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Abstract. This paper presents an approach to model the solvent-excluded surface (SES)
of 3D protein molecular structures using the geometric PDE-based level-set method.
The level-set method embeds the shape of 3D molecular objects as an isosurface or
level set corresponding to some isovalue of a scattered dense scalar field, which is
saved as a discretely-sampled, rectilinear grid, i.e., a volumetric grid. Our level-set
model is described as a class of tri-cubic tensor product B-spline implicit surface with
control point values that are the signed distance function. The geometric PDE is evolved
in the discrete volume. The geometric PDE we use is the mean curvature specified
flow, which coincides with the definition of the SES and is geometrically intrinsic. The
technique of speeding up is achieved by use of the narrow band strategy incorporated
with a good initial approximate construction for the SES. We get a very desirable ap-
proximate surface for the SES.
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1 Introduction

The research of proteins brings the surprising information that the geometric shape of
proteins is very important in their function. Proteins are considered as 3D objects with the
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envelope of surface. Most proteins function through interactions with each other at their
molecular surfaces (interfaces). Hence, a proper description of the protein molecular sur-
faces is essential to the understanding of the life process. Moreover, it also has important
implications for the calculations in protein folding, stability, docking and structure-based
drug design. The geometric details of the molecular surfaces, called active sites, such as
pockets, protrudes and cavities etc., can open up a patch of studying the life function
from the viewpoint of the molecular structures. Therefore, the molecular modeling re-
quires special concerns in defining and representing the molecular surfaces of proteins
on which interactions occur. There are three common definitions of the molecular sur-
faces: the Van Der Waals (vdW) surface, the solvent-accessible surface (SAS) and the
solvent-excluded surface (SES). The SES is preferred over the SAS as a more suitable de-
scription of the topology and details on the surface of proteins, as well as the significant
implications in protein recognition, energetics, and stability calculations.

There have been a number of techniques in molecular structure modeling. Unstruc-
tured mesh based on the Voronoi-Delaunay framework and the advancing front tech-
nique was presented in [30]. Molecular skin model, an explicit triangular description
with shape and topology adaptation, was introduced in [18, 19]. A spline parametric ap-
proximation method using solvent probe molecules with variable radius was proposed
in [8, 9]. A compressed volumetric representation of biomolecular structures was given
in [10]. A novel concept of minimal molecular surfaces is presented in [2]. A level-set
method [12] based on the solvation free energy functional in the variational implicit sol-
vent model is used to numerically capture arbitrarily shaped solute-solvent interfaces for
biomolecular models in the aqueous environment. A level-set front-propagation method
to identify the molecular surface and detect the interior cavities within protein structure
by a unified and efficient work is adopted in [11]. Based on the Gaussian density map
method [4, 15, 16], molecular surfaces are approximated as an isocontour of implicit sol-
vation models. Recently a mesh generation combining a modified dual contour method
with implicit solvation model in the form of the Gaussian density map is implemented
in [42], which extracts triangular and interior/exterior tetrahedral meshes of molecu-
lar structures. Generating a high-quality and adaptive unstructured mesh for molecular
structures is very important and challenging because of their applications in so many
areas.

Since the level-set method was invented by Osher and Sethian [28, 29, 36], it has been
successfully applied to a broad range of problems, such as interface evolution, fluids,
materials, combustion, image processing and computer vision, etc.. The level-set method
provides a powerful strategy for deforming surfaces, which can easily handle compli-
cated topologies and topologies changing (split apart or merge together), as well as noisy
or highly non-uniform data sets. It treats a 3D surface as the level-set of a 3D scalar
function, that is, embeds the deformable surfaces as the level surface of a volume, and
an evolution equation on the volume governs the behavior of the level surfaces that lie
within it. It has a lot of advantages in their applications in 3D graphics. For surface
morphing [21, 23, 32], the level-set method can be applied to a wide range of shapes
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and topologies, and easily incorporate global coordinate transformations that are gen-
erated automatically or by user input, which are difficult for other existing numerical
methods. In the filling and blending technique [5, 14, 27], it can generate surfaces with
no requirements about prior knowledge of the shapes and topologies for the involved
objects. Moreover, the results are invariant, independent of the choice of coordinate sys-
tems. They are geometrically intrinsic. For 3D reconstruction problems with no unique
solution [1, 13, 39], the level-set method offers a mechanism for finding the optimal so-
lution surface with the invariant smoothness as well as a broad flexibility in shaping the
topologies. The drawback of the level-set method, the computational expense, as well as
its advantages, have been well known. The approach embeds the interface as the level-
set of a higher dimensional function. For two dimensional curves, the computational
complexity is O(N2) (N stands for the size of the grid in one dimensional direction),
and arrives at O(N3) in the case of three dimensional surfaces. To speed up the level-set
methods, particularly for higher dimensional problems, a localization technique was de-
veloped in [20, 31, 35]. The basic idea is to operate only on a neighboring band around
the region of interest, that is, around the level-set being tracked (e.g., the level set at a
certain value). It can considerably reduce the complexity to O(kN) in the 2D case and
O(kN2) in the 3D case, where k stands for the width of the narrow band, and N is the
size of the grid in one dimensional direction. There are plenty of research on using ge-
ometric partial differential equations(GPDEs) to handle the surface modeling problems
in [6,17,24,26,38,40,41]. PDEs are solved on an implicit surface represented by the level-
set function in [3, 7].

Our work is modeling the SES of 3D protein molecular structures by use of the geo-
metric PDE-based local level-set method. The GPDE we use is the mean curvature spec-
ified flow which coincides with the definition of the SES, moreover, it is geometrically
intrinsic. We adopt c2 smooth tri-cubic spline functions as the level-set function, which is
reasonable and improves the quality of the modeled surfaces. The obtained surfaces are
very desirable, which can improve the efficiency and quality of capturing the geometric
feature of the SES, such as pockets, cavities and protrudes etc.. We also achieve a signif-
icant speeding up by use of the narrow band technique combined with the good initial
approximate surface constructed from the Gaussian density map method.

The rest of the paper is organized as follows: Section 2 describes the complete algo-
rithm steps in this paper, including the GPDE and the reinitialization equation. Section
3 gives the numerical implementations. In Section 4, we represent the results of our
method. Section 5 is for discussion and future work.

2 Algorithm steps

In the life world bio-molecules lie in the solvent (typically water). An interface (sur-
face) separates the bio-molecules from their surrounding solvent molecules because of
the chemical interactions between them. Researchers have given three common defini-
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tions to describe the interfaces. We use Fig. 1 (a) to explain the three types of the inter-
faces. Every atom is modeled as a rigid sphere with its Van Der Waals radius. A molecule
is an object in the space accumulated by its atoms which naturally generate a surface for
the molecule. The simplest is the Van Der Waals (vdW) surface, which is merely the
collection of accumulated atomic sphere surface. The solvent-accessible surface (SAS) is
the trace left by the center of a solvent probe molecule, also modeled as a rigid sphere
when it rolls around the vdW surface, and essentially an extended vdW surface with the
solvent probe molecular radius. The solvent-excluded surface (SES) which is composed
of the convex and the concave patches, is the boundary of the region inaccessible to a
solvent probe sphere as it rolls over the molecule. According to the description of the
SES, it is composed of two distinct parts. One part is the contact surface (convex surface),
which is the part of the vdW surface of the molecule that is in contact with the solvent
probe molecules, and is C∞ smooth. The other is the reentrant surface (concave surface),
which consists of the interior facing portions of the solvent probe sphere that touches
two or more atoms simultaneously, and is C1 or C0 continuous. It is important to note
that the SES is defined by the atoms of protein molecules and the types of solvent probe
molecules.

(a) (b) (c)

1 2

3

q

p

d

R

Figure 1: (a). The blue curve depicts the vdW surface of the molecular structure. The red circle represents
the solvent probe molecule, and the red curve depicts the SAS. The black curve depicts the SES. (b). From a
point y out of the SES, we introduce the normal N outward the SES. We specify the mean curvature H0(y) at
y to be equal to the mean curvature H0(x) at x which is the intersection point of the normal N and the SES.
(c). The spheres labeled with ’1’ and ’2’ are the atomic spheres of the molecular structure. The sphere labeled
with ’3’ is the solvent probe molecular sphere. p is a volumetric grid point lying in the shaded domain, which
is generated when the solvent probe molecular sphere simultaneously touches two atoms and the two atoms
intersect each other, and q is its nearest point on the solvent probe molecular sphere. d is the vertical distance
from q to the line connecting the centers of atomic sphere ’1’ and ’2’, and R is the radius of the solvent probe
molecular sphere.

The topology structure of the SES is very complicated as we see from the above de-
scription. It is very difficult to track the topology change of the SES if we use the para-
metric form PDEs, however, implicit form PDEs can easily overcome this difficulty. We
dynamically deform and track the level-set surface driven by our implicit form PDE,
which describes the geometric character of the SES. In this paper, we consider using C2

tri-cubic spline functions as the level-set function, not using C1 tri-linear spline func-
tions which is obviously easier to implement. There are some reasons for this. Firstly, our
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GPDE is driven by the mean curvature, which needs accurate estimate for the derivatives
and the mean curvature on the surface, so C2 smooth cubic spline functions are desirable.
It is not reasonable to use higher order splines because the tri-cubic spline is the lowest
order spline with C2 continuity. Secondly, the target surface has certain smoothness re-
quirement except on some finite domains. Using the C2 smooth level-set function could
automatically satisfy this demand, at the same time, we can better treat some singular-
ity which have bad level-set values. Thirdly, it is much more economic from the point
of view of the computation costs using the tri-cubic spline functions than increasing the
volumetric grid resolution.

Assume that M(t) is a closed moving interface in IR3, which encloses a region Ω(t).
We describe Ω(t) with an auxiliary function Φ(x,t), called the (scalar) level set function,
where x∈ IR3,t>0. Let Φ move with an appropriate velocity. If we know Φ at any time,
we may locate the interface M by solving the value of the level set function Φ, that is,

M(t)={x∈ IR3 : Φ(x,t)= c}.

We represent the SES as the zero isocontour of the level set function Φ(x,t) when t→∞.
When Φ arrives at its steady state, we can capture the SES by solving Φ(x,t)=0.

Given a uniform volumetric control grid {Vi,j,k}
L,M,N
i,j,k=1 :={xi}

L
i=1×{yj}

M
j=1×{zk}

N
k=1, we

use tri-cubic tensor product B-spline to approximate the level-set function Φ, i.e.

Φ(x,t)=Φ(u,v,w,t)

=
L

∑
i=1

M

∑
j=1

N

∑
k=1

βi,3(u)β j,3(v)βk,3(w)di,j,k(t), u,v,w∈ [0,1], (2.1)

where βi,3(u)(i = 1,··· ,L), β j,3(v)(j = 1,··· ,M) and βk,3(w)(k = 1,··· ,N) are the class of
the third-order B-spline basis functions respectively in x-, y- and z-directions of the vol-
ume, and di,j,k is the values to be determined at volumetric grid points Vi,j,k(i=1,··· ,L; j=
1,··· ,M;k=1,··· ,N).

The outline of our main algorithm is as follows:

Algorithm 2.1:

1. Obtain the initial level-set function values Φ(x,0), then re-initialize it to be a signed distance
function.

2. Update the level-set function Φ(x,t) using the governing GPDE (2.4).

3. Apply the re-initialization step to set the level-set function Φ(x,t) to be the signed distance
function.

4. Repeat step 2 and 3 until the stopping criterion (3.5) is satisfied.

5. Extract the triangular mesh of the iso-surface Φ(x,t)=0.

In the following sections, we will describe these steps in details.
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2.1 Evolution equation

After we obtain the initial level-set function, it will be followed by the evolution of the
level-set function. We now describe the geometric PDE model used in this paper. Let
M(0) be a compact closed immersed orientable surface in IR3. The curvature driven
geometric evolution consists of finding a family {M(t)≥ 0 : t≥ 0} of smooth closed im-
mersed orientable surface in IR3 according to the flow equation

∂x(t)

∂t
=Vn(k1,k2,x)N(x), (2.2)

where x(t) is a surface point on M(t), Vn(k1,k2,x) denotes the normal velocity of M(t),
which depends on the principal curvatures k1,k2 of M(t), and N(x) stands for the unit
normal of the surface at x(t). If taking the normal velocity Vn(k1,k2,x) = H−H0(x), we
get the mean curvature specified flow

∂x(t)

∂t
=[H−H0(x)]N(x), (2.3)

where H0(x) is the specified mean curvature scalar field describing the geometric prop-
erties of the SES.

If we use the level set function Φ(x,t) to represent the surface, the mean curvature
specified flow in the level-set form is

∂Φ(x,t)

∂t
=

[

div

(

▽Φ(x,t)

|▽Φ(x,t)|

)

−2H0(x)

]

|▽Φ(x,t)|. (2.4)

The above formula arrives at its steady state when t→∞, and the isocontour of the level
set function Φ must satisfy the condition that the first right-hand term of (2.4) is equal to
zero.

Now we describe the mean curvature scalar field on the SES. For a point on the con-
tact surface, its mean curvature is the reciprocal of the ith atomic radius it lies on. For a
point on the reentrant surface, its mean curvature is the reciprocal of the solvent probe
molecular radius. There is a special case that for a point on the reentrant surface when
the solvent probe molecular sphere simultaneously touches two atoms and the two atoms
intersect each other(see Fig. 1(c)), its mean curvature is set to be the half of difference be-
tween the reciprocal of the vertical distance from this point to the line connecting the two
atomic centers and the reciprocal of the solvent probe molecular radius. For a point on the
reentrant surface when the solvent probe molecular sphere simultaneously touches more
than two atoms and these atoms intersect each other, its mean curvature is the reciprocal
of the solvent probe molecular radius. Moreover, we need specify the mean curvature
H0(y) at some point y out of the SES. We introduce the normal from this point toward
the SES and then get the intersection point x on the SES. We set the mean curvature H0(y)
at point y to be equal to the mean curvature H0(x) at point x (see Fig. 1 (b)).
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In general, Φ will deviate away from a signed distance function after several steps
of evolution. It needs a reinitialization procedure to keep the character of the signed
distance function |▽Φ| = 1 and does not change the interface motion. A simple initial
value problem [31, 33, 37]







∂Φ

∂η
=S(Φ0)(1−|▽Φ|),

Φ(x,0)=Φ0

(2.5)

can satisfy this requirement. For the convenience of computation, the sign function S(Φ0)
is smoothed as

S(Φ0)=
Φ0

√

Φ2
0+ǫ2

,

where ǫ is a very small value and chosen to be O(△x).

3 Numerical implementation

3.1 Initial construction

The data of the complex 3D protein molecular structures, saved as pdb format files, can
be downloaded from the free website of the protein data bank: http://www.rcsb.org. In
this paper, we only need the coordinates of all the major atoms of the molecular struc-
tures, whose hydrogen atoms are not given in the pdb files, and their radii which can be
known according to the types of the atoms.

In our numerical experiment, a volume which is big enough to embed a molecule is
given as

[−Dx,Dx]×[−Dy,Dy]×[−Dz,Dz]

with the uniform grid size L×M×N. The set of volumetric grid points

{Vi,j,k}
L,M,N
i,j,k=1 :={xi}

L
i=1×{yj}

M
j=1×{zk}

N
k=1.

In general, the interface M(t) = {x : Φ(x,t) = 0} does not depend on the particular
choice of the initial value Φ(x,0), and we do not have to know any prior information
for the topology of the deformed surfaces. However, a good initial approximation is
important for the efficiency of our GPDE. We obtain the initial values d0 at all volumetric
grid points with the Gaussian density map method

G(x,C)=
N

∑
i=1

eC(|x−xi|
2−r2

i )−1, (3.1)

where (xi,ri) are the center and the radius of the ith atom of a molecular structure with N
atoms. The initial molecular surface is approximated by the isocontour M(0)={x∈ IR3 :
G(x,C)=0}. This algorithm can quickly generate a good smooth envelope of surface for
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the molecular objects. It should be noted that the constant C must be given to be negative
so that the first term of (3.1) goes to zero as |x−xi| becomes infinite. We will show the
inflation effect of the constant C in Section 4. The conclusion is that the larger C will lead
to the greater inflation effect of the envelope of surface for the molecular objects.

3.2 Numerical solution of geometric PDE

After we obtain the good initial approximate surface through the Gaussian density map
method, we use the geometric PDE-based level-set method as a numerical tool to deform
the implicit surface. Before the evolution procedure, we need to precompute the mean
curvature H0 for every volumetric grid point Vi,j,k (i = 1,··· ,L; j = 1,··· ,M; k = 1,··· ,N),
which has its individual fixed value and its sign depending on the orientation of the sur-
face. We define the direction of the outward normal of the surface as its positive direction.
there are three types of specification manners for the mean curvature H0 on the volumet-
ric grid points. For a volumetric grid point which is nearest to the ith atomic sphere of the
molecular structure, we set its mean curvature H0 to be 1/ri where ri is the radius of this
atomic sphere, whose sign agrees with the orientation of the surface. For a volumetric
grid point which is nearest to the solvent probe molecular sphere, we set its mean curva-
ture H0 to be −1/R where R is the radius of the solvent probe molecular sphere, whose
sign is opposite to the orientation of the surface. For a volumetric grid point p lying in
the shaded domain (see Fig. 1 (c)) resulted from the case that the solvent probe molecular
sphere simultaneously touches two atoms and the two atoms intersect each other, we find
its nearest point q on the reentrant surface, and d is the vertical distance from q to the line
connecting the centers of the two atomic spheres, whose sign agrees with the orientation
of the surface. The mean curvature H0 at point p is set to be 1

2(d−1−R−1). Moreover, for a
volumetric grid point lying in the similar domain to the third type resulted from the case
that the solvent probe molecular spheres simultaneously touches more than two atoms
and the atoms intersect each other, we set its mean curvature to be −1/R.

Now we start the deformation procedure governed by Eq. (2.4). For simplicity, we use
I (1≤I < L×M×N) to denote the index of some point VI on the set of the volumetric

grid points {Vi,j,k}
L,M,N
i,j,k=1 , then rewrite the formula (2.1) as

ΦI =
L×M×N

∑
l=1

Bl(u,v,w)dl , (3.2)

where ΦI is the level-set function value on the Ith volumetric grid point, and Bl(u,v,w)
is the corresponding tri-cubic B-spline tensor product βi,3(u)β j,3(v)βk,3(w).

Given a time steplength τ > 0, suppose we have the approximate values dn of all
volumetric grid points at tn =nτ. We will construct the approximate solution for the next
step tn+1 = tn+τ using the semi-implicit Euler scheme of (2.4)

Φn+1−Φn

τ
=

[

div

(

▽Φn+1

|▽Φn |

)

−2H0

]

|▽Φn |.
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Consequently,
Φn+1−τdiv(▽Φn+1)=Φn−2τH0|▽Φn |. (3.3)

Let Dn+1 = [dn+1
1 ,··· ,dn+1

m ]T ∈ IRm where dn+1
1 ,··· ,dn+1

m are the unknowns to be deter-
mined and we use J denote the index set of them. Substitute (3.2) into the above formula,
then get the matrix form

MDn+1 = Bn−Cn, (3.4)

where M =(mij)∈ IRm×m, Bn =(bn
i )∈ IRm and Cn =(cn

i )∈ IRm. We write the elements of
the matrix M, Bn and Cn as follows:

mij =∑
j∈J

Bj(u,v,w)−τdiv
[

▽∑
j∈J

Bj(u,v,w)
]

,

bn
i =Φn

I−2τH0(VI)|▽Φn
I |,

cn
i =∑

j/∈J

Bj(u,v,w)dn
j −τdiv

[

▽∑
j/∈ J

Bj(u,v,w)dn
j

]

,

where I is the index of the ith unknown value to be determined in the set J, and cn
i comes

from the known terms of the left-handed side of (3.4). The coefficient matrix M is highly
sparse, hence a robust iterative method for solving it is desirable. We use Saad’s itera-
tive method [34], named GMRES, to solve the linear system (3.4). The equation requires
the time steplength τ = O(△x2). We stop the equation evolution when the following
condition is satisfied

‖M(tn+1)−M(tn)‖/τ≤ǫ0, (3.5)

where ǫ0 is a given small constant.

3.3 Numerical solution of reinitialization

There are a lot of numerical methods for the reinitialization equation (2.5). We adopt the
modified Godunov discrete formula [22, 33].

Suppose we have the approximate solution Φn
i,j,k of the system (3.3) at the time t=nτ.

We replace Φn
i,j,k with Φ

ν,n
i,j,k (ν≥0), then get the discrete formula of (2.5)

Φ
ν+1,n
i,j,k =Φ

ν,n
i,j,k−ηS(Φ)G(Φ), ν≥0, (3.6)

where

S(Φ)=
Φ

ν,n
i,j,k

√

(Φ
ν,n
i,j,k)

2+|▽Φ
ν,n
i,j,k |

2△x2
,

G(Φ)=











√

max((a+)2,(d−)2)+max((b+)2,(e−)2)+max((c+)2,( f−)2)−1, Φ
ν,n
i,j,k >0,

√

max((a−)2,(d+)2)+max((b−)2,(e+)2)+max((c−)2,( f +)2)−1, Φ
ν,n
i,j,k <0,

0, else,
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with

a=
Φ

ν,n
i,j,k−Φ

ν,n
i−2,j,k

2△x
, b=

Φ
ν,n
i,j,k−Φ

ν,n
i,j−2,k

2△y
, c=

Φ
ν,n
i,j,k−Φ

ν,n
i,j,k−2

2△z
,

d=
Φ

ν,n
i,j,k−Φ

ν,n
i+2,j,k

2△x
, e=

Φ
ν,n
i,j,k−Φ

ν,n
i,j+2,k

2△y
, f =

Φ
ν,n
i,j,k−Φ

ν,n
i,j,k+2

2△z
,

and p+ =max(p,0), p−=min(p,0).

We operate enough many iteration steps to satisfy the numerical requirement

∑
i,j,k

|Φν+1,n
i,j,k −Φ

ν,n
i,j,k|<ǫ, (3.7)

where ǫ is chosen to be 0.01△x.

3.4 Iso-surface extraction

The surface M(t) is represented as level-sets of a higher-dimensional tri-cubic spline
surface. The initial level-set surface is constructed through the Gaussian density map
method. A family of level surfaces is obtained by evolving the level-set function Φ(x,t)
which obeys the rule of the mean curvature specified flow, where t parameterizes the
family and x parameterizes the surface. Therefore, it is easy to extract the desirable SES
as an iso-surface Φ(x,t)=0.

There are a lot of research achievements about the algorithm of the fast and efficient
iso-surface extraction. In this paper we adopted the marching cube method [25] to extract
the iso-surface of our level-set function.

3.5 Localization

The fast localization technique makes the three dimensional problems not difficult. In
this paper, we also implement a local level-set framework to save the computational cost.
The domain we need to solve the level set function is a narrow band neighboring the
interface |Φ| = 0. To perform it, we only need to update the points whose |Φ| is less
than or equal to a certain ǫ when we solve the evolution equation (2.4), and maintain
the level-set function Φ as the signed distance function. We consider the volumetric grid
points with the constraint |Φ|<k△x (k is a integer) as the unknowns to be determined. It
tremendously simplifies the computation of the narrow band. Therefore, our algorithm
demands a relatively small amount of computational resources.

It should be noted that because the initial level-set function values Φ(x,0) generated
from the Gaussian density map method is far away from the signed distance function,
we must apply enough many reinitialization steps to make it to be the signed distance
function.
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(a) (b) (c) (d)

(a′) (b′) (c′) (d′)

Figure 2: In the first row: (a) shows four same atomic spheres uniformly intersecting each other. (b) and (c)
show the envelope of surface for the object constructed using the Gaussian density map method, where we
choose C=−0.3 in (b) and C=−1.4 in (c). (c) shows the more tightly enclosing effect than (b). The envelope
of surface is very close to the vdW surface of the object when we choose a very small constant C in (c). (d)
is the SES of the object generated from our method, where the middle vacant space among these four atomic
spheres disappears, enclosed by the reentrant surface. In the second row: (a′) shows four same atomic spheres
uniformly isolated from each other. (b′) and (c′) show the envelope of surface for the object constructed using
the Gaussian density map method, where we choose C=−0.21 in (b′) and C=−0.34 in (c′). (b′) and (c′) show
the same result of the enclosing effect for the constant C as (b) and (c). (d′) is the SES of the object generated
from our method, where a smooth contour of the water molecular sphere in the middle vacancy among these
four atomic spheres appears, and these four atoms are connected through the smooth reentrant surface. We
use blue to render the contact surface and red to render the reentrant surface in (d) and (d′). The solvent
probe molecular radius is 1.4.

4 Results

In this section, we represent some examples to illustrate the effect of our method.
Fig. 2 shows two examples of four atomic spheres with the same size uniformly in-

tersecting each other and isolated from each other. We represent the envelope of surface
with the different enclosing effect for these objects by choosing the different constant C of
the Gaussian density map method in (b), (c), (b′) and (c′), and their SES generated from
our method in (d) and (d′). It is clear to see that the envelope of surface constructed with
the Gaussian density map method is obviously different from the SES.

Fig. 3 shows a simple real protein molecule 6RXN with 369 atoms. We use different
colors to render the different residues of the molecule in Fig. 3(a). By use of the Gaussian
density map method, we represent three pieces of the envelop of surface for this molecule
with the different inflation effect in (b), (c) and (d). These three figures show the effect
that the envelope of surface more tightly encloses the molecule with the smaller value
of the constant C, as described in Section 3.1. We can see that the envelope of surface of
the molecule shown in (d) is very close to its vdW surface when we choose a very small
constant C. (e) shows the SES of the molecule generated from our method. (f), where
we use the same color system as (a) to render the part of the SES belonging to the vdW
surface of atomic spheres, i.e., contact surface, and red to render the rest, i.e., the reentrant
surface, shows the same SES as (e).
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(a) (b) (c)

(d) (e) (f)

Figure 3: (a) shows a small protein molecule named 6RXN with 369 atoms, whose residues are rendered using
different colors. (b), (c) and (d) show the envelope of surface of the molecule resulted from the Gaussian
density map method, where we choose C =−0.2 in (b), C =−0.8 in (c) and C =−4.0 in (d). It is clear to see
that the inflation effect reduces when the value of the constant C decreases. Finally, the envelope of surface of
this molecule is very approximate to its vdW surface when we choose a very small constant C, as shown in (d).
(e) and (f) show the same result, the SES generated from our method. In (f) we use the same color system as
(a) to render the contact surface of the SES, and red to render the reentrant surface of the SES. The solvent
probe molecular radius is 1.4.

Fig. 4 represents two examples of complex protein molecules. The volumetric grid
size is chosen to be less than one-sixth of the minimal atomic radius so that the grid
resolution guarantees that our level-set function can track every atom. In this figure, we
also represent the envelope of surface of these molecules constructed from the Gaussian
density map method and the SES produced by use of our method. It should be noted that
the envelope of surface generated from the Gaussian density map method is far away
from the real SES no matter how you choose the constant C. However, an appropriate

Table 1: Area resulted from the MSMS software and our method.

PDB Atoms Msms Gpde PDB Atoms Msms Gpde
6RXN 369 2279 2263 1AA2 887 4816 4768
1UCH 1660 8151 8056 2TEC 2526 10294 10170
1HGA 4384 21818 21527 1MAH 4576 18762 18518
1FSS 4689 18724 18481 2C00 6748 29769 29334
2J9G 6865 31572 31066 3ECD 11605 50066 49014

We show ten examples in this table. The first and the fifth columns are the PDB names

for the ten molecules. The second and the sixth columns show the number of their atoms

correspondingly. The third and the seventh columns show the area resulted from the MSMS

software. The forth and the eighth columns show the area resulted from our method. The

solvent probe molecular radius is chosen to be 1.4.
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(a) (a′)

(b) (b′)

(c) (c′)

(d) (d′)

Figure 4: (a) and (a′) are the real protein molecules named 1FSS and 3ECD with 4689 and 11605 atoms
respectively, where we use different colors to render their different residues. (b) and ( c), (c′) and (d′) are their
corresponding envelope of surface resulted from the Gaussian density map method, where we choose C =−0.2
in (b) and (b′), and C =−4.0 in (c) and (c′). You can clearly see the contour of their skin atoms in the third
row. This effect is in contrast with the bigger inflation effect shown in the second row. (d) and (d′) are their
corresponding SES generated from our method. The solvent probe molecular radius is 1.4.

constant C can provide a good initial value for the following equation evolution and
greatly save the computational cost.

In order to further highlight the advantages of our method, we compare our method
with a software called MSMS on ten examples in Table 1. MSMS is a commonly used
method for this kind of computations. We compute the sum of area of all extracted trian-
gular patches of the SES generated from our method, and compare it with the data from
the MSMS software. It shows that our method is reliable.
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5 Discussion and future work

The three-dimensional protein molecules have their individual steric structures, which
are always shaped with their geometric details on the skin of them, and the information
that the molecular structure finally determines the life phenomena tells us the impor-
tance of the accurate and appropriate description for these geometric features. The SES
is a general model characterizing the structural shapes, which expresses to some degree
the physicochemical properties of molecules, and is broadly applied in many areas. Al-
though the approximate surface resulted from the Gaussian density map method is obvi-
ously different from the SES, it provides a good initial approximation construction for our
GPDE evolution. In this paper, the geometric PDE-based local level-set method we use
can precisely model the SES. The geometric PDE is the mean curvature specified flow,
which is derived from the geometric character of the SES. We obtain desirable results.
Further improvement of the efficiency of our method will be under our consideration in
the future.

There are broader applications of the proposed method after we finish this work. For
example, we can use the proposed method to improve the effect of the protein compar-
ison and the classification technique through characterizing the geometric details on the
SES, and the accuracy in predicting and recognizing the docking area of protein-protein
interactions, which is helpful to probe how proteins interact with each other from the
viewpoint of the geometric shape complementarity.
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