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Abstract. This paper introduces a three dielectric layer hybrid solvation model for
treating electrostatic interactions of biomolecules in solvents using the Poisson-
Boltzmann equation. In this model, an interior spherical cavity will contain the solute
and some explicit solvent molecules, and an intermediate buffer layer and an exte-
rior layer contain the bulk solvent. A special dielectric permittivity profile is used to
achieve a continuous dielectric transition from the interior cavity to the exterior layer.
The selection of this special profile using a harmonic interpolation allows an analytical
solution of the model by generalizing the classical Kirkwood series expansion. Discrete
image charges are used to speed up calculations for the electrostatic potential within
the interior and buffer layer regions. Semi-analytical and least squares methods are
used to construct an accurate discrete image approximation for the reaction field due
to solvent with or without salt effects. In particular, the image charges obtained by
the least squares method provide accurate approximations to the reaction field inde-
pendent of the ionic concentration of the solvent. Numerical results are presented to
validate the accuracy and effectiveness of the image charge methods.
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1 Introduction

The study of electrostatic interactions using macroscopic continuum models [5, 11, 17,
26, 40] has been widely conducted for investigating structure, function, and properties
of protein molecules in an aqueous environment. These implicit models characterize
the solvent in terms of macroscopic physical quantities such as dielectric constants and
Debye lengths, and thus greatly reduce the degrees of freedom in comparison with ex-
plicit atomistic solvent models. In macroscopic models, the solute molecule is usually
considered as a uniform low-dielectric medium (with a dielectric constant between one
and four) with a fixed charge distribution, and the solvent is treated as a homogeneous
medium with a high dielectric constant, such as 80 for water. A Linearized Poisson-
Boltzmann (LPB) equation is then solved to obtain the electrostatic potential of the sys-
tem.

Historically, Born [8] first studied the solvation effects for an ion placed at the center of
a spherical region with a low dielectric constant embedded in a high-dielectric medium,
and derived the electrostatic free energy. Onsager [32] extended this study to a dipole.
Both Born and Onsager models are special cases of the results of Kirkwood [25] and Tan-
ford and Kirkwood [38], which represented the solute molecule as a collection of fixed
charges within a spherical cavity. The LPB equation was solved analytically for spherical
geometries in these early studies. More recent work has considered ellipsoids [4,13]. For
an irregular boundary, numerical methods [6,24,28] such as finite difference and finite el-
ement methods in three-dimensional grids must be used. However, numerically solving
the LPB equation is computationally expensive. To analytically treat biomolecules with
general geometries, the hybrid implicit/explicit model using a spherical cavity has been
developed [7, 31]. In addition to the biomolecule solute, such as a protein, the spheri-
cal cavity contains several layers of explicit water molecules to model the interactions
between the solute and solvent molecules.

In previous work, we developed a multiple image charge approximation [9] to the
Kirkwood series solution using numerical quadratures of the line image charge repre-
sentation [18, 27, 29, 30] of the reaction field from pure water. The locations of resulting
image charges are related to Gauss quadrature points. Although less accurate, a single
image charge [19] and its improved version [1] have been widely applied in molecular
dynamic and Monte Carlo simulations [21,33,41]. Employing more images improves the
approximation of the Kirkwood solution, especially closer to the boundary. The method
of multiple discrete images has also been extended to treat the reaction field for ionic
solvents [14, 15, 43] in the case of low ionic strength.

Unfortunately, continuum solvation models with piecewise constant dielectric func-
tions produce unphysical reaction fields within the spherical cavity near the boundary.
This artifact strongly affects the charged solvent molecules (i.e. water) near the boundary.
Inaccurate estimation of the pairwise electrostatic interaction [35] results because of im-
proper electrostatic screening by the high-dielectric solvent. To overcome this drawback,
pairwise electrostatic interactions near the interface have been modeled using a distance-
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dependent effective dielectric constant differing from the two homogeneous phases [16].
The simplest of these models assigns an effective dielectric constant between all pairs of
charged particles as a linear function [42] of their separation distance, but this creates
an inconsistency with the bulk dielectric constant for long-range interactions. Improve-
ments along these lines are obtained by imposing sigmoidal forms [22,23,34,36] of dielec-
tric functions, which approximate the low dielectric constant for short-range interactions
and the bulk dielectric constant of solvent for the long-range interactions. These models
attempt to compensate for the source of inaccuracies, which derive from the sharp inter-
face between two dielectric constants used in the spherical hybrid solvation model [7,31].

The sharp jump in the dielectric permittivity induces a singular reaction field when
an explicit charge within the cavity approaches the interface, which causes the self con-
tribution of the electrostatic solvation energy to diverge. Simply increasing the size of
the spherical cavity and the amount of explicit water within does not eliminate unphys-
ical long range effects that propagate throughout the cavity due to the influence of the
boundary. Details of how to minimize these unwanted effects within molecular dynamic
simulations will be published elsewhere. However, the unphysical boundary effects can
be reduced using a three-layer model [12, 35], which was originally developed by using
an intermediate dielectric constant in a buffer layer. This idea can be further extended to
eliminate any artificial discontinuity. In the present work, a smooth transition layer from
low to high dielectric mediums is proposed to form a new three-layer dielectric model.
The first inner layer defines a spherical cavity with a low dielectric constant, containing
the biomolecule under study and explicit solvent molecules. The second intermediate
layer defines a spherical shell as a buffer zone of solvent described by a dielectric per-
mittivity with a radial distance dependent function. The third layer consists of the bulk
solvent characterized by a high dielectric constant.

The electrostatic potential can be solved everywhere within the first two layers of
the three-layer model by generalizing the Kirkwood series expansion [25] in terms of
Legendre polynomials. From a computational point of view, direct summation of this
series expansion is very expensive, more than the Kirkwood series [3, 39]. However, this
computational cost can be by-passed by using a multiple image charge method for the
three-layer model. In this paper, we will present a fast and accurate method to calculate
the reaction field for a single spherical cavity having a boundary layer to diminish the un-
physical artifacts due to the abrupt transition between dielectric constants inside and out-
side the cavity. We will show that the complexity of solving this three-layer hybrid model
using the method of multiple image charges is no greater than for the hybrid model with
discontinuous change in dielectric at the boundary of the sphere. Specifically, compared
with using exact expansions, the multiple image charge method is computationally much
less expensive when used together with the order N fast multipole method [9, 10].

To proceed in this direction, the first step is to develop the formulas for the image
charges. Herein, two multiple image approaches are developed for the proposed three-
layer model. First, a semi-analytical approach extends the approach of using numerical
quadratures to line images, giving an approximation of the reaction field in an order
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O(h2/a2) where h is the thickness of the buffer layer and a is the inner spherical radius.
Second, a least squares approach minimizing the error of the reaction field is used to op-
timize image charges at pre-defined image locations, which is shown to produce more
accurate results than the semi-analytical approach. Specifically, the image charges ob-
tained by the least squares method provide accurate approximations to the reaction field
independent of the ionic concentration in the solvent. In contrast, the accuracy of our
previously obtained image charges for the reaction field depends on the solvent’s ionic
strength [14, 15, 43].

The rest of the paper is organized as follows: In Section 2, we introduce the three-layer
hybrid solvation model for electrostatics of biomolecules in an aqueous environment, and
discuss the series solution in terms of Legendre polynomials. In Sections 3 and 4, semi-
analytical and least squares methods for finding multiple image charge approximations
are studied. In Section 5, extension to solvents with salt effects is considered. In Section
6, numerical results are given to show the performance of the proposed image methods.
In Section 7, conclusions are made.

2 Three-layer solvation model in non-ionic solvents and its

series solution

A three-layer hybrid solvation model is considered for the electrostatic interactions of
biomolecules in a solvent, which partitions the solute/solvent system into three non-
overlapping parts, as shown in Fig. 1. Inside the interior sphere (r ≤ a), the solute and
solvent molecules are explicitly described by an array of fixed charges, and the dielectric
constant ε i is assumed to be the free-space permittivity or slightly greater (from 1 to 4).
Outside the larger spherical cavity (r≥b), the bulk solvent is represented by a continuum
medium with a high dielectric constant εo. The intermediate layer of implicit solvent
between the two spherical surfaces is considered as a buffer zone [3, 12] with a thickness
h = b−a, and its dielectric permittivity ε(r) is assumed to be dependent on the radial
distance from the origin. With this setting, the electrostatic potential Φ is given by the
following Poisson equation:

▽·(ε i▽Φ(r))=−ρ1(r), r≤ a, (2.1)

▽·(ε(r)▽Φ(r))=0, a< r≤b, (2.2)

△Φ(r)=0, r>b, (2.3)

where ρ1(r)=∑j qjδ(|r−rj |) is the charge distribution inside the interior cavity. Here rj is
the location of charge qj, ▽ and △ are gradient and Laplace operators, respectively.

Without loss of generality, using the linear superposition principle, we consider a sin-
gle source charge q located on the x-axis at a distance rs from the center of the sphere (see
Fig. 1); i.e., in Eqs. (2.1)-(2.3), the charge distribution ρ1(r)=qδ(|r−rs |), where rs =(rs,0,0)
under a spherical coordinate system r=(r,θ,φ). Because of the azimuthal symmetry, the
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Figure 1: Schematic of a point charge q inside the interior sphere of the three-layer dielectric model.

potential Φ(r,θ) in the exterior layer can be expressed as

Φ(r,θ)=
∞

∑
n=0

An

rn+1
Pn(cosθ), for r>b, (2.4)

where Pn(x) are Legendre polynomials of order n, and the constant coefficients An are to
be determined.

On the other hand, for a field point r in the interior layer, i.e., 0≤r≤a, the potential due
to the charge is the potential in free space q/(4πε iR), plus a reaction potential induced
by the polarization of the dielectric medium (|r|> a):

Φ(r,θ)=
q

4πε iR
+

∞

∑
n=0

BnrnPn(cosθ), (2.5)

where R is the distance between the field and source points,

R= |r−rs |=
√

r2
s +r2−2rrs cosθ.

By using the expansion of the reciprocal distance

q

4πε iR
=



















q

4πε ir

∞

∑
n=0

( rs

r

)n
Pn(cosθ), rs ≤ r≤ a,

q

4πε irs

∞

∑
n=0

(

r

rs

)n

Pn(cosθ), 0≤ r≤ rs ,

(2.6)
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Figure 2: The intermediate layer (a<r<b) is divided into several thin shells. The dielectric permittivity ε(r) in
each shell can be considered as a constant.

the total potential inside the interior sphere can be rewritten as

Φ(r,θ)=



















∞

∑
n=0

[

q

4πε ir

( rs

r

)n
+Bnrn

]

Pn(cosθ), rs ≤ r≤ a,

∞

∑
n=0

[

q

4πε irs

(

r

rs

)n

+Bnrn

]

Pn(cosθ), 0≤ r≤ rs.

(2.7)

In the intermediate layer with continuous dielectric constants ε(r), the potential at r

is represented in the following form:

Φ(r,θ)=
∞

∑
n=0

(

Cn(r)rn +Dn(r)r−(n+1)
)

Pn(cosθ), (2.8)

where coefficients Cn(r) and Dn(r) are continuous functions of r, which can be deter-
mined by two differential equations [37]. To obtain these equations, the buffer layer is
decomposed into thin shells (Fig. 2) and at each shell the coefficients Cn, Dn, and dielec-
tric permittivity ε(r) can be approximated by piecewise constants. Consider the l-th and
(l+1)-th shells,

Φl(r,θ)=
∞

∑
n=0

(

Cl
nrn +Dl

nr−(n+1)
)

Pn(cosθ), (2.9a)

Φl+1(r,θ)=
∞

∑
n=0

(

Cl+1
n rn +Dl+1

n r−(n+1)
)

Pn(cosθ). (2.9b)

By using the continuities of the potential and the flux normal to the interface

Φl(r+,θ)=Φl+1(r−,θ), (2.10a)

εl ∂Φl(r,θ)

∂r

∣

∣

∣

∣

r=r+

= εl+1 ∂Φl+1(r,θ)

∂r

∣

∣

∣

∣

r=r−
, (2.10b)
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and the orthogonality of the Legendre polynomials, we have

Cl
nrn+Dl

nr−(n+1) =Cl+1
n +Dl+1

n r−(n+1), (2.11a)

εl
(

nCl
nrn−1−Dl

n(n+1)r−(n+1)
)

= εl+1
(

nCl+1
n rn−1−(n+1)Dl+1

n r−(n+2)
)

. (2.11b)

For an infinitely thin shell, Cl+1
n can be replaced by Cn(r+dr) and Cl

n by Cn(r). The same
steps can be taken for Dl

n, Dl+1
n and εl, εl+1. As the function f (r+dr) can be expressed as

f (r+dr)= f (r)+ f ′(r)dr,

two coupled differential equations can then be obtained:

(2n+1)ε(r)C′
n(r)=−nε′(r)Cn(r)+(n+1)r−(2n+1)ε′(r)Dn(r), (2.12a)

(2n+1)ε(r)D′
n(r)=nr2n+1ε′(r)Cn(r)−(n+1)ε′(r)Dn(r). (2.12b)

By multiplying Eq. (2.12a) by r2n+1, together with Eq. (2.12b), we obtain

D′
n(r)=−r2n+1C′

n(r). (2.13)

By plugging Eq. (2.13) into Eq. (2.12), two second-order differential equations of Cn(r)
and Dn(r) are obtained [37]

rε(r)ε′(r)C′′
n (r)+

(

2n+1)ε(r)ε′(r)+2rε′2(r)−rε(r)ε′′(r)
)

C′
n(r)

+nε′2(r)Cn(r)=0, (2.14a)

rε(r)ε′(r)D′′
n (r)+

(

2rε′2(r)−(2n+1)ε(r)ε′(r)−rε(r)ε′′(r)
)

D′
n(r)

−(n+1)ε′2(r)Dn(r)=0. (2.14b)

Based on these equations, a linear dielectric profile ε(r) = d1 +d2r is natural for making
a continuous transition of the permittivity, where constants d1 and d2 can be determined
by interpolating the values at interface r = a and r = b. However, the obtained functions
Cn(r) and Dn(r), which can be represented by a Taylor series expansion, are inefficient
for computations.

Therefore, we aim to construct a dielectric function in the layer such that all of Cn(r)
and Dn(r) are linearly dependent. Note that if ε(r) satisfies △

√

ε(r)=0 in Eq. (2.2), then
the potential holds

△
(

√

ε(r)Φ(r)

)

=0.

Then, by a simple transform, the potential in the layer can be expressed by

Φ(r,θ)=
1

√

ε(r)

∞

∑
n=0

(

Cnrn+Dnr−(n+1)
)

Pn(cosθ). (2.15)
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Figure 3: Linear (dot line) and (α+
β
r )2 (solid line) dielectric profiles in the intermediate layer.

To match this result, the interpolation with two harmonic functions 1 and 1
r are used to

obtain
√

ε(r)=α+
β

r
, (2.16)

where α,β can be determined by the continuity of the dielectric permittivity at the inter-
face (Fig. 3), say,

α=
−a

√
ε i+b

√
εo

h
,

β=
ab(

√
ε i−

√
εo)

h
.

Together with Eqs. (2.5), (2.7) and (2.15), the expansion coefficients An,Bn,Cn and Dn can
be determined by the continuities of the potentials and the fluxes normal to the bound-
aries, i.e.,

Φ(a+,θ)=Φ(a− ,θ), (2.17a)

ε(a+)
∂Φ(r,θ)

∂r

∣

∣

∣

∣

r=a+

= ε i
∂Φ(r,θ)

∂r

∣

∣

∣

∣

r=a−
, (2.17b)

Φ(b+,θ)=Φ(b−,θ), (2.17c)

εo
∂Φ(r,θ)

∂r

∣

∣

∣

∣

r=b+

= ε(b−)
∂Φ(r,θ)

∂r

∣

∣

∣

∣

r=b−
. (2.17d)

Using the orthogonality of Legendre polynomials, we can obtain An,Bn,Cn and Dn. We
are only interested in the interior layer, where

Bn =
T1

T2
, (2.18)
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and, T1 and T2 are given by

T1 =−
[

a−1−n(
√

ε i−
√

εo)
(

a3+2n(
√

ε i−
√

εo)−a3(
√

ε i−
√

εo)(a+h)2n

−√
εoh3(a+h)2n(1+2n)+a2+2nh

(

−√
εo+2

√
ε i(1+n)

)

−a2h(a+h)2n
(

2
√

ε i+
√

εo(−1+2n)
)

−ah2(a+h)2n
(√

ε i+
√

εo(1+4n)
)

)

]

q
( rs

a

)n
,

T2 =4πε i(a+h)
(

a2+2n(
√

ε i−
√

εo)
2−a2(

√
ε i−

√
εo)

2(a+h)2n

+2a(
√

ε i−
√

εo)
2h(a+h)2n +

√
εoh2(a+h)2n(1+2n)(

√
εo+2

√
ε in)

)

.

In particular, when h=0, it reproduces the Kirkwood’s result [25]:

Bn =
a−1−n(ε i−εo)(1+n)q( rs

a )n

4πε i(εo+ε in+εon)
. (2.19)

3 Semi-analytical multiple image approximation for non-ionic

solvents

We now turn to the problem of finding image charges outside the interior sphere to accu-
rately approximate the reaction field expressed by the series expansion of the Legendre
polynomials. It will be shown that with only a few image charges, rapid and accurate
calculation of the reaction field can be achieved.

3.1 Line image approximation

To obtain a line image, we approximate the reaction field inside the sphere by truncating
the Taylor series expansion at O(h2) in terms of the thickness h of the buffer layer as

ΦRF(r,θ)=
∞

∑
n=0

BnrnPn(cosθ)

=
q

4πε ia

∞

∑
n=0

(

r

ri

)n
{

C1+C2n+
C3

n+ 1−γ
2

+
C4

(n+ 1−γ
2 )2

}

Pn(cosθ)+O
(

h2

a2

)

, (3.1)

where

γ=
ε i−εo

ε i+εo
, ri =

a2

rs
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and Ck for k=1,··· ,4 are constants depending on a, h and γ:

C1 =γ− h

3a

(

1+γ−
√

1−γ2
)

(

5

2
−γ2+(

1

2
+γ)

√

1−γ2

)

,

C2 =− h

3a

(

1+γ−
√

1−γ2
)(

2−γ+
√

1−γ2
)

,

C3 =
γ(1−γ)

2
− h

12a

(

1+γ−
√

1−γ2
)(

1+4γ−3γ3+
√

1−γ2(3γ2−1)
)

,

C4 =− h

24a
(γ−γ3)

(

1+γ−
√

1−γ2
)2

.

By using formula (2.6), the first term in Eq. (3.1) is the contribution of an image charge at
Kelvin image point ri =(ri,0,0), i.e.,

q

4πε ia

∞

∑
n=0

rn

rn
i

Pn(cosθ)=
qri

4πε ia

1

|r−ri|
. (3.2)

For the second term in (3.1), we have

∞

∑
n=0

(

r

ri

)n

nPn(cosθ)

=
∞

∑
n=1

(

r

ri

)n

nPn(cosθ)= r
∂

∂r

(

∞

∑
n=1

(

r

ri

)n

Pn(cosθ)

)

= r
∂

∂r

(

∞

∑
n=0

(

r

ri

)n

Pn(cosθ)

)

= rri
∂

∂r

(

1

|r−ri|

)

. (3.3)

To obtain an image formula of the third term in (3.1), we denote function

f (r,x)=
∞

∑
n=0

( r

x

)n 1

n+ 1−γ
2

Pn(cosθ) for x≥ r. (3.4)

Multiplying both sides by x−
1−γ

2 and differentiating with respect to x, we have

∂

∂x

(

f (r,x)x−
1−γ

2

)

=−
∞

∑
n=0

1

x
1−γ

2 +1

( r

x

)n
Pn(cosθ)=−x−

1−γ
2

1

|r−x| . (3.5)

Taking the integration from ri to ∞, due to f (r,x)→0 as x→∞, we transform the series
into a line image:

∞

∑
n=0

(

r

ri

)n 1

n+ 1−γ
2

Pn(cosθ)= f (r,ri)=
∫ ∞

ri

(

x

ri

)− 1−γ
2 1

|r−x| dx. (3.6)
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Similarly, the fourth term in (3.1) can also be represented by a line image as follows. Let

ϕ(r,x)=
∞

∑
n=0

1
(

n+ 1−γ
2

)2

( r

x

)n
Pn(cosθ), for x≥ r, (3.7)

g(r,x)=
∂

∂x

(

ϕ(r,x)x−
1−γ

2

)

. (3.8)

Calculating the differentiation in g(r,x), we have

g(r,x)=−
∞

∑
n=0

x−(n+ 1−γ
2 +1)

n+ 1−γ
2

rnPn(cosθ). (3.9)

Multiplying g by x and taking the derivative with respect to x yields:

∂

∂x
(xg(r,x))=

∞

∑
n=0

x−(n+1+ 1−γ
2 )rnPn(cosθ)= x−

1−γ
2

1

|r−x| . (3.10)

Again, taking the integration from x to ∞, because of

ϕ(r,x), ϕ′
x(r,x)→0 as x→∞,

we get

g(r,x)=−1

x

∫ ∞

x
t−

1−γ
2

1

|r−t|dt, (3.11)

with vector t =(t,0,0). With a simple calculation, we also have

ϕ(r,ri)r
− 1−γ

2

i =
∫ ∞

ri

1

x

∫ ∞

x
t−

1−γ
2

1

|r−t|dtdx

=
∫ ∞

ri

t−
1−γ

2

|r−t|
∫ t

ri

1

x
dxdt=

∫ ∞

ri

t−
1−γ

2 ln t
ri

|r−t| dt. (3.12)

We thus obtain the line image from the Kelvin point ri to infinity:

∞

∑
n=0

1
(

n+ 1−γ
2

)2

(

r

ri

)n

Pn(cosθ)=
∫ ∞

ri

(

x
ri

)− 1−γ
2

ln x
ri

|r−x| dx. (3.13)

Finally, we obtain the image charge approximation to the reaction field, which consists of
two Kelvin images plus two line images from the Kelvin point to the infinity, as,

ΦRF(r,θ)=W1
qi1

4πε i|r−ri|
−W2

qi1

4πε i
r

∂

∂r

(

1

|r−ri|

)

+W3

∫ ∞

ri

qi2(x)

4πε i|r−x| dx−W4

∫ ∞

ri

qi2(x)ln x
ri

4πε i|r−x| dx+O
(

h2

a2

)

, (3.14)
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where

qi1 =γ
a

rs
q, qi2 =

q

a

γ(1+γ)

2

(

x

ri

)− 1−γ
2

, γ=
ε i−εo

ε i+εo
,

and

W1 =1− 1

3γ

(

1+γ−
√

1−γ2
)

(

5

2
−γ2+

(

γ+
1

2

)

√

1−γ2

)

h

a
,

W2 =
1

3γ

(

1+γ−
√

1−γ2
)(

2−γ+
√

1−γ2
)h

a
,

W3 =1− 1+γ−
√

1−γ2

3γ(1+γ)
· 1+4γ−3γ3+(3γ2−1)

√

1−γ2

2

h

a
,

W4 =
1

12

(

1+γ−
√

1−γ2
)(

1−γ2+(γ−1)
√

1−γ2
)h

a
.

3.2 Discretization of the line image charges

In order to discretize the line image charges into multiple point charges, we use a numer-
ical quadrature rule to approximate the following integral

I =
∫ ∞

ri

1

|r−x|

(

x

ri

)− 1−γ
2

dx. (3.15)

By changing variable ri
x =

(

1−s
2

)τ
with τ >0, we have,

I =τ2
γ−1

2 τ
∫ 1

−1
(1−s)α ·h(r,s;τ)ds, (3.16)

where

α=
(1−γ)τ

2
−1, h(r,s;τ)=

2τri

|(1−s)τr−2τri|
. (3.17)

We use the Gauss-Radau quadrature [9,15] which is based on Jacobi polynomials P
(α,β)
n (s)

orthogonal on the interval (−1,1) with the weight function

w(α,β)(s)=(1−s)α(1+s)β,

i.e.,
∫ 1

−1
(1−s)α(1+s)βP

(α,β)
j (s)P

(α,β)
k (s)ds=δjk , (3.18)

where α >−1, β >−1. Take s0 =−1, α =(1−γ)τ/2−1 and β =0, and denote the Jacobi-
Gauss-Radau points and weights by sm,ωm, for m=0,1,2,··· ,M, which can be generated
by the package ORTHPOL [20]. The integral I is then discretized as

I≈τ2
γ−1

2 τ
M

∑
m=0

ωmh(r,sm;τ). (3.19)
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Thus, for the line image charges, we have,

∫ ∞

ri

qi2(x)

4πε i|r−x| dx≈
M

∑
m=0

qm

4πε i|r−xm |
, (3.20)

∫ ∞

ri

qi2(x)ln x
ri

4πε i|r−x| dx≈
M

∑
m=0

qm ln xm
ri

4πε i|r−xm |
, (3.21)

where

qm =2
γ−1

2 τ−1γ(1+γ)τωmq
xm

a
, and xm = ri

(

2

1−sm

)τ

. (3.22)

Therefore, multiple image charges approximation to the reaction field due to the point
charge at rs is obtained:

ΦRF(r)≈W1
qi1

4πε i|r−ri|
−W2

qi1

4πε i
r

∂

∂r

(

1

|r−ri|

)

+
M

∑
m=0

(W3−W4 ln xm
ri

)qm

4πε i|r−xm|
,

where the derivative of the Kelvin image with respective to r can be expressed as:

r
∂

∂r

(

1

|r−ri|

)

=
r2

i −r2

2|r−ri |3
− 1

2|r−ri|
. (3.23)

4 Least squares multiple image approximation

An alternative to the semi-analytical approach is the least squares method to obtain
the multiple image approximation. In this procedure, we fix the locations of all image
charges as given in (3.22), and their strengths are to be determined by minimizing the
least squares error with respect to the exact series solution. The advantage of this method
is that the details of the functional form of an integrand does not affect the choice of
the Gauss-quadrature points. Only the overall scaling properties of the function are im-
portant, but these are captured well knowing the analytical solution that was presented
above (i.e. Jacobi-Gauss-Radau quadrature). Moreover, the least squares error method
attempts to spread the error uniform throughout the cavity. The question we will answer,
and demonstrated by numerical examples (see below) is: How will the least squares so-
lution for the image charges compare to the semi-analytical method?

We first assume that the potential is given as follows:

Φ(r)=
q

4πε i|r−rs|
+

M

∑
m=0

qm

4πε i|r−xm|
. (4.1)

The least squares method is used to find the charge strengths by minimizing the L2-error
of the reaction potential induced by the discrete images,

Err(q)=
N

∑
n=1

(

M

∑
m=0

qm

4πε i|rn−xm|
−ΦRF(rn)

)2

, (4.2)
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where rn for n = 1,··· ,N are N field points inside the interior sphere. Our least squares
procedure amounts to finding q0 =(q0

0,··· ,q0
M), such that

Err(q0)=min(Err(q)).

Taking the derivative with respective to ql,

∂Err

∂ql
=0, for l =0,··· ,M,

we obtain a linear algebraic system with M equations:

M

∑
m=0

(

N

∑
n=1

1

|rn−xm||rn−xl|

)

qm

4πε i
−

N

∑
n=1

ΦRF(rn)

|rn−xl |
=0, l =0,··· ,M.

The strengths of the image charges can then be determined by solving the linear system
for each source charge inside the interior sphere. A table of image charges and their lo-
cations for discrete source points can be made for practical simulations, where the image
charges at any location rs can be interpolated from the data in the table.

5 Multi-image approximation of reaction fields in ionic solvents

Extension of the three-layer model to solvents with salt effects is based on the following
model,

▽·(ε i▽Φ(r))=−ρ1(r), r≤ a, (5.1)

▽·(ε(r)▽Φ(r))−λ2εoΦ(r)=0, a< r≤b, (5.2)

△Φ(r)−λ2Φ(r)=0, r≥b, (5.3)

where the Poisson equations for bulk solvents have been replaced by the Poisson-Boltzmann
equations, and λ is the inverse Debye screening length.

The dielectric function ε(r) = (α+β/r)2 in the buffer layer (a≤ r≤ b) is still used as
before. Again, only one source charge at location rs =(rs,0,0) for rs < a is considered, i.e.,
ρ1(r)= qδ(r−rs). Due to the azimuthal symmetry, the potential at an observation point
r=(r,θ,φ) can be represented by

Φ(r,θ)=























































∞

∑
n=0

[

q

4πε i

1

rs

(

r

rs

)n

+Bnrn

]

Pn(cosθ), 0≤ r≤ rs,

∞

∑
n=0

[

q

4πε i

1

r

( rs

r

)n
+Bnrn

]

Pn(cosθ), rs ≤ r≤ a,

1
√

ε(r)

∞

∑
n=0

[Cnkn(λ
√

εor)+Dnin(λ
√

εor)]Pn(cosθ), a≤ r≤b,

∞

∑
n=0

Ankn(λr)Pn(cosθ), r≥b,

(5.4)
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where in(r) and kn(r) are the first and the second kind of modified spherical Bessel func-
tions [2] defined recursively by































i0(r)=
sinh(r)

r
,

i1(r)=−sinh(r)

r2
+

cosh(r)

r
,

in(r)= in−2(r)− 2n−1

r
in−1(r), for n>1,

(5.5)

and






























k0(r)=
π

2r
e−r,

k1(r)=
π

2r
e−r

(

1+
1

r

)

,

kn(r)= kn−2(r)+
2n−1

r
kn−1(r), for n>1.

(5.6)

The expansion coefficients Bn are determined by the continuity of the potentials and the
fluxes normal to the boundaries (2.17a)-(2.17d), which are given by

Bn =
qa−1

(

rs
a2

)n

4πε i

S1

S2
, (5.7)

where

S1 =−in(t2)
(

αkn(u)−b(α+bβ)λk′n(u)
)

s11+
(

(2+n)α+a(1+n)β
)

in(t1)s12

−t2(α+bβ)i′n(t2)kn(u)s11+t1(α+aβ)i′n(t1)s13, (5.8)

S2 =in(t2)
(

αkn(u)−b(α+bβ)λk′n(u)
)

s21+(−α+nα+anβ)in(t1)s12

+t2(α+bβ)i′n(t2)kn(u)s21−t1(α+aβ)i′n(t1)s13. (5.9)

Here,

s11 =
(

(2+n)α+a(1+n)β
)

kn(t1)+t1(α+aβ)k′n(t1), (5.10a)

s12 =−b(α+bβ)λkn(t2)k′n(u)+kn(u)
(

αkn(t2)+t2(α+bβ)k′n(t2)
)

, (5.10b)

s13 = kn(t2)
(

αkn(u)−b(α+bβ)λk′n(u)
)

+t2(α+bβ)kn(u)k′n(t2), (5.10c)

s21 =(α−nα−anβ)kn(t1)+t1(α+aβ)k′n(t1), (5.10d)

and
u=λb=λ(a+h), t1 = a

√
εoλ, t2 =b

√
εoλ.

With the analytical formula, the algorithm of using the least squares error approach to
find the multiple image charges is the same as that of the case of pure water solvent.
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For the ionic solvent, we will show in the numerical examples that the accuracy of the
image charge approximation based on the least squares approach does not depend on
ionic strength, which was a limitation in our previous image method for ionic solvent
using an analytical approach [15, 43].

6 Numerical examples

In this section, we will numerically investigate the performance of the multiple image
approximations of both semi-analytical and least squares approaches to the reaction field.
Unless otherwise specified, the dielectric constants for the interior and exterior layers are
set to be ε i = 2 and εo = 80. Also, the single unit point charge (q = 1) is located on the
x-axis inside the interior sphere at a distance rs < a from the common center of the two
spheres. The radius of the interior sphere is assumed to be dimensionless, a = 1. For
the least squares approach, we choose field points (r,θ,0) with uniform distribution for
r=0, 0.1,··· ,0.8 and θ =0, π

5 ,··· , 9π
5 , and the cutoff error for calculating the exact reaction

field is chosen to be 10−8, i.e.,

Φexact
RF ≈

N

∑
n=0

BnrnPn(cosθ),

where the (N+1)-term and (N+2)-term are both less than this number.

6.1 Numerical results for pure water solvents

First, we compute the L2-norm relative error of both approaches with the thickness of the
buffer zone set as h=b−a=0.1 and 0.01, where the error is defined by

||E||2 =

(

∑i,j |ΦRF(ri,θj)−Φ̂RF(ri,θj)|2
)

1
2

(

∑i,j |ΦRF(ri,θj)|2
)

1
2

(6.1)

for ΦRF(ri,θj) and Φ̂RF(ri,θj) being the reaction fields computed from the series solution
and image approximation, respectively, and the points (ri,θj) chosen from [0,0.8] with a

step 0.05 and [0,2π) with a step 2π
20 . The results are illustrated in Figs. 4 and 5. It can be

seen that for relatively large h even using M+1= 10 image charges, the semi-analytical
approximation has error between 0.1% and 1%, and its performance is improved with
the decrease of the thickness h according to the O(h2/a2) truncation error. In contrast,
the error using the least squares approach is sharply reduced with the increase of the
image number; when M = 9, it reaches a quite small magnitude around 10−5% for both
h = 0.1 and 0.01 cases. These results show that the semi-analytical approach is usually
acceptable in simulations, but in order to simulate a system requiring high accuracy, the
least squares method should be used.
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Figure 4: Semi-analytical vs. least squares image charge methods. Accuracy of the reaction field for the source
charge located rs =(rs,0,0) with discrete image charges number M+1=2 and 10 including the Kelvin image.
Left: h=0.1; right: h=0.01.
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Figure 5: Semi-analytical vs. least squares image charge methods. Left: accuracy with the thickness of the
buffer layer h = b−a with the source location rs = 0.4, using 2 and 10 discrete image charges; right: accuracy
with the number of discrete image charges.
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Figure 6: Spatial distribution of the errors by using the least squares approximation with 2 discrete image
charges. Left: 21 observation points on the x-axis; right: 21 observation points on the y-axis.
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Table 1: Locations and strengths of image charges by the least squares approach with a=1, h=0.1, ε i =2. The
first image charge q1 is located at the Kelvin point x1, and the second image charge q2 with location x2.

rs: source point charge location
εo 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q1 -87.952 -8.793 -4.394 -2.926 -2.191 -1.748 -1.452 -1.239 -1.077 -0.947
50 x1 100.000 10.000 5.000 3.333 2.500 2.000 1.667 1.429 1.250 1.111

q2 -24.725 -2.479 -1.250 -0.845 -0.647 -0.533 -0.462 -0.417 -0.392 -0.387
x2 375.010 37.501 18.751 12.500 9.375 7.500 6.250 5.357 4.688 4.167
q1 -89.364 -8.935 -4.465 -2.973 -2.226 -1.777 -1.476 -1.260 -1.096 -0.964

60 x1 100.000 10.000 5.000 3.333 2.500 2.000 1.667 1.429 1.250 1.111
q2 -22.106 -2.217 -1.118 -0.756 -0.580 -0.478 -0.415 -0.375 -0.354 -0.350
x2 371.846 37.185 18.592 12.395 9.296 7.437 6.197 5.312 4.648 4.132
q1 -90.421 -9.040 -4.518 -3.009 -2.253 -1.799 -1.495 -1.276 -1.110 -0.978

70 x1 100.000 10.000 5.000 3.333 2.500 2.000 1.667 1.429 1.250 1.111
q2 -20.122 -2.018 -1.018 -0.689 -0.529 -0.436 -0.379 -0.343 -0.324 -0.322
x2 369.603 36.960 18.480 12.320 9.240 7.392 6.160 5.280 4.620 4.107
q1 -91.246 -9.123 -4.559 -3.037 -2.274 -1.816 -1.509 -1.289 -1.121 -0.988

80 x1 100.000 10.000 5.000 3.333 2.500 2.000 1.667 1.429 1.250 1.111
q2 -18.557 -1.862 -0.939 -0.636 -0.488 -0.403 -0.350 -0.318 -0.301 -0.300
x2 367.929 36.792 18.396 12.264 9.198 7.359 6.132 5.256 4.599 4.088

As shown in Fig. 5, we see that a small number of discrete image charges is enough to
provide a high-accurate approximation to the reaction field, which shows the advantage
of using the image method in comparison with directly truncating the series solution.
For M=2, the error magnitude of the least squares approach has already reached 0.01%,
and for M = 3, it is 0.001%. In Table 1, we list data of the positions and strengths of the
image charges for different exterior dielectric constants and source locations. In Fig. 6,
we plot the spatial distribution of the relative errors of the least squares image charge
approximation along x- and y-axes, where two image charges are used and we can see
the maximum error appears near the spherical boundary. Although the absolute devia-
tion between the exact solution from the series expansion and the multiple image charge
method based on least squares is always small, the sign of the deviations are sometimes
positive or negative. Since the approximate solution is not always over-estimating or al-
ways under-estimating the exact solution, there will inevitably be places within the cavity
that the two solutions will be exactly equal. When this happens the relative error is zero.
The peaks (extra high accuracy) seen in Fig. 6 reflect regions where this accidental zero
error situation occurs.

The proposed harmonic form for ε(r) shown in Fig. 3 allowed finding an analytical
solution relatively easy, and its form is close to a linear interpolation. To observe how
much difference there is from a model that linearly interpolates, the linear form is ap-
proximated using a certain number of uniform steps. The relative L2 errors for both the
harmonic and discretized-stepped linear forms with respect to the analytical potential
with no buffer zone are shown in Fig. 7. It is found that the relative errors within the in-
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Figure 7: Relative L2 error of various models with different dielectric profiles in the buffer zone compared to the
no-buffer zone model. For rs =0.4, the harmonic profile; and linear profile using n piecewise dielectric constants.

ner sphere (r < a) are relatively small with respect to the original no-buffer layer model.
In this sense, the exact details of the form of ε(r) seem not to matter much. On the other
hand, on the scale of overall relative errors between the various models, it is clear that
removing finite jumps in the dielectric constant is influential. More importantly, it is the
unphysical characteristics near the boundaries that we are interested in removing. These
results suggest that a continuous harmonic function has the advantage to maintain a con-
tinuous form for ε(r) within the buffer zone, which will eliminate unwanted artifacts near
the boundary caused by discrete jumps, while providing similar results in the interior of
the cavity as the no-buffer zone case.

6.2 Numerical results for ionic solvents

For the case of solvents with salt effects, we choose field points (r,θ,0) with uniform dis-
tribution for r=0,0.05,··· ,0.8 and θ=0, π

10 ,··· , 19π
10 during the least squares procedure. And

the cutoff error of the exact reaction fields is chosen as 10−7. The results are illustrated in
Figs. 8-10 where two image charges are used, the inverse Deybe length is fixed to equal
1 (i.e., u = λb = 1), and the buffer thickness is 0.1. Fig. 8 plots the error distribution in
space along x- and y-axes and due to the same reason as in pure water, the approximate
numerical potential matches the analytical potential at the spikes. Figs. 9 and 10 show
the error versus the source location, the image charge number, the buffer thickness, and
the ionic concentration. These results agree with those of the pure water case, and show
the attractive accuracy of the least squares approach in approximating the series solution
of the reaction field model. In particular, it can be seen in the right picture of Fig. 10
that the error of the multiple image charge approximation remains small for arbitrary
ionic concentration, which dramatically improves our previous results on image charge
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Figure 8: Spatial distribution of the errors by using the least squares approximation with 2 discrete image
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approximations with the semi-analytical approaches [14, 15, 43], for two-layer dielectric
model, where the accuracy of the semi-analytical image charge approximation is limited
by not only the number of image charges but also by the ionic concentration. As a final
note, the L2 errors we show is for a single point source. This error is the most relevant
in comparing models because it is independent of system details. Nevertheless, we have
not found any accumulated errors when the cavity consists of many source charges. In
real applications, if anything, random error distribution works in the favor of the image
method.

7 Conclusions

In this paper, we propose a three-layer dielectric solvation model for the electrostatic
computation of biomolecules in solvents (with or without salt effects), where the dielec-
tric profile within the buffer zone depends on the radial distance. The analytical solution
in series form is obtained by generalizing the classical Kirkwood expansion. Two ap-
proaches for finding multiple image charges to approximate the reaction field are devel-
oped, and numerical examples are performed to validate the accuracy and effectiveness
of the image charge methods. These mathematical investigations are the first step of
the applicability of the three-layer model, for which a range of test and calibration, in-
cluding selecting the optimal thickness of the buffer layer and a comparative study of
accuracy and speed performances, are underway. Regardless of what is determined to be
the optimal dielectric profile for minimizing artifacts near the boundary of the cavity, the
method of multiple image charges will provide a computationally accurate and efficient
representation of the reaction field. Moreover, the least squares method allows numerical
solutions to be obtained with high accuracy when exact analytical forms are not possible
to obtain nor easy to implement numerically.
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