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Abstract. The effect of the equilibrium pair separation on the evolution of cluster
structures is investigated based on a new proposed pair potential. The computational
results demonstrate that the potential with large equilibrium pair separation stabilizes
decahedra and close-packed structures, while disordered structures appear for the po-
tential with small equilibrium pair separation. The icosahedral clusters are dominated
in the middle range of equilibrium pair separation. For the small size clusters (N≤24)
the dominated structural motif is the polytetrahedra, which is almost independent of
the details of the potential.

PACS: 61.46.Bc, 36.40.Mr
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1 Introduction

Understanding the cluster structure represents one of the crucial issues in nanoscience.
Exploring the novel structure of nanoclusters has brought a big challenge to traditional
method and technique used widely for bulk condensed matters [1]. Up to date, few
direct measurements of cluster structures are available experimentally [2], and much of
the current theoretical understanding of cluster structures has been derived from atomic-
scale molecular-dynamics (MD) and Monte Carlo (MC) simulations [3].

The computer simulations have been carried out on various systems. The model
clusters, described by Lennard-Jones (LJ) and Morse potentials, have been studied ex-
tensively (e.g., [3]). Metal clusters are also widely studied using both density functional
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theory and classical many-body potentials (e.g., [3,5,6]). A few studies have extended to
large molecule systems [7–17] and multi-element systems [18–26]. Over the past decades,
many exotic structures, which are probably forbidden in bulk materials, have been re-
ported. The excellent examples include the cage structures of carbon [27], the Icosahedral
(IH) [28,29] and decahedral (DH) [30,31] atomic shell structures of metals, and the recent
found cage structures of gold [32, 33].

Many papers have reported the general structural effects of the different contributions
to the interaction. For example, Doye and Wales found that the Friedel type oscillation in
atomic potentials can strongly modulate the cluster structures [34–36]. The effect of the
potential shape on the nature of disordered structure are also studied [37,38]. Baletto et al.
have investigated crossover between different structural motifs (icosahedra, decahedra,
and octahedra) for a few many-body potentials [39, 40]. Doye and Wales investigated
the structural evolution for a set of Sutton-Chen families of potentials [41]. Gong and
his coworkers have studied the relativistic effect on the structure of gold clusters, which
leads to the finding of cage-like structures [32, 33].

Since the shape of simple pair potential could be adjusted in a comprehensive way,
pair potentials provide intuitive understanding of the general effects, i.e, the effect of
potential shapes on cluster structures. Previously, the effect of the potential range and
anisotropy on the cluster structures were studied for many simple pair potentials. Braier
et al. have investigated six- and seven-atom Morse clusters over different interaction
range [42]. A similar study was carried out on other model potentials [43, 44]. Doye and
Wales have made systematic studies on how the structure of Morse clusters changing
with the interaction range. They found that the decrease of the interaction range results
in destabilizing strained structures [7, 45–48].

Although substantial efforts have been made by many researchers, the knowledge
about the relationship between cluster structure and potential shape is still limited. The
further studies along this line are needed. In this paper, the issue about how the equilib-
rium pair separation (dEPS) affecting the cluster structure is studied. Physically, changing
dEPS corresponds to changing the effective size of atoms/molecules. The importance of
the atomic/molecular size has been shown in recent studies on C60 [49]. Our current
studies will shed light on the general effect of the equilibrium pair separation on the
cluster structures.

The remainder of the paper is organized as follows. The following section describes
the new model potential and the computational details. The cluster structures for a few
selected parameters are presented in Section 3. The conclusions drawn from this work
are summarized in Section 4.

2 Computational details

The potential we proposed is originally prompted by the effective pair potential [50] of
many-body potential for iron [51, 52], then we parameterize it into the current form:
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Φ(r)=

{

ε[ r
σ −2.5]3[γ−1.44719(σ

r )], r≤2.5σ,
0, r>2.5σ,

(2.1)

where ε and σ are energy and length unit respectively. r denotes the distance between
atoms. γ is an adjustable parameter, which determines the dEPS of the potential. The
higher value of γ corresponds the smaller dEPS. In current studies, ε is chosen to keep
the potential well depth equal to one as γ changing. And σ equals to one for all case
studied. Fig. 1 shows the new potential with a few selected γ of 0.8, 0.9, 0.95, 1.0, 1.05,
1.1 and 1.2. For comparing, the Morse and LJ potential, which have been fitted to have
the same curvature at the bottom of the potential well, are also shown in this figure.
Comparing with Morse and LJ potential, the new one is softer in repulsive part and stiffer
in attractive part. From this figure, one can see that, the change of γ will directly adjust
the equilibrium pair separation.
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Figure 1: The new potential (solid line) for a few selected γ of 0.8, 0.9, 0.95, 1.0, 1.05, 1.1 and 1.2. For
comparing, Morse (dashed line) and LJ (dotted-solid line) potential are also shown, which has been fitted to
have the same curvature at the bottom of the potential well.

Another feature of the current potential is that, it can make both face-centered-cubic
(fcc) and body-centered-cubic (bcc) structure stable by varying γ. Table 1 presents the
cohesive energy of fcc and bcc phase for a few γ. Both fcc and bcc have the same cohesive
energy at zero temperature at γ=1. For γ larger than one, bcc phase is more stable than
fcc, while the smaller γ favors fcc phase. The reason is that, for large γ, the potential
well becomes more and more flat. In this case, the dominated interaction in bcc is both
first and second nearest neighbors totally 14 atoms, while only 12 first nearest neighbors
are contributed to energy in fcc due to the limited interaction range. It needs to point
that both Morse and LJ potential always make the fcc more stable than bcc. This is the
major difference between the present potential and other pair potentials. This potential
is also similar to the Johnson potential for bcc Iron [53], which implies that this form may
represent major physics of bcc based metals.
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Table 1: The cohesive energy of both fcc and bcc for different sets of γ, where ε is chosen so that the depth
of potential well is 1.0. Ebcc and E f cc are the cohesive energy for bcc and fcc structures respectively, and abcc

and b f cc are the equilibrium lattice constants for bcc and fcc structures respectively. For γ < 1.0, fcc phase is
more stable, while γ>1.0 bcc structure is more stable. At γ=1.0, fcc and bcc have the same cohesive energy.

γ ε Ebcc E f cc abcc a f cc

0.80 98.496 -5.326 -6.000 2.222 2.778
0.90 29.415 -5.762 -6.000 2.036 2.557
0.95 18.760 -5.848 -6.001 1.932 2.457
1.00 12.786 -6.036 -6.036 1.859 2.361
1.05 9.168 -6.178 -6.124 1.793 2.264
1.10 6.844 -6.292 -6.252 1.730 2.176
1.20 4.172 -6.604 -6.547 1.589 2.021

To optimize the cluster structure, we first search for the global minimum among all
the known structures for each potential and cluster size [54] using the steepest-descent
method. Then we make further exploration for most stable structure with the generalized-
simulated-annealing algorithm, which has been shown as a powerful and efficient method
[55]. The most stable structure can then be found among these structures.

3 Results and discussions

Fig. 2 plots the second difference of energy (∆2E=E(N+1)+E(N−1)−2E(N)) as a func-
tion of cluster sizes for all studied γ. From top to bottom, it corresponds to the value of γ

from 0.8 to 1.2 respectively. For cluster size smaller than 25, all the curves have the same
trend, which implies that structures are weakly dependent on the details of potentials.
The similar case is also found for Morse potentials [48]. As the size larger than 24, the
differences of these curves begin to emerge. The curve for γ = 0.8 is evidently different
from other γ. It is observed that γ = 0.9 and 0.95 are similar to each other. A similar
behavior is also found between γ = 1.0 and 1.05, and between γ = 1.1 and 1.2. For all
γ except 0.8, ∆2E is almost equal to zero for cluster size ranging from 135 to 146. The
structure of these clusters are based on 147-atom icosahedron by removing one or more
vertex atoms. Due to the short range of interaction and the symmetry among these vertex
atoms, the energy change is almost the same by adding one vertex atom, which directly
cause the zero of ∆2E in this range.

Peaks in ∆2E correspond to the specially stable clusters which have been found to
correlated with magic numbers in mass spectra of clusters. We note that there are two
types of peaks in ∆2E. One type corresponds to specially stable clusters, namely the
closed-shell IH structures of N = 13, 55 and 147. Another kind is directly related to the
change of structural types. For example, ∆2E for γ = 0.8 has several this type of peaks
for N>100, which actually corresponds to the close-packed (CP) clusters changing to the
DH motifs.
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Figure 2: The second energy difference (∆2E) as a function of cluster size for all γ. Peaks in ∆2E correspond
to clusters which are stable compared to adjacent sizes.

A few of structural types, i.e, polytetrahedra (PT), polytetrahedra involve an ordered
array of disclinations (hereafter refers to PT-d), IH, DH, CP and disordered (DIS) struc-
tures, were found in present study. About these structures, the detailed description can
be found elsewhere (e.g., [3] and references therein). Both PT and PT-d can be naturally
divided up into tetrahedra with atoms at their corners. Most PT clusters are observed at
small sizes. All clusters with number of atom less than 25 have PT type. More important,
structures of them are identical for all γ at the same cluster size. This means that the
cluster structures are weakly dependent on the details of potential. Fig. 3 shows PT clus-
ters of N = 7−23. The structural evolution of these PT cluster is based on the following
mechanism: a (N+1)-atom cluster can be obtained by introducing new tetrahedra on the
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Figure 3: The small size polytetrahedral clusters of N=7−23. Most of them are identical for all γ at the same
size. The exceptions are N =8 for γ=1.2.

N=24 N=25 N=26 N=27 N=28

N=29 N=30 N=31 N=32 N=33

N=34 N=35 N=36 N=37 N=39

N=41 N=43

Figure 4: The extension of PT growth sequence based on the small PT clusters.

N-atom cluster. For example, the 7-atom cluster has a structure of pentagonal bipyramid,
which can be viewed as packing of five small tetrahedra. By introducing more and more
new tetrahedra, the 13-atom cluster can be formed. It needs to point out that, the struc-
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Figure 5: A few selected PT-d clusters.

ture of 13-atom cluster commonly regarded as an icosahedron, however, it is also a PT
according to Hoare’s description, and can be viewed as the packing of 20 small tetrahe-
dra [56, 57]. Following the growth sequence, the large PT clusters can be constructed by
packing more tetrahedra. Fig. 4 presents the PT cluster for N =24-43. The 8-atom cluster
for γ=1.2 is similar to a fraction of bcc structure, which is different from the structure for
the rest γ.

With increasing cluster size, the positive strain is also accumulated rapidly in PT clus-
ters. To reduce the positive strain, PT-d structures are observed. This type of clusters has
been discussed in several papers, e.g., [35,47,56]. Fig. 5 presents a few selected PT-d clus-
ters, in which each cluster is given in the side view and the top view. These structures
are different from PT by introducing six tetrahedra sharing one common edge. Although
disclinations is unfavorable in local, it does result in the decrease of global strain of clus-
ters. In fact, this structure is similar to the square-triangle Frank-Kasper phases for the
quasi-crystals [58–61].

The IH clusters appear following the PT-d clusters at larger sizes. Some selected IH
clusters are listed in the Fig. 6. Each cluster is given in the side view and the top view.
There are many discussions in previous papers about IH [3]. Usually, comparing with PT
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N=26(Side) N=26(Top) N=28(Side) N=28(Top)
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N=39(Side) N=39(Top) N=40(Side) N=40(Top)

N=43(Side) N=43(Top) N=49(Side) N=49(Top)

Figure 6: Some selected IH clusters. Each cluster presented in the side view and the top view, with a 6-atom
fcc(111) surface marked in the side view, which is absent in PT and PT-d structures.

structure, IH structures have larger fcc(111) surface and atomic shell structure. For any IH
based cluster, it can always form a closed-shell icosahedron by packing enough atoms on
its surface. A few interesting IH clusters (see Fig. 7), which are not the fraction of nearest
closed-shell IH, but the fraction of the larger icosahedron. For example, IH clusters with
N = 48 and 50 are not the fraction of 55-atom icosahedron, but the fraction of 147-atom
icosahedron. A few clusters (N = 89, 90 (γ = 0.8), and N = 62,65 (γ = 0.9−1.0)) are the
fraction of 561-atom icosahedron. These clusters were discussed by Baletto et al. [62] as
natural pathway to the growth of larger IH clusters.

Fig. 8 shows some DH, CP and DIS structures. Both DH and CP clusters are found for
the small value of γ. For simple pair potentials, the DH and CP structures can only exist
for potential with very large dEPS, such as C60 clusters. CP clusters have the same struc-
ture as fcc crystal, while DH is also more close to fcc structure over PT and IH. Disorder
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N=48,γ=0.8
Side view

N=48,γ=0.8
Top view

N=50,γ=0.8
Side view

N=50,γ=0.8
Top view

N=89,γ=0.8
Side view

N=89,γ=0.8
Top view

N=90,γ=0.8
Side view
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Top view

N=62,γ=0.9
Side view
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Top view

N=65,γ=0.9
Side view

N=65,γ=0.9
Top view

Figure 7: Some IH clusters are a fraction of larger closed-shell icosahedrons. The clusters with N =48 and 50
are the fraction of N =147 icosahedron; and N =89, 90 (γ=0.8) and N =62, 65 (γ=0.9-1.0) are the fraction
of N =561 icosahedron.

N=38,γ=0.8 N=93,γ=0.8 N=116,γ=0.8

N=41,γ=0.8 N=101,γ=0.8 N=147,γ=0.8

N=38,γ=1.2 N=85,γ=1.2 N=103,γ=1.2

Figure 8: Some DH, CP and DIS clusters. Top row: CP clusters; Middle row: DH clusters; Bottom row: DIS

clusters.



Y. Yang and D. Y. Sun / Commun. Comput. Phys., 6 (2009), pp. 730-742 739

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

Cluster size  N

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

γ=0.8

γ=0.9

γ=0.95

γ=1.0

γ=1.05

γ=1.1

γ=1.2

Figure 9: The zero temperature structural ’phase diagram’ as a function of both size and γ. ’Filled triangles’
for PT, ’Stars’ for PT-d, ’Vertical lines’ for IH, ’Filled squares’ for CP, ’Open diamonds’ for DH, ’Filled circles’
for DIS, and ’Pluses’ for some minor structure including interpenetrated clusters, a truncate tetrahedra (N=91,
γ=0.8) [9], and a rare tetrahedron (N =98, γ=0.8) [63].

clusters appear for larger γ around 1.2, where the potential well is much flat. Some dis-
ordered clusters are in fact a serious distorted ordered structures. For example, distorted
IH clusters (N =85, 103 for γ=1.2) are shown in Fig. 8. There are many disordered struc-
tures are hard to be recognized based on any ordered structures. Some interpenetrated
clusters, which exhibit the combination of two type structures [47], are also found in the
present studies. The interpenetrated clusters appear during the structure motif chang-
ing. For examples, the 59-atom cluster for γ=1.2 is found as an interpenetrated structure
between PT and IH.

Fig. 9 plots structure ’phase diagram’ as a function of both cluster size and γ at zero
temperature. It can be seen that, the smaller γ, the more DH and CP clusters are, and
the less DIS clusters are. For γ =0.8, the structure is dominated by the DH and CP. And
only one DH and one CP clusters are found for the potentials with γ≥0.9. The number
of PT clusters increase with increasing of γ. For different potentials, the largest size of PT
clusters are N =24 for γ =0.8, N =31 for γ =0.9, N =34 for γ =0.95, N =37 for γ =1.0,
1.05, 1.1, and N =43 for γ =1.2. PT-d clusters are found in the size range from N =25 to
107. After the PT-d motif first emerges at γ=0.95, its number increases with the increase
of γ, and reaches the maximum around γ = 1.05. Further increasing γ, the distribution
of PT-d motif begins to reduce. At γ = 1.2, only seven PT-d clusters are found. The DIS
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clusters first emerge at the large size between the two magic number N = 55 and 147 at
γ = 1.0, and its distribution increase as the increasing of γ. At the value of γ = 1.2, it is
dominated by the disordered cluster. IH clusters dominate for γ = 0.9 and 0.95, and its
number decreases for both γ larger than 0.95 and smaller than 0.9.

Since clusters have non-negligible surface effect and large deformation comparing
with bulk crystal, the competition between the deformation (strain) and surface effect
plays the key role in determining cluster structures. According to this consideration, we
can give a qualitative explanation for the ’phase diagram’. Small size clusters have very
large surface-volume ratio, thus the surface effect is more important than the deforma-
tion. PT clusters are abundant at small sizes due to the low surface energy. For small size,
PT structure can be broken only for strong atomic interaction [48]. To release the large
strains in PT clusters, PT-d clusters appear with increase of size. Further increasing clus-
ter sizes, both PT and PT-d become unfavorable, thus the IH clusters appear. IH clusters
have the similar surface as PT and PT-d, but the inner strain is reduced when taking IH
arrangement.

Among IH, DH and CP structure, IH structures have the lowest surface energy and
largest deformation energy, CP structures are just the opposite, while DH is in the middle.
For small γ (large dEPS), the potential well becomes narrow, the small deformation (strain)
will introduce large deformation energy, so CP and DH are dominated. For large γ (small
dEPS), the potential well becomes flat, correspondingly the deformation is less important,
thus IH structures are favored. Obviously DIS structures have the largest deformation
(strain), it should exist for much flat potential, this is the case of γ = 1.2. The present
results confirm the qualitative principle that decreasing the range of the pair-potential
(the width of potential well) has the effect of destabilizing strained structures [45–48].

The most stable structure of bulk phase is bcc for γ > 1.0, however only one cluster
seems like a fraction of bcc, which is the cluster with N = 8 for γ = 1.2. On the contrary,
a large number of IH and PT clusters are found for γ > 1.0. The main reasons may be
the surface effect, which results in the clusters adopting the fcc(111) surface. However,
there could be the inherent competition between fcc and bcc, the existence of DIS clusters
could be the consequence for γ>1.0.

4 Summary

In this paper, we have studied how the change of equilibrium pair separation modulates
the structure of atomic clusters. For this purpose, a simple pair potential whose equilib-
rium pair separation can be varied under a fixed interaction range has been proposed.
This potential can also stabilize both face-centered-cubic and body-centered-cubic struc-
ture by changing one of the parameters. By systematically seeking the ground state for
each size and potential, the ’phase-diagram’ is obtained. The ’phase-diagram’ shows that
both PT and PT-d structures are only presented for small size. DH and CP are presented
for potential with large equilibrium pair separation, while disordered clusters appear for
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the potential with small equilibrium pair separation. For the middle range of equilibrium
pair separation, the IH structures are found dominated.
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