specific
molecular states [5]. These systems are in contact with a large number of environmental
degrees of freedom, giving rise to decoherence and relaxation [6].

Traditional approaches treating the dynamics typically yield approximate equations
of motion such as master equations. For large coupling constants and long time scales,
it can be accomplished in a formally exact manner by path integrals for open quan-
tum systems [7]. Noninteracting-blip approximation (NIBA) was originally derived by
Leggett using the path-integral influence-functional method [35], and can be obtained
using standard reduced density matrix perturbation theory by Aslagul et al. [36]. Gener-
alized Smoluchowski equation (GSE) was introduced by Zusman [37] and later derived
by Garg et al. [38].Very recently, it was generalized to study electron-transfer problem
[39]. Furthermore, Monte Carlo wave-function techniques [8–14] are extensively used
to treat master equations in the weak coupling or Markovian limit. In recent years, the
quantum dynamics in nonequilibrium environments has attracted our attention. Also,
stochastic equation [15–18] is used to treat the system-environment problem, which can
describe the long-time evolution exactly.

In this work, we propose averaged semiquantum method to study the system envi-
ronment problem. Conventional semiquantum method has a wide application in many
branches of physics. Recently, this method has been used to study the nonlinear dy-
namics and chaos [19]. It is also named as Gaussian wave-packet dynamics [20, 21] and
origins from TDVP formulation, Γ=

∫

dt〈Ψ(t)|ih̄ ∂
∂t −Ĥ |Ψ(t)〉 with δΓ=0. This approach

enables us to study the effects of the quantum fluctuations dynamically [22–23]. More-
over it has been proven to be very successful in the investigation of dynamical systems
ranging from integrable to many-body nonintegrable systems [24], which simplifies the
quantum version and gives better results than the semiclassical approach. The averaged
semiquantum method may provide a significant numerical advantage over the trajecto-
ries, in particular in the case that the Hilbert space dimensionN of the open system is
large. Moreover, to be numerically efficient (the best possible sampling), it gives good
solutions with a significant weight in average.

The spin-boson model [40] and the harmonic oscillators system [41] have been the
subject of considerable attention with a major review available. In this paper, at first,
we focus on the spin-boson system and compare the results with that obtained by the
stochastic Schrodinger equation method. Then we study the harmonic oscillator model
coupled to a heat bath with different dimensionalities to find whether the loss of coher-
ence can be predicted by the semiquantum method.

The paper is organized as follows: In Section 2 we introduce the averaged semiquan-
tum method. In Section 3 we will use this method to study the spin-boson model and
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compare with other methods. In Section 4 we will further use this method to study the
harmonic oscillators system and compare the results with those from other methods. Fi-
nally, we draw conclusions.

2 Averaged semiquantum method

In this part, we obtain an equation of motion for the reduced system dynamics, and the
environment effect is incorporated through a mean field. We consider here a system (S)-
environment (E) described by a Hamiltonian

H =hS +hE +hI , (2.1)

where hS is the Hamiltonian for the system which consists of a few degree of freedom, hE

the Hamiltonian for the bath which consists of large number of degrees of freedom, and
hI is the coupling. Here we assume that the interaction is written as

hI =Q⊗B, (2.2)

where Q≡{qs
i }i=1,···,ns

B≡{qi}i=1,···,nB
, corresponding to functions of two sets of opera-

tors of the system and environment, respectively. Averaged semiquantum method to the
study of time-dependent quantum dynamics origins from the result of the variational
principle

〈δψ|ih̄∂t−HI |ψ〉=0. (2.3)

The wave function is represented as

|ψ〉= |ψ0〉
N

∏
k=1

|ψk〉, (2.4)

where |ψk〉 is the single-particle wave function for kth degree of freedom of the bath and
Nis the total number of degrees of freedom. |ψ0〉 is the wave function for the system.
Furthermore,we choose the Gaussian wave packet, which is widely used in the semi-
quantum method, to describe.

|ψk〉=(2πh̄Ḡk)
−1/4exp

[

− 1

2h̄
(q− q̄k)

2(
1

2
Ḡ−1

k −2i ¯∏k
)+i p̄k(q− q̄k)/h̄

]

, (2.5)

where Ḡk, ∏̄k, q̄k and p̄k are all time-dependent.
The initial conditions of the bath can be sampled from the Wigner distribution at the

saddle points, or from the classical action-angle variables

Gk(0)=1/2ak h̄,

Πk(0)=0,

qinital
k (0)=

√

2nk+1sinbk+δk,

pinital
k (0)=

√

2nk+1cosbk,

(2.6)
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where the phases bk are picked randomly from the interval [0,2π], the quantum numbers
nk are sampled according to the Boltzmann distribution

P(nk)=exp(−βnkωk).

The coordinate shift δk (nonequilibrium parameters) reflects the initial mean position of

the bath modes. a−1/2
k equals the width of the coherent state of a corresponding harmonic

oscillator. In [42], Section 1 derive an arbitrary expression for the thermal width

ak =
mkωk

h̄

[

coth(
h̄ωk

2kBT
)− 2kBT

h̄ωk

]−1
.

We use

q
j
k =qinital

k −a−1/2
k + j∗∆q, ∆q=

2∗a−1/2
k

Nk
,

p
j
k = pinital

k −πh̄

∆q
+ j∗∆p, ∆p=

2πh̄

∆q∗Nk
=πh̄a1/2

k ,

j=0,··· ,Nk,

(2.7)

to sample the initial conditions of the trajectories around the central point qinital
k and pinital

k .
Nk is the sampling number.

Cm
j , the distribution of initial conditions for the trajectory, is given by

Cm
j =

N

∏
m=1

wm(pm,qm),

wm(pm,qm)=wm(pm)∗wm(qm),

wm(qm)=(2πh̄Gm)−1/2exp
[

− 1

2h̄Gm
(qm−qm(0))2

]

∗∆q,

wm(pm)=(2h̄Gm/π)−1/2exp[−2h̄Gm(pm−pm(0))2]∗∆p,

(2.8)

where N is the degree of dimensionality.

From (2.5) to (2.8), we can find that our method is quite different from the conven-
tional semiquantum method. The semiquantum method only takes into account the cen-
tral point (qinital

k ,pinital
k ), and does not consider other points (qm,pm). The effect from the

points around the central point is ignored. In our method, we not only consider the point

(q
j
k,p

j
k), but also consider its own weights. In (2.5), we introduce the average Gaussian

wave packet to represent the wave function. This is the reason why we call our method
as the averaged semiquantum method. All semiquantal quantities are obtained by evalu-
ating each individual trajectory and averaging them, taking into account their respective
probabilities.
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Substituting (2.4) into (2.3), we can obtain the averaged semiquantum method work-
ing equations, using Gaussian integration. From the interaction Hamiltonian, the asso-
ciated mean-field dynamics can be obtained according to the variational principle. The
influence of the environment on the system only enters through

〈B(t)〉E =−∑kn 〈q(t)〉. (2.9)

Thus the introduction of the mean field to the interaction simplifies the version of the
coupled model. For the spin-boson model, we use the form

|ψ0〉= a(t)|0〉+b(t)|1〉 (2.10)

to perform calculation. In harmonic oscillators mode, we represent |ψ0〉 as the Gaussian
wave packet.

The averaged Semiquantum method is obtained by propagating each Gaussian wave
packets, using the TDVP for each individual packet. This method can track the classical
distribution even when the distribution is highly non-Gaussian and involves quantum
coherence in phase space. Furthermore, it contains nontrivial quantum information. In
this sense, it is not a semiclassical approximation. Using these, we can calculate our
interested quantities to measure decoherence. All semiquantal quantities are obtained
by evaluating each individual trajectory and averaging them, taking into account their
respective probabilities. This averaged method is intuitionistic to describe the bath. In
our method, we can use the parameter δ to describe the initial conditions of the non-
equilibrium environment. This suggests that the averaged semiquantum can be used to
simulate the bath with non-equilibrium initial conditions.

Except for the variational principle, no approximations are made to obtain equations.
Therefore we can study the reduced density matrix by averaging over different paths.
We use the decoherence function to measure decoherence of the averaged semiquantum
version. Following [25–26], we consider the direct product of the system S and bath
B Hilbert spaces. The system space is assumed to be N dimensional. We consider N
orthogonal states φS

i of the system and a system-bath interaction that induces quantum
transitions in the combined system, with the bath state responding to that of the system:

|ψ〉= |ψ0〉
N

∏
k=1

|ψk〉 =
(

∑
i

ci

∣

∣

∣
φS

i

〉)∣

∣

∣
φB

0

〉

→∑
i

ci

∣

∣

∣
φS

i

〉∣

∣

∣
φB

i

〉

= |Ψt〉 , (2.11a)

∣

∣

∣φB
〉

=
M

∑
j=1

Cj

∣

∣

∣ψ
j
k

〉

, (2.11b)

where φB
0 is the initial state of the bath. Transitions from an arbitrary initial system ∑i ciφ

S
i
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are then described in terms of the reduced density matrix:



















|c1|2 ··· c1c∗i ··· c1c∗N
...

. . .
... . .

. ...

cic
∗
1 ··· |ci|2 ··· cic

∗
N

... . .
. ...

. . .
...

cNc∗1 ··· cNc∗i ··· |cN |2



















→



















|c1|2 ··· c1c∗i (φB
i

∣

∣φB
1 ) ··· c1c∗N(φB

N

∣

∣φB
1 )

...
. . .

... . .
. ...

cic
∗
1(φB

1

∣

∣φB
i ) ··· |ci|2 ··· cic

∗
N(φB

N

∣

∣φB
i )

... . .
. ...

. . .
...

cNc∗1(φB
1

∣

∣φB
N ) ··· cNc∗i (φB

i

∣

∣φB
N ) ··· |cN |2



















. (2.12)

Decoherence is defined as decay of the nondiagonal matrix elements, which is clearly

determined by the decay of the sum of the inner product of the bath states ∑i 6=j(φB
i

∣

∣

∣
φB

j ).

Within the frozen Gaussian formulation [27], the decay of the integral and corresponding
nondiagonal matrix elements is described by the decoherence function given by Eq. (39)
of [28]. The decoherence function in the frozen Gaussian approximation is completely
determined by the real valued nuclear overlap integral.

D(t)=1−∑
i 6=j

∣

∣

∣
cjc

∗
i (φB

i

∣

∣

∣
φB

j )
∣

∣

∣
≈1−∑

i 6=j

∣

∣ cjc
∗
i Joverlap(t)

∣

∣

=1−∑
i 6=j

cjc
∗
i ∏

n

exp
(

−0.25(q̄jn(t)− q̄in(t))2/Ḡn

)

×exp
(

−0.25∗Ḡn( p̄jn(t)− p̄in(t))2/h̄2
)

×cos
(

−0.5(q̄jn(t)− q̄in(t))( p̄jn(t)+ p̄in(t))/h̄
)

, (2.13)

where h̄ means the statistic average time-dependent physical quantity h along its trajec-
tory in phase space.

To treat the continuum spectrum of the harmonic oscillators bath modes, we use fre-
quencies density ρ(ω), and discretize the frequencies as follows:

ωj
∫

0

dωρ(ω)= j, j=1,··· ,N. (2.14)

We choose the density of frequencies as ρ(ω)= 0.5N/
√

ωωmax. The functional form
of density does not affect the final result if enough bath modes are included. The discrete
frequencies are ωj = j2ωmax/N2, j = 1,··· ,N. The maximum frequency ωmax is set to be
20−200ωc depending on the specific parameters in the calculation. N is the degree of
freedom of the bath. It is particularly useful to use the Debye spectral density (JD(ω)=
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ηωωc/(ω2+ω2
c )), because it covers a broad frequency range. The coupling constant cj

for each frequency ωj is given

c2
j =ωj

2

π

JD(ωj)

ρ(ωj)
.

3 Numerical tests: The spin-boson model

In this case, a nonstationary quantum mechanical system is described by a two level sys-
tem. Considering linear coupling of the two level system to a bath of harmonic oscillators.
We take

hS = h̄ω0σx + h̄εσz,hI =σz⊗B, (3.1)

where {σi}i=x,y,z are the standard Pauli matrices. In the spin-boson model, the numerical
solution for the system density is equivalent to solving three non-linear coupled equa-
tions for the 〈σi〉S.

The property of interest is the time evolution of the reduced density matrix in the
two-state sub-system

Pi,j(t)=
1

QB
tr[e−βĤB |1〉〈1|eiĤt |i〉〈j|e−iĤt ],

QB = tr[e−βĤB ],

(3.2)

where |i〉 and |j〉 are the spin-state (|1〉 or |2〉), and the initial density matrix is set to
spin-state |1〉 with a thermal distribution for the phonon bath. Expanding the Boltzmann
operator in the bath eigenstates |n〉

e−β
⌢

HB =∑
n

e−βEn |n〉〈n|. (3.3)

So Pi,j(t) is rewritten as

Pi,j(t)=
1

QB
∑
n

e−βEn 〈Ψn(0)|eiĤt |i〉〈j|e−iĤt |Ψn(0)〉

=
1

QB
∑
n

e−βEn 〈Ψn(t)| i〉〈j |Ψn(t)〉, (3.4)

where we denote

|Ψn(0)〉= |1〉|n〉. (3.5)

Following [29], we carry out the calculations for the time-dependent electronic popu-
lation

P(t)≡〈σz〉=
∫

dx0

∫

dp0w(x0,p0)

(

∣

∣

∣x
(1)
x0,p0

∣

∣

∣

2
−

∣

∣

∣x
(2)
x0,p0

∣

∣

∣

2
)

, (3.6)
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Figure 1: The population difference of the symmetric two-level system in (a) the adiabatic regime (∆/ωc=4) at
β∆=2.0 (assuming 〈σz(0)〉s=1). (b) the nonadiabatic regime (∆/ωc=0.2) at β∆=0.5 (assuming 〈σz(0)〉s=1).
Inset of fig(b) the nonadiabatic regime η/∆=0.5 ,10.

Figure 2: The population difference of the asymmetric two-level system at ε/∆ = 1 and β∆ = 0.5 for (a)
η/∆=0.01, 0.2, 0.5 and 4.0 in the adiabatic regime. (b) η/∆=0.01, 0.2, 0.5, 4.0 and 8.0 in the nonadiabatic
regime.

which is evaluated by solving numerically the electronic equations of motion, chosen ac-

cording to the electronic initial conditions as x
(1)
x0,p0 = 1 and x

(2)
x0,p0 = 0. w(x0,p0) refers to

the classical trajectory with initial conditions x0 and p0. The function w(x0,p0) thus rep-
resents the initial distribution of the environment. The averaged semiquantum method
provides an alternative way to study the open quantum systems dynamics. Much less
trajectories seem to be needed to accurately describe the dynamical evolution. Only 20000
trajectories have been used to obtained Figs. 2 and 3. The computer time for the two fig-
ures was less than an hour in the weak coupling and low temperature case up to several
hours in the strong coupling and high temperature case. This was caused by the time
step ∆t. In order to obtain accurate results, ∆tω0 =1.0×10−3 and ∆tω0 =1.5×10−4 have
been used for weak coupling and low temperature case and strong coupling and high
temperature case respectively.
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Figure 3: The population difference at (a) η/∆=0.1 and ∆/ωc=4 with different temperature, (b) η/∆=10and
β∆=0.2 with different ωc.

Fig. 1 shows the population difference of the symmetric two-level system for different
parameters in both the adiabatic and nonadiabatic regimes at relatively low and high
temperatures respectively. Results can be compared with those from the Hierarchical
approach (Ha.) proposed in [30] (see Figs. 2 and 3) or stochastic simulation (ss) in [16]
(see Fig. 1). We also compare our results with NIBA results and GSE results. In general,
NIBA is a rather good approximation for nonadiabatic electron transfer, in particular for
systems without electronic bias. These figures display the tendency for transitions from
coherent to incoherent motion as the coupling strength increases. Fig. 1(a) shows the
averaged semiquantum results (asm) for three different couplings. The parameters used
in the calculation are β∆ = 2.0 and ∆/ωc = 4.0. For the smallest coupling in the figure,
η/∆ = 2, the averaged semiquantum method predicts coherent dynamics, and agrees
well with the Hierarchical approach. When η/∆ = 40, our method predicts incoherent
relaxation, after a short transient time. For the largest coupling in Fig. 1(a), η/∆=60, the
result also agrees well with the Hierarchical approach’s prediction. Similarly, Fig. 1(b)
displays the population difference of the symmetric two-level system in the nonadiabatic
regime. We set the parameters β∆ = 0.5 and ∆/ωc = 0.2. Inset of Fig. 1(b) shows that
NIBA agrees with the results of asm over the whole range of coupling strengths. The
GSE can also reproduce the weak-coupling result very well for small coupling strength.
If the coupling strength η/∆ is increased, the results of GSE break down. It is because
that the temperature is high compared to the characteristic frequency of the bath ωc is
not fulfilled here (βωc =2.5) [43].

Results of numerical simulations of an asymmetric ε 6= 0 two level system at a finite
temperature are shown in Fig. 2. The results are found to be in a qualitative agreement
with the Hierarchical approach [30] (see Fig. 4), which show a transition from coherent
oscillatory dynamics to relaxation with increasing system-bath coupling. From Fig. 2, we
have found that P(t) decrease to different saturated values with different η/∆. The larger
η/∆, the more rapid P(t) decreases. For the small coupling, η/∆=0.01, P(t) decreases to
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Figure 4: The population difference of the symmetric two-level system in the nonadiabatic and the adiabatic
regime with different bath-dimensionality.

-0.13 slowly. For the larger couplings, η/∆=0.2,0.5, and 4.0, the saturated value is about
−0.09,−0.18, and −0.4 respectively. For a moderate coupling strength η/∆ = 0.5, NIBA
gives qualitatively incorrect results in this parameter regime. It is also known that NIBA
breaks down in biased systems for an Ohmic spectral density. However, the GSE is in
good agreement with the simulation. We next turn to the nonadiabatic regime. Fig. 2(b)
shows the result for high temperature. For the largest coupling, η/∆=8.0, P(t) decreases
to −1 quickly. All approximate methods we have tested reproduce the dynamics quali-
tatively correctly.

At low temperature, the total number of states accessible for the bath is limited and so
is energy exchange between the system and the bath. As the temperature increases, more
bath states participate in the energy transfer process, which tends to destroy the coherent
motion of the two level system. Fig. 3(a) shows P(t) for different temperatures (here we
use β∆ as a measure of temperature). The other parameters are η/∆ = 5 and ∆/ωc = 4.
At low temperature, β∆ = 0.5, there is a strong coherent character in P(t). The coherent
component becomes less for a higher temperature of β∆ = 0.2, and there is barely any
coherence left for the still higher temperature of β∆ = 0.06. At the highest temperature,
β∆=0.02, P(t) displays totally incoherent dynamics. Fig. 3(b) showsP(t) at η/∆=10 and
β∆ = 0.2, for several ωc’s. The trend is clear: P(t) shows strongly coherent character for
the small ωc. The coherence becomes less prominent as ωc/∆ increases to 1.5, and almost
disappears for ωc/∆=3. For ωc/∆=6, P(t)exhibits complete incoherent dynamics. This
transition is also caused by the bath. When ωc starts from a small value, the frequencies of
bath are also restricted to small values. The relaxation of bath is very slow, and unable to
destroy the coherent motion of the two-level system. As ωc increases larger, the response
of bath becomes faster so that the bath can participate in the decoherence. When ωc is
large enough, P(t) decreases all the time, also caused by the interaction between the bath
and the two level system.

From Eq. (2.7), we can find that the value of ∆q decreases with the increase of the tem-
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perature. The value of Nkwas less than 50 in the high temperature case up to more than
100 for the low temperature case. In order to obtain accurate results, we choose suitable
values of ∆q to reduce statistical error for different initial conditions. In the low tem-
perature regime, we choose ∆q= 0.02∗h̄

mkωk
, while ∆q= 0.1∗h̄

mkωk
for higher temperature. For low

temperatures and small cutoff frequency, the value of 〈B〉remains close to zero during the
whole evolution. The situation changes for large cutoff frequency, in which 〈B〉 reaches
greater amplitude of fluctuations, producing a noise distant from zero. Furthermore, the
behavior of 〈B〉 is like the real noise. For high temperatures, the amplitude of fluctuations
comes to a larger value. Under low temperature and small cutoff frequency condition,
the trajectory of bath is almost regular. The situation at large cutoff frequency is different.
The trajectory is completely chaotic. When the values of ωc and temperature are large,
the dynamic of bath is not only chaotic, but also spreads to a much bigger region.

From the above discussion, we have found that the bath at large ωc and high tem-
perature is chaotic and can produce enough noise, taking part in the decoherence. The
system is insensitive to the details of the heat bath. In other words, the statistical proper-
ties of system depend on the temperature, cutoff frequency and degree of freedom of the
bath. When most initial states of bath are located in the regular islands, the manner of
decoherence shows an oscillatory behavior. When the bath is completely chaotic, it can
produce enough noise to eliminate the quantum interference, and turns the manner of
decoherence from oscillatory to always decrease.

Furthermore, we want to study the effects of the bath-dimensionality on the popula-
tion difference. In Fig. 4 results are plotted for a symmetric bath with different dimen-
sionality. Panel (a) shows the case of medium electronic coupling in the nonadiabatic
regime (∆/ωc = 0.2) at β∆ = 0.5, η/∆ = 1 (assuming 〈σz(0)〉s = 1). Panel (b) shows the
case of strong electronic coupling in the adiabatic regime (∆/ωc =4) at β∆=2.0, η/∆=20
(also assuming 〈σz(0)〉s =1). Note that the agreement between the results and the exact
one (solid line) seems to improve with increasing dimensionality. For the small bath-
dimensionality, there are obvious differences compared with the accurate results. When
N =100, there is almost no difference between the result and the real case (solid line). So
it is sufficient for choosing N =300 to perform the calculations above.

In Fig. 5, P(t) are depicted by varying δ (nonequilibrium parameter). As expected,
the decoherence occurs immediately, in sharp contrast to equilibrium case. P(t) shows
strongly coherent character at first for δ=0, as shown in Fig. 5(a). The coherence becomes
less prominent as δ = 0 is increased to δ = 1 and 4 and has almost disappeared for δ = 8.
For δ = 15,30,80, P(t) exhibits complete incoherent dynamics, where the system is in a
nonequilibrium environment (Fig. 5(a)). Not only in symmetric two-level system but also
asymmetric two-level system, a notable difference between equilibrium environment and
the case of δ 6= 0 can be observed, as shown in Fig. 5(b). The saturated value of P(t) is
also decreasing with the increase of δ, while it is almost unchanged at a somewhat larger
δ, shown in Fig. 5(b). The increase of nonequilibrium parameter can not only provides
a large noise, but also produces great amplitude of fluctuations. The noise destroys the
quantum interference and lets nondiagonal matrix element decrease.
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Figure 5: Panel (a) shows the population difference of the symmetric two-level system in the adiabatic regime
(∆/ωc =4) at β∆=2.0 (assuming 〈σz(0)〉s =1), with different δ. Panel (b) shows the population difference of
the asymmetric two-level system at ε/∆=1and β∆=0.5, with different nonequilibrium parameters.

4 Numerical tests: A harmonic oscillator coupled to bath

Following [31], the area covered by the wave packet is related to the linear entropy
through

s(ρ)=1− 1

A
. (4.1)

The “area” A in the two-dimensional phase space is given in units of Planck’s con-
stant. The linear entropy is increasing functions of A, which can be computed as a func-
tion of time and has the following simple overall form (see Ref. [32] for technical details):

A={A2
0+A0[s f+(t)+s−1 f−(t)]+h(t)}1/2 , (4.2)

where the initial area A0 =2∆x∆p/h̄ and the squeezed parameter s = mω∆x∆p parame-
terize the initial state, while f± and h are complicated functions of time and temperature.
To verify the key result, we compute for an initially pure state (Gaussian wave packet).

Let us first look at decoherence for different coupling strengths and temperatures with
various N, displayed in Figs. 6 and 7 respectively. As expected, the decoherence occur
for various conditions. In contrast to the master equations case, the entropy increase can
reproduce the similar results for large N. When N is small, there are few initial bath states
take part in the decoherence. With N increasing, more bath states are considered. So it is
close to the real case. At low temperature and small coupling strength, D saturates at a
value considerably away from one. In Fig. 6, the saturated value gradually increases with
the increase of the coupling strength. Only at the largest coupling strength, in Fig. 6(d),
the saturated value is close to one. The average nondiagonal matrix element is almost
equal to zero. Similar effects are seen in Fig. 7 with the different temperature. The satu-
ration values are obviously growing with the increase of N, until up to 70. So N =80 is
sufficient to describe the bath. The curve of decoherence function is almost unchangeable
for further increase N.
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Figure 6: D vs time. Results compared with the master equations’ results (dot line) with different coupling
strength, from bottom to top,N=20, 36, 50, 70, 80. T=20. (a) η=0.01. (b) η=0.05. (c) η=0.08. (d) η=0.1.

In Fig. 8, the same quantity D is depicted at a fixed coupling strength, but varied tem-
peratures. Of course, pronounced decoherence is seen for fixed N=80, where the system
is in a nonequilibrium environment. Now an obvious difference between equilibrium
environment and the case of δ 6= 0 can be observed. Even for weak coupling and low
temperature, the decoherence function is increasing, with increasing centers shifted to-
wards the equilibrium point of the bath. The saturated value of D is also increasing with
the increase of δ, while it is almost changeless at a somewhat larger δ. Let us first look
at decoherence for small coupling strength and low temperature with different δ, dis-
played in Fig. 8(a). As expected, the decoherence occurs immediately, in sharp contrast
to equilibrium case. At higher temperature, the saturated value is in different extent of
closing to one, shown in Fig. 8(b). Thus revealing the substantial influence of δ. This
influence gradually decreases when the nonequilibrium parameter is larger. The result,
at the δ =30, is almost consistent with the case at the largest δ =40. Further, we consider
why the nonequilibrium parameter has effects on the decoherence. When δ 6=0, the bath
gives a larger 〈B〉. The value remains close to δ during the whole evolution. The situation
changes for large δ, in which 〈B〉 reaches greater equilibrium of fluctuations, producing
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Figure 7: D vs time. Results compared with the master equations’ results (dot line) with different temperature,
η =0.1, from bottom to top, N=20, 36, 50, 70, 80. (a) T =5. (b) T =10.

Figure 8: D vs time. Results in nonequilibrium environment with different δ, from bottom to top, δ=5, 10, 20,
30, 40. η =0.08. (a) T =5. (b)T =20.

a noise distant from δ. The increase of nonequilibrium parameter can provide a large
noise. The noise destroys the quantum interference and let nondiagonal matrix element
decrease. We are inside the weak coupling regime in the sense of master equations. To
check the thermal nature of the final values, we used initial condition sampling. The
total number of sampling points needed to generate all presented results is 12000; the
calculations take a few hours on a desktop PC.

In general case, the time evolution of quantum state ρ(t) is described by Liouville-von
Neumann equation

d

dt
ρt =

⌢

Λρt,

where
⌢

Λ is a quantum Liouville operator. Stationary state is defined by the condition
⌢

Λρt =0. The system interacts with bath only through the mean field 〈B(t)〉E. The dissipa-
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tion drives the model system to a stationary state. In the case of a thermal reservoir, this
final state should be a thermal equilibrium state. In most applications,

ρB =Z−1
β e−βHB

is a thermal state at the inverse temperature β=(kBT)−1 with the normalization constant
Zβ. In the presentations of Figs. 5 and 8, it indicates that a stationary state has been
reached as t→∞. The averaged Gaussian wave function (2.4), (2.5) is easily verified by
checking that ρ(t) also satisfies the expectation value of the quantum Liouville equation.
As t→∞, the final evolution has no relation to the coupling potential. A true stationary
state does exist, when < B>=0. In both the spin-boson and harmonic oscillators model,
the numerical evolution of <B>, beginning from an unstable initial state, does go to zero
at late times.

To confirm that the semiquantum method can predict decoherence, following [33–
34], we illustrate numerically the decoherence of a superposition of two symmetrically
located coherent states, which have been intensively investigated by master equation.
The Hamiltonian of this system is

hS =
p2

s

2ms
+

1

2
msω

2
0q2

s , hI =qs

N

∑
i=1

λiqs. (4.3)

And the environment is a heat bath of oscillators. Our aim is to illustrate various deco-
herence scenarios for quantum superposition |ϕ〉=c1 |ϕ1〉+c2 |ϕ2〉 by using semiquantum
method. We choose coherent states with uncertainty ∆q∆p= h̄/2. To ensure good separa-
tion, we stipulate that either ∆q≪|q1−q2| or ∆p≫|p1−p2|, which assumes 〈 ϕ1| ϕ2〉≈0.
dQ = |q1−q2| denotes the separations in position of the two wave packets. The initial
density operator is a sum of four terms,

ρsys(0)=
2

∑
i,j=1

cic
∗
j |ϕi〉

〈

ϕj

∣

∣=∑
i,j

cic
∗
j ρ

ij
sys(0),

and two off-diagonal interference terms are

ρ12
sys(0)= |ϕ1〉〈ϕ2|=ρ21

sys(0)+.

In [33–34], the authors employ the norm

N12(t)=Trsysρ12
sys(t)ρ21

sys(t)+

as an indictor of the temporal fate of the relative coherence between the two superposed
wave packets. Clearly, if the system were closed, its unitary time evolution would leave
that norm constant in time (N12(t) = 1); interaction with a many-freedom environment
will cause decay.
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Figure 9: n12 vs time. Dash line: golden-rule result. Dash dot line: interaction-dominance results. Solid lines:
averaged semiquantum results. From top to bottom, (a) N=20, 36, 50, 70, 80(dot). dQ = 16. (b) N=5, 10,
20, 30, 40, 50, 60, 70, 80 (dot). dQ =80. (c) N=2, 5, 10, 20, 30, 50, 60, 70, 80 (dot). dQ =4000.

Similarly to the N12(t), we employ the norm n12(t) = Trsysρ
12
sys(t)ρ21

sys(t)+ to measure
the relative coherence between the two superposed wave packets. If the system interact
with a many-freedom environment,

n12(t)=
〈

φ̄B
2 (t)

∣

∣

∣
φ̄B

1 (t)
〉〈

φ̄B
1 (t)

∣

∣

∣
φ̄B

2 (t)
〉

=∏
n

exp
(

−0.5(q̄1n(t)− q̄2n(t))2/Ḡn−0.5Ḡn( p̄1n(t)− p̄2n(t))2/h̄2
)

. (4.4)

We choose that cutoff frequency equals to 100Ω and ωi ∈ [1,100] obtained from uni-
form random number, and approximate the thermal energy by sampling from a classical
canonical distribution and let the thermal energy equals to 20h̄Ω. Furthermore, we com-
pare our results obtained by semiquantum method with the results from master equation.

In Fig. 9, we show the decay of n12 of initial superposition with different separation
(dQ). The dash and dash dot lines show the golden-rule result and interaction-dominance
result. The solid lines show the semiquantum numerical results with different dimen-
sionality. When dQ=16, the saturated value of n12 is about 0.88 at N=20. The decay of n12

changes from saturated to linear at N=36, and from linear to exponential with the increase
of the dimensionality N=70, which is close to the golden-rule results. When N≥80, the
trend of the decay is almost changeless. In Figs. 9(b) and 9(c), we also show the decay of
n12 with separation dQ =80 and dQ =4000 with different dimensionality, and find that the
n12 decreases more quickly with the increase of N. The decay of n12 is almost unchanged,
when N≥70 in Fig. 9(b) and when N≥30 in Fig. 9(c). The critical value of N decreases
with the increase of the dQ, when the decay is stable. Furthermore, we also find the var-
ious decoherence scenarios: golden-rule, crossover, and interaction-dominated regime.
At dQ =16 and N =80, the semiquantum result is close to the golden-rule. When dQ =80
and N≥70, the results are between the golden-rule line and interaction-dominance line.
For dQ =4000 and N≥30, the full line fits the interaction-dominance line well. These re-
sults not only agree with those obtained by master equation method, but also show how
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the dimensionality of the external system affects on the relative coherence between the
two superposed wave packets.

5 Conclusion

The results obtained from the averaged semiquantum method for the harmonic oscilla-
tors and the spin-boson model are very encouraging. This method turns out to be useful
not only to simulate short-time but also long-time dynamics. Furthermore, it can be used
to solve the problem, nonequilibrium environment. Choosing suitable initial values can
reduce the number of paths and the freedom of the bath. We presented specific applica-
tions on systems coupled to a heat bath with different coupling strengths and tempera-
tures. The semiquantum method agrees with not only the prediction of master equation
but also many other quantum methods (stochastic equation, Hierarchical approach and
so on).

It is worth mentioning that the evolvement of the bath is governed by the dynamic
equation with no approximation, which is very close to the real case. So this approach
can be applied to various types of model (H=hS+hE+hI), which is a useful tool to study
dissipation, measurement and decoherence problems in quantum systems and to study
the quantum-classical transition in the high-dimensional model.
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Appendix: Generalization to the averaged semiquantum method

In this appendix, we discuss the generalization of the averaged semiquantal dynamics to
N dimensional model. For the general case, we consider all the correlations between the
various degrees of freedom. The best way to derive the equations of motion in this case
is to use the a wave packet of the form

ψ(x,t)=exp

[

i

h̄
[(x−q)·A·(x−q)+p·(x−q)]

]

, (A.1)

where x,p,q are vectors and A is a symmetric N×N matrix. We rewrite A as A=i 1
4 G−1+Π

with G,Π real symmetric matrices. The initializations of the vectors p,q and the real
symmetric matrices G,Π are according to the equation (2.6). We can obtain the extended
Hamiltonian

Hext =
1

2
p2+V(x)+Tr

(1

8
G−1+Π2G+GΠ2

)

+〈V(x)〉, (A.2)
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where Tr indicates the trace operation on the matrices. The only calculation of any sub-
tlety is the evaluation of 〈V(x)〉, since ψ(x)is a multivariate Gaussian distribution. We
consider a system (S)-environment (E) described by a Hamiltonian

H =hS +hE +hI , (A.3)

The interactions between the various degrees of freedom of bath are ignored. So we
can simple wave packet (Eq. (A1)) into the form |ψ〉= |ψ0〉∏

N
k=1 |ψk〉. We can obtain the

equations of motion directly by time-dependent variational principle (TDVP) formula-
tion, Γ=

∫

dt〈Ψ(t)|ih̄ ∂
∂t −Ĥ |Ψ(t)〉 with δΓ=0. We solve the integrable multidimensional

function 〈Ψ(t)|ih̄ ∂
∂t−Ĥ |Ψ(t)〉 and obtain the analytic results, since ψ(x) is a multivariate

Gaussian distribution. Then using δΓ = 0, we can get the equations of motion for each
trajectories. For spin-boson model, |ψ0〉 is written as

|ψ0〉=(A+iB)|0〉+(C+iD)|1〉, (A.4)

Moreover, as the influence of the environment on the system only enters through

〈B(t)〉E =−∑kn

〈

q(t)
〉

,

the introduction of the mean field to the interaction simplifies the version of the coupled
model. Then, we can obtain the averaged semiquantum method working equations:

Ȧ=2.0∗ω0∗D+2.0∗ε∗B+2.0∗〈B(t)〉E∗D,

Ḃ=−2.0∗ω0∗C−2.0∗ε∗A−2.0∗〈B(t)〉E∗C,

Ċ=2.0∗ω0∗B−2.0∗ε∗D+2.0∗〈B(t)〉E∗B,

Ḋ=−2.0∗ω0∗A+2.0∗ε∗C−2.0∗〈B(t)〉E∗A.

(A.5)

For harmonic oscillators model, we represent |ψ0〉 as the Gaussian wave packet and we
can get the equations of motion for each trajectories, ignoring the interactions between
the various degrees of freedom of bath:

dqk

dt
=

∂Hext

∂pk
,

dpk

dt
=−∂Hext

∂qk
,

dGk

dt
=

∂Hext

∂Πk
,

dΠk

dt
=

∂Hext

∂Gk
.

(A.6)

We average the physical parameter (qk,pk,Gk,Πk,···) to calculate our interested quantities
to measure decoherence.
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