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Abstract. The spin-3/2 Ising model on the simple cubic lattice with nearest-neighbour
ferromagnetic bilinear interaction (J > 0) is simulated on a cellular automaton by us-
ing the cooling algorithm improved from the Creutz cellular automaton. The phase
diagrams of the model are constructed in the (D/J, kT/J) and (K/J, kT/J) plane.
Comparison of the results are made with those of other methods. The temperature
dependence of the order parameters and associated fluctuations are calculated at var-
ious of the model parameters and the static critical exponents are estimated within
the framework of the finite-size scaling. The results are compatible with the universal
Ising critical behavior except for D/J =−3 and K/J =−2.3.

PACS: 64.60.Cn, 64.60.Fr
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1 Introduction

The Hamiltonian of the spin-3/2 Ising model with bilinear (J) and biquadratic (K) inter-
actions and a single-spin anisotropy parameter (D), also known as the spin-3/2 Blume-
Emery-Griffiths (BEG) model, is

HI =−J ∑
<ij>

SiSj−K ∑
<ij>

S2
i S2

j +D∑
i

S2
i , (1.1)

where the spin variables Si located at site i on a discrete lattice can take the values ±3/2,
±1/2 and the first two summations run over all nearest-neighboring pairs.
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In recent years, much attention has been directed to the spin-3/2 Ising systems [1]
which was initially introduced to give a qualitative description of phase transition ob-
served in the compound DyVO4 and also to study tricritical properties in ternary mix-
tures [2].

There has been a number of theoretical studies to obtain the phase diagrams and
critical and multicritical behavior of the model. All these studies were done by different
methods, such as mean field approximation (MFA) [1–4], renormalization group (RG)
methods [5,6], the effective-field theory (EFT) [7–9], cluster variation method (CVM) [10–
12] and Monte Carlo (MC) simulation [3,13]. Most of these studies have considered some
portion of the phase diagram of the model. Within the MFA and MC calculations [3],
only the phase diagrams of the isotropic spin-3/2 BEG model and the spin-3/2 BC model
which includes only J and K interactions were obtained. These models were also studied
by using the EFT [8] and CVM [10]. Recently, the phase diagrams of the spin-3/2 BEG
model in the (D/J, kT/J) plane for several values of K/J and in the (K/J, kT/J) plane
for several values of D/J have been presented [6,11,12]. In spite of these studies, further
studies using alternative methods are desirable to obtain the new phase diagrams and
the critical behavior of the model. However, as far as we know, there is no extensive
analysis within the framework of the finite-size scaling theory to determine the static
critical exponents of the spin-3/2 BEG model in three dimensions.

In this paper, the critical behavior of the three-dimensional spin-3/2 BEG model has
been studied by using an improved algorithm from the Creutz Cellular Automaton (CCA).
Our interest is focused to obtain the phase diagrams in the (D/J, kT/J) and (K/J, kT/J)
planes and estimate the static critical exponents on three dimensional lattice within the
framework of finite-size scaling theory. The CCA algorithm is a microcanonical algo-
rithm interpolating between the canonical Monte Carlo and molecular dynamics tech-
niques on a cellular automaton, and it was first introduced by Creutz [14]. In the previ-
ous papers [14–21], the CCA algorithm and improved algorithms from CCA were used
to study the critical behavior of the different Ising model Hamiltonians in two and three
dimensions. It was shown that they have successfully produced the critical behavior of
the models. The remainder of this paper is organized as follows: The details of the model
are explained in Section 2, the results are discussed in Section 3 and a conclusion is given
in Section 4.

2 Model

Three variables are associated with each site of the lattice. The value of each sites is de-
termined from its value and those of its nearest-neighbors at the previous time step. The
updating rule, which defines a cellular automaton, is as follows: Of the three variables
on each site, the first one is Ising spin Si. The Ising spin energy for the model is given
by Eq. (1.1). The second variable is for momentum variable conjugate to the spin (the
demon). The kinetic energy associated with the demon is Hk =nJ, where n is an integer,
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which can take a value within the interval (0, m). The total energy

H = HI +HK (2.1)

is conserved.

The third variable provides a checkerboard style updating, and so it allows the simu-
lation of the Ising model on a cellular automaton. The black sites of the checkerboard are
updated and then their color is changed into white; white sites are changed into black
without being updated. The updating rules for the spin and the momentum variables
are as follows: For a site to be updated its spin is changed into one of the other three
states with equal probability and the change in the Ising energy, dHI , is calculated. If
this energy is transferable to or from the momentum variable associated with this site,
such that the total energy H is conserved, then this change is done and the momentum is
appropriately changed. Otherwise the spin and the momentum are not changed.

For a given total energy the system temperature is obtained from the average value
of kinetic energy, which is given by:

<E>=

m

∑
n=0

Jne−nJ/kT

m

∑
n=0

e−nJ/kT

, (2.2)

where E = HK. The expectation value in Eq. (2.2) is a average over the lattice and the
number of the time steps. Because of the third variable, the algorithm requires two time
steps to give every spin of the lattice a chance to change. Thus, in comparison to ordi-
nary Monte Carlo simulations, two steps correspond to one full sweep over the system
variables.

The cooling algorithm is divided into two basic parts, initialization procedure and the
taking of measurements. In the initialization procedure, firstly, all spins in the lattice sites
take the ferromagnetic ordered structure and staggered quadrupole ordered structure
according to selected (J,K,D) parameter set and the kinetic energy per site which is equal
to the maximum change in the Ising spin energy for the any spin flip is given to the
lattice sites via the second variables. This configuration is run during 10.000 cellular
automaton time steps. At the end of the this step, the configuration in the disordered
structure at the high temperature is obtained. In the next steps, the last configuration
in the disordered structure has been chosen as a starting configuration for the cooling
run. Rather than resetting the starting configuration at each energy, it is used the final
configuration at a given energy as the starting point for the next. During the cooling cycle,
energy is subtracted from the system through the second variables (Hk) after 1.000.000
cellular automaton steps.
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3 Results and discussion

3.1 Phase diagrams

The simulations are carried on L×L×L simple cubic lattice with L = 12, 14, 16, 18, 24
and 30. The periodic boundary conditions are applied in all directions. The computed
values of the quantities are averages over the lattice and over the number of time steps
(1.000.000) with discard of the first 100.000 time steps during which the cellular automa-
ton develops.

The physical quantities computed in our simulations are the sublattice order param-
eters (Mα and Qα , α= A or B) and the order parameter Qd:

Mα =
2

N
∑
α

Sα
i , (3.1)

Qα =
2

N
∑
α
(Sα

i )
2, (3.2)

Qd =
2

N

(

∑
A
(SA

i )2−∑
B
(SB

i )2

)

, (3.3)

and the susceptibilities associated to the Mα and Qd

χα = βN < M2
α >−< Mα >

2, (3.4)

χd = βN <Q2
d >−<Qd >

2, (3.5)

where N is the total number of sites of the lattice.
For J >0, the possible phases of the model are defined according to the values of the

two sublattice order parameters:

disordered phase (d): MA = MB =0, QA =QB 6=0;

ferromagnetic phase ( f ): MA = MB 6=0, QA =QB;

ferrimagnetic phase ( f r): MA 6= MB 6=0, QA 6=QB 6=0;

antiquadrupolar phase (a): MA = MB =0, QA 6=QB 6=0.

In this study, four phase diagrams are obtained for selected K/J and D/J values. To
produce the phase diagrams, the finite critical temperatures are estimated from the max-
ima of the fluctuations of the order parameters on the lattice with L = 16. In Fig. 1, the
phase diagram obtained for D/J =0 in the (K/J, kT/J) plane is given. In this figure, the
CVM [10] and MC [3] results are shown to compare with our results. It is seen that the
phase diagram contains d and f phases and also f r phase which occurs at low temper-
ature inside the f region. All the boundaries among these phases are all second-order
lines. However, there is only a transition from the d phase to the f phase at the d- f phase
boundary. At low temperature, f → f r and f → f r→ f transitions occur at the f - f r phase
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Figure 1: The phase diagram in the (K/J, kT/J) plane for D/J =0.
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Figure 2: The temperature dependence of a) the sublattice order parameters MA, MB, QA and QB and the
order parameter Qd (inset in figure), b) the susceptibilities χA and χd at D/J =0 for K/J =−0.4 on a lattice
with L=16.

boundary. This line also exhibits re-entrant behavior as the MFA [3], CVM [10, 12] pre-
dictions, but differs from the MC [3] and EFT [8] results which predicted no re-entrant
behavior.

In Fig. 2, the temperature dependence of the order parameters and susceptibilities are
shown for K/J =−0.4 where the d→ f → f r phase transition occurs. As it is seen in the
Fig. 2, the sublattice order parameters are equal at high temperature and d→ f transition
occurs as the temperature decreases. The f → f r transition occurs at low temperature and
the sublattice order parameters become unequal as the temperature is lowered and tend
to be MA=0.5 and MB=1.5 at zero temperature. However, Qd order parameter seen in the
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Figure 3: The temperature dependence of a) the sublattice order parameters MA, MB, QA and QB, b) the
susceptibilities χA and χB at D/J =0 for K/J =−1.06 on a lattice with L=16.
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Figure 4: The phase diagram obtained in the (D/J, kT/J) plane for K/J =−0.5.

inset Fig. 2(a) exhibits a continuous behavior which characterizes the f → f r transition.
The data of the sublattice susceptibilities show the two peaks which belong the d → f
and f → f r transitions. However, the susceptibility χd has a peak for f → f r transition
and no singularity belongs to the d→ f as expected (Fig. 2(b)). On the other hand, the
re-entrant behavior occurs in a small range of K/J. An example of the d→ f → f r → f
transitions is shown for K/J =−1.06 in Fig. 3. The sublattice order parameters undergo
three successive transitions and these transitions are second order (Fig. 3(a)). At the same
time, the sublattice susceptibilities show three peaks at T1, T2 and T3 for d→ f and f → f r
and f r→ f , respectively (Fig. 3(b)). However, it is obtained that the Qd order parameter
is not useful to detect a transition in the re-entrant region.
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Figure 6: The phase diagram obtained in the (K/J, kT/J) plane for D/J =−3.

In Fig. 4, the phase diagram obtained for K/J =−0.5 is shown. The phase diagram
contains a second-order line between the d and f phases and the other line between the f
and f r phases. The f r phase occurs in the range of −2.2<D/J<0.8. The topology of this
phase diagram is very similar to the phase diagram for D/J =0 except the occurrence of
reentrancy at the f - f r phase boundary. It should be mentioned that although the similar
topology was presented for various parameters in the literature [12], the phase diagram
for K/J =−0.5 has not been obtained by previous calculations.

The other phase diagram obtained in the (D/J, kT/J) plane for K/J =−1 is shown
in Fig. 5. As seen in figure, the f r phase lies in the region −9 < D/J < 0 within the
ferromagnetic phases at low temperatures. However, the phase diagram exhibits one
multicritical point (A). Similar phase diagram was also obtained by the CVM [12] for
K/J =−1 but differs from in that the reentrant behavior was found in this work.

Before concluding this section, we present the phase diagram obtained for D/J =
−3 (Fig. 6). As far as we know, this phase diagram has gone unnoticed in the other
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Figure 7: The temperature dependence of a) the sublattice order parameters MA, MB, QA and QB, b) the
susceptibilities χA, χB and χd at D/J =−3 for K/J =−1.3 on a lattice with L=16.

approximations. According to our calculations, there is only d→ f transition for K/J <

−3 and K/J >−0.5. The d → f → f r transitions take place in the interval −3 < K/J <

−2.3 and −1 < K/J < −0.5. The phase diagram also contains the a phase which lies
between the d and f r phase and the d→ a→ f r transitions occur in the interval −2.3≤
K/J <−1. However, the phase diagram also exhibits the two multicritical points (A), as
seen in figure. In Fig. 7, the sublattice order parameters are presented for the d → a →
f r transition at K/J =−1.3 value. For the transition from the d phase to the a phase,
the values of MA and MB remain at zero value and QA and QB become unequal with
decreasing temperature. Therefore, the sublattice susceptibilities have no information
about this transition, only one peak belongs to the lower a→ f r transition. On the other
hand, the order parameter Qd shows the nature of the transition d → a and the χd has
a peak belongs to d→ a transition (Fig. 7(b)). Therefore, in this diagram, the d-a phase
boundary was produced from the maxima of the susceptibility χd.

3.2 FSS analysis

The static critical exponents are estimated by using the finite-size scaling (FSS) analysis
for selected D/J and K/J values. In the following, a detailed of these analysis is given:

The critical temperature values for the finite-size scaling analysis are estimated from
the temperature variation of the Binder fourth-order cumulant [22, 23] of the order pa-

rameters Mα and Qd (gMα
L and g

Qd
L ).

The critical exponents ν can be obtained by using the finite-size scaling relation for
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the Binder cumulant, which is defined by [23]:

gL =G(εL1/ν), (3.6)

where ε=(T−Tc(∞))/Tc(∞). It is explained in previous section that the order parameter
Qd is useful for detecting the f → f r and d→ a transitions. On this account, the infinite

lattice critical temperatures T
gMα

L
c (∞) and T

g
Qd
L

c (∞) are obtained from the intersection of

the gMα
L and gQd

L curves for different lattice sizes for the related transitions. In Fig. 8(a), the

temperature variations of the gQd
L belongs to the f → f r transition are illustrated for the

different lattice sizes at selected D/J =−3 and K/J =−1 where the d→ f → f r transition

takes place. The behavior of the gMα
L for the d→ f transition is similar with gQd

L for the
f → f r transition and is not given here. It can be seen from Fig. 8(b) that the scaling data
for the finite-size lattices lie on a single curve near the critical temperature when the value
of the correlation length critical exponent is equal to the universal value of ν=0.64. The

data of the gMα
L and gQd

L are scaled with ν=0.64 at selected D/J and K/J values.

Secondly, the critical temperatures are also obtained from the susceptibility maxima
T

χα
c (L) and T

χd
c (L). According to finite-size scaling theory, the infinite lattice critical tem-

perature is given by

Tc(∞)=Tc(L)+aL−1/ν. (3.7)

Infinite lattice critical temperatures estimated from the extrapolation of susceptibilities
peak temperatures to 1/L1/ν →0 and from intersection of the Binder cumulant curves at
finite lattices are given in Table 1.

Table 1: The estimated infinite lattice critical temperatures from the intersection of the Binder cumulants

(T
gMα

L
c and T

gQd
L

c ) and from the maxima of the susceptibilities (T
χα
c and T

χd
c ).

D/J K/J T
gMα

L
c T

χα
c T

g
Qd
L

c T
χd
c

d→ f f → f r
-8.9 -1 5.75±0.03 5.72±0.02 - -
-3 -0.9 3.36±0.02 3.35±0.03 2.81±0.01 2.82±0.01
-3 -1 3.08±0.02 3.08±0.03 3.06±0.01 3.07±0.02
-3 -2.3 2.26±0.03 2.27±0.04 2.26±0.04 2.26±0.03
-3 -2.7 1.96±0.02 1.97±0.03 1.78±0.02 1.80±0.02
-3 -2.9 1.84±0.03 1.83±0.02 1.36±0.04 1.38±0.02
-3 -3 1.81±0.01 1.82±0.01 - -
-1 -0.5 3.79±0.01 3.79±0.02 - -

-1.5 -0.5 4.60±0.02 4.56±0.03 - -
a→ f r d→ a

-3 -1.3 2.87±0.01 2.87±0.04 3.42±0.01 3.39±0.03
-3 -1.5 2.79±0.04 2.81±0.02 3.41±0.04 3.42±0.03
-3 -2 2.54±0.01 2.56±0.03 2.90±0.02 2.88±0.03
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of the Binder cumulant with ν=0.64.
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Figure 9: At D/J =−3 for K/J =−1 a) finite size scaling plots of order parameter Qd, b) finite size scaling
plots of the susceptibility χd, ε= |T−Tc|/Tc for T < Tc and ε= |T−Tc|/T for T > Tc.

Moreover, the values of the static critical exponents β and γ are estimated using the
FSS relations of the order parameters Mα and Qd and susceptibilities χα and χd. The FSS
relations for M and χ are given by

M= L−β/νX(εL1/ν), (3.8)

kTχ= Lγ/νY(εL1/ν). (3.9)
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Figure 10: At D/J=−3 for K/J=−2.3 a) finite size scaling plots of order parameter Mα, b) finite size scaling
plots of the susceptibility χα, ε = |T−Tc|/Tc for T < Tc and ε = |T−Tc|/T for T > Tc, c) finite size scaling
plots of order parameter Qd, d) finite size scaling plots of the susceptibility χd, ε= |T−Tc|/Tc for T < Tc and
ε= |T−Tc|/T for T > Tc.

For large x = εL1/ν, the infinite lattice critical behaviors must be asymptotically repro-
duced, that is,

X(x)= Axβ, (3.10)

Y(x)= Bx−γ. (3.11)

The finite-size scaling plots of the data for Qd and χd according to the Eqs. (3.8) and
(3.9) are shown in Fig. 9 for D/J =−3 and K/J =−1 parameter set. For β = 0.31 and
ν=0.64 theoretical values, the data lie on a single curve for temperatures both below and
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Table 2: The estimated β/ν and γ/ν values from finite-size scaling relations of the Mα, χα and Qd, χd at
Tc(∞).

Mα, χα Qd, χd
D/J K/J β/ν γ/ν β/ν γ/ν

d→ f f → f r
-8.9 -1 0.49±0.03 1.93±0.04 - -
-3 -0.9 0.45±0.03 1.91±0.02 0.49±0.02 1.88±0.04
-3 -1 0.48±0.02 1.91±0.03 0.47±0.04 1.95±0.01
-3 -2.3 0.23±0.02 1.69±0.03 0.25±0.02 1.22±0.05
-3 -2.7 0.48±0.02 1.92±0.03 0.49±0.03 1.93±0.02
-3 -2.9 0.50±0.03 1.97±0.02 0.47±0.03 1.68±0.02
-3 -3 0.49±0.02 1.96±0.03 - -
-1 -0.5 0.49±0.02 1.94±0.04 - -

-1.5 -0.5 0.47±0.02 1.97±0.03 - -
a→ f r d→ a

-3 -1.3 0.45±0.03 1.89±0.04 0.48±0.02 1.93±0.02
-3 -1.5 0.47±0.03 1.92±0.02 0.45±0.02 1.89±0.02
-3 -2 0.49±0.03 1.95±0.02 0.50±0.06 1.94±0.04

above Tc(∞) and are in agreement with the universal value of β=0.31 for T<Tc(∞). Also,
the straight line passing through the data for T > Tc(∞) behaves according to Eq. (3.10)
with β′ = 0.55 (Fig. 9(a)). Similarly, the scaling of χd data agrees with asymptotic form
with the critical exponents γ=γ′=1.25 and ν=0.64 for both T <Tc(∞) and T >Tc(∞) at
selected parameters (Fig. 9(b)).

For all selected D/J and K/J values, the value of β and γ are in good agreement with
theoretical ones except for D/J =−3 and K/J =−2.3 parameter set. For this parameter
set, the scaling data of the order parameters Mα and the susceptibilities χα for the a→ f r

transitions, are shown in Fig. 10(a) and (b). It is obtained that the Binder cumulants gMα
L

are scaled with the theoretical value ν=0.64. But the order parameters Mα are not scaled
with the β =0.31 and ν=0.64, but scaled with β =0.15 and ν=0.64 for the temperatures
below Tc(∞) (Fig. 10(a)). On the other hand, the susceptibility (χα) data agree with the
asymptotic form for the exponents γ=γ′=1.25 and ν=0.64 for above and below Tc(∞).
The scaling of the Qd and χd are shown in Fig. 10(c) and (d) which belong the d → a

transitions at the D/J = −3 and K/J = −2.3 parameter set. The Binder cumulant gQd
L

is scaled with the theoretical value ν = 0.64, whereas the Qd is scaled with β = 0.15 and
ν = 0.64 and χd data lie on a single curve for γ = γ′ = 0.8 and ν = 0.64 instead of the
theoretical value γ=γ′=1.25.

Finally, we obtained the β/ν and γ/ν values from the finite-size scaling relations at
Tc(∞). β/ν and γ/ν are estimated from the Mα and χα data for the d → f and a → f r
transitions and from Qd and χd for the d→a and f → f r transitions. The estimated values
are given in Table 2. It is seen that the values of β and γ obtained from β/ν and γ/ν using
ν=0.64 are in agreement with ones obtained from the scaling.
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4 Conclusion

In this paper, the spin-3/2 Ising model is simulated using the cooling algorithm of the
cellular automaton on simple cubic lattice. The phase diagrams of the model are con-
structed in the (K/J, kT/J) plane for D/J = 0 and −3 and in the (D/J, kT/J) plane for
K/J=−0.5 and −1. It is shown that the d, f , f r and a phases occur in the phase diagrams
and four different transitions such as d→ f , d→ f → f r, d→ f → f r→ f and d→a→ f r take
place for certain D/J and K/J values. According to our calculations, only D/J =0 phase
diagram contains the re-entrant behavior at low temperatures. At D/J =0, the obtained
phase diagram is in agreement with the results of MC simulation [3] and CVM [10] at the
d- f and f - f r phase boundaries, but differs from MC and EFT [8] works in that the reen-
trant behavior does not occur at the f - f r phase boundary. The re-entrant behavior was
also obtained within the MFA [3], CVM [12] predictions for D/J=0. The phase diagrams
are also constructed in the (D/J, kT/J) plane for K/J =−0.5 and K/J =−1. Although
the similar topologies are obtained for these parameters, the phase diagram for K/J=−1
has a multicritical point. On the other hand, multicritical points are also seen in the (K/J,
kT/J) plane for D/J =−3. In addition, the temperature variations of the order parame-
ters and associated susceptibilities are also studied. It is obtained that only the studying
of the sublattice order parameters and susceptibilities do not suffice to consider the d→a
transition whereas sublattice quantities can be considered for d→ f and f→ f r transitions.
Therefore, the Qd and χd quantities are also studied for all selected model parameters. In
the second part of the study, the static critical exponents β and γ are estimated within the
finite size scaling analysis. Except for D/J=−3 and K/J=−2.3, the model is compatible
with universal Ising critical behavior (ν=0.64, β =0.31 and γ=γ′ =1.25) for all selected
D/J and K/J parameter values. For this parameter set, the critical exponents are esti-
mated from the sublattice quantities as ν=0.64, β=0.15 and γ=γ′=1.25 and from Qd ad
χd as ν=0.64, β=0.15 and γ=γ′=0.8.
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