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Abstract. In this study, a stable and robust interface-capturing method is developed
to resolve inviscid, compressible two-fluid flows with general equation of state (EOS).
The governing equations consist of mass conservation equation for each fluid, momen-
tum and energy equations for mixture and an advection equation for volume fraction
of one fluid component. Assumption of pressure equilibrium across an interface is
used to close the model system. MUSCL-Hancock scheme is extended to construct
input states for Riemann problems, whose solutions are calculated using generalized
HLLC approximate Riemann solver. Adaptive mesh refinement (AMR) capability is
built into hydrodynamic code. The resulting method has some advantages. First, it is
very stable and robust, as the advection equation is handled properly. Second, gen-
eral equation of state can model more materials than simple EOSs such as ideal and
stiffened gas EOSs for example. In addition, AMR enables us to properly resolve flow
features at disparate scales. Finally, this method is quite simple, time-efficient and easy
to implement.
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1 Introduction

Numerical simulation of compressible multi-fluid flows has attracted much attention
during the past few decades because they widely exist in nature and industrial applica-
tions. However, direct application of existing high-resolution methods such as Godunov-
type and WENO schemes to these flows gives rise to unphysical pressure oscillations on
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material interfaces. This problem was solved by Abgrall by assuming pressure equilib-
rium across a material interface [2]. Since then, much progress has been made by follow-
ing the work of Abgrall, refer to [3,8,13–17,23,25,26], etc. All these methods including the
one developed in this study are based on volume fraction formulation and belong to the
interface-capturing family. In other words, the interfaces are not tracked accurately, but
allowed to diffuse numerically over a few grid cells. The fluids are marked by volume
fraction of one component. In transition layers between two components, value of vol-
ume fraction lies between 0 and 1 and a mixture or artificial equation of state (EOS) needs
to be introduced to model the mixture. Compared with other methods like interface-
tracking, volume of fluid, and level-set methods, the interface-capturing method is easier
to implement but less accurate. The interface-tracking can accurately track the material
interfaces without introducing numerical diffusion. The volume of fluid reconstructs the
interfaces using complicated interpolation schemes. Although accurate, the two methods
will be very complex when applied to three-dimensional problems and cases with drastic
topological changes. The level-set method is simple but not discretely conservative. The
present interface-capturing method is less accurate as it may admit excessive numerical
diffusion on the interfaces. However, we can use adaptive mesh refinement (AMR) to
improve resolution. This method can be easily applied to three-dimensional problems
and those with complex EOS. See [3, 8] and references cited therein for comparison of
different methods.

Although much research has been devoted to resolution of multi-fluid flows, few
studies have been done on fluids modeled by general or complex EOS. In this study, we
concentrate on extension of MUSCL-Hancock scheme, HLLC Riemann solver and AMR
to treatment of flows with Mie-Grüneisen EOS, which includes cases of stiffened gas, van
der Waals, Jones-Wilkins-Lee EOSs, etc. These EOSs can model a wide range of real ma-
terials in practice, but they also introduce difficulties into numerical algorithm. In our
method, mass of each fluid is conserved because material parameters in the mixture EOS
depend on the partial densities. However, only the momentum and energy equations for
the mixture are included. The material interfaces are identified using the volume fraction,
which obeys an advection equation. Physically, the volume fraction is passively advected
at local speed. Nevertheless, some of methods in the literature update value of the vol-
ume fraction according to the velocity field at previous time step. This, however, can lead
to unphysical partial densities and failure of calculations under certain situations. To rec-
tify this problem, in this study, the modified HLLC Riemann solver developed in [8] is
generalized to construct numerical fluxes, particularly those of the advection equation.
Since these fluxes are constructed using solutions of Riemann problems and information
of the velocity field at present time step has been taken into account, the volume fraction
is advected properly. The resulting scheme is stabler than others. In addition, HLLC is
less expensive computationally than other algorithms like two-shock solver where iter-
ation is needed in finding solution, and therefore, our method is time-efficient. In this
study, MUSCL-Hancock scheme is extended to construct input states for the Riemann
problems. This scheme with minmod limiter proves to be very robust and easy to imple-
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ment.

In this study, physical effects including surface tension, viscosity and heat transfer on
the material interfaces are ignored as the simplified model equations are used. However,
our method can be generalized to problems where viscosity should be considered. In fact,
using the operator splitting [1, 4], the inviscid and viscous parts of governing equations
can be handled separately in each time step. The former is solved using the present
method and the latter is dealt with using an explicit central difference scheme.

Typically, solution of a compressible flow contains various flow features including
steep gradients such as shocks and contact discontinuities for example and complex
smooth structures. But many methods use an uniform grid and to capture fine flow struc-
tures, a very fine grid is needed. In this study, we employ AMR to sufficiently resolve
these features at disparate scales and to reduce computational cost. The AMR algorithm
used here is based on logically Cartesian block-structured grid [11]. As many restrictions
are imposed, the resulting algorithm is easier to implement and data organization as well
as programming are also simplified significantly.

This paper is organized as follows. In Section 2, the governing equations and EOSs
are presented. In Section 3, the numerical method is discussed in detail. Issues related
to AMR are addressed in Section 4. This method is validated on a set of test problems in
Section 5. Finally, conclusion is given in Section 6.

2 Governing equations

The governing equations for inviscid, compressible two-fluid flows read

∂

∂t
(Y(1)ρ(1))+∇·(Y(1)ρ(1)v)=0,

∂

∂t
(Y(2)ρ(2))+∇·(Y(2)ρ(2)v)=0,

∂(ρv)

∂t
+∇·(ρvv+pI)=0,

∂(ρE)

∂t
+∇·[(ρE+p)v]=0,

∂Y(1)

∂t
+v·∇Y(1) =0,

(2.1)

where ρ(1) and ρ(2) are the partial densities of fluids 1 and 2, respectively; p is the pres-
sure, v is the vector of velocity and E = e+ 1

2 v·v is the total energy per unit mass with e

being the internal energy; Y(1), the volume fraction of fluid 1, lies in the interval [0,1] and
satisfies relation Y(1)+Y(2) =1. The total density, momentum and energy of the mixture
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are defined as

ρ=
2

∑
k=1

Y(k)ρ(k), ρv=
2

∑
k=1

Y(k)ρ(k)v(k), (2.2a)

ρE=
2

∑
k=1

(

Y(k)ρ(k)e(k)+
1

2
Y(k)ρ(k)(v(k))2

)

. (2.2b)

In [3], Allaire et al. proved consistency, hyperbolicity and existence of a mathematic
entropy of the model system (2.1). For simplicity, this procedure is not repeated here.

Next, a mixture EOS needs to be derived to close (2.1). Here, each of the fluids is
modeled by Mie-Grüneisen EOS,

p(ρ,e)=Γ(ρ)[ρe−ρeref(ρ)]+pref(ρ). (2.3)

This EOS is referred to as general EOS as it can produce the following six types of EOSs:

(1) Ideal gas EOS










Γ(ρ)=γ−1,

pref(ρ)=0,

eref(ρ)=0;

(2.4)

(2) Stiffened gas EOS










Γ(ρ)=γ−1,

pref(ρ)=−γπ,

eref(ρ)=0;

(2.5)

(3) van der Waals EOS


















Γ(ρ)=
γ−1

1−bρ
,

pref(ρ)=−aρ2,

eref(ρ)=−aρ;

(2.6)

(4) Jones-Wilkins-Lee EOS



























Γ(ρ)=Γ0,

eref(ρ)=
A

R1ρ0
exp

(

−R1ρ0

ρ

)

+
B

R2ρ0
exp

(

−R2ρ0

ρ

)

−e0,

pref(ρ)=Aexp

(

−R1ρ0

ρ

)

+Bexp

(

−R2ρ0

ρ

)

;

(2.7)
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(5) Cochran-Chan EOS































Γ(ρ)=Γ0,

eref(ρ)=
−A

ρ0(1−ε1)

[

(

ρ0

ρ

)1−ε1

−1

]

+
B

ρ0(1−ε2)

[

(

ρ0

ρ

)1−ε2

−1

]

−e0,

pref(ρ)=A

(

ρ0

ρ

)−ε1

−B

(

ρ0

ρ

)−ε2

;

(2.8)

(6) Shock-Wave EOS


































Γ(ρ)=Γ0

(

V

V0

)α

, V =
1

ρ
, V0 =

1

ρ0
,

pref(ρ)= p0+
c2

0(V0−V)

[V0−s(V0−V)]2
,

eref(ρ)= e0+
1

2
[pref(ρ)+p0](V0−V).

(2.9)

These EOSs can model a wide range of real materials. Stiffened gas EOS, for example,
is suitable for gas, liquid and solid under high pressure; van der Waals EOS takes into
account real-gas effect because molecular cohesive forces and size of molecules are con-
sidered; Cochran-Chan EOS can also characterize solid under strong shock, but is more
accurate than stiffened gas EOS. For more details of these EOSs, the reader is referred
to [3, 14, 16].

It is well known that the challenging problem in simulation of multi-fluid flows is
to eliminate pressure oscillations on the material interfaces. Cause of these oscillations
was identified first by Abgrall [2]. The basic idea of Abgrall is to assume that there is no
pressure jump across a material interface separating two fluids, i.e.,

p(1) = p(2) = p.

This assumption is key to oscillation-free schemes design and also adopted here.
It is easy to verify that Mie-Grüneisen EOS (2.3) can be rewritten as

p(ρ,ρe)=(γ(ρ)−1)ρe−γ(ρ)π(ρ), (2.10)

where

γ(ρ)=Γ(ρ)+1, π(ρ)=
Γ(ρ)ρeref(ρ)−pref(ρ)

Γ(ρ)+1
.

It is also assumed that the velocity does not vary across a material interface, namely
v(1) = v(2) = v. Then, according to Eq. (2.2b), the internal energy of the mixture is given
by

ρe=∑
k

Y(k)ρ(k)e(k) =∑
k

Y(k) p(k)+γ(k)(ρ(k))π(k)(ρ(k))

γ(k)(ρ(k))−1
. (2.11)
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If the pressure of the mixture is related to its density and internal energy through a mix-
ture EOS p=(γ−1)ρe−γπ, then through using p(1) = p(2) = p, Eq. (2.11) can be split into
the following two equalities,

1

γ−1
=∑

k

Y(k)

γ(k)(ρ(k))−1
,

γπ

γ−1
=∑

k

Y(k) γ(k)(ρ(k))π(k)(ρ(k))

γ(k)(ρ(k))−1
. (2.12)

In calculations, we first evolve governing equations (2.1), and then values of ρ(1), ρ(2), v, e
and Y(1) follow. Next, γ and π in above two equalities are computed. Finally, solution to
the pressure of the mixture is found through p=(γ−1)ρe−γπ. At this point, the model
system (2.1) is complete with the mixture EOS.

A quantity frequently used is the sound speed of the mixture, which can be derived in
a straightforward manner according to its definition. In the case of Mie-Grüneisen EOS,
the sound speed is given by

c2 =(γ−1)∑
k

z(k)(c(k))2

γ(k)−1
, (2.13)

where z(k) is mass fraction of fluid k and defined as z(k) =(Y(k)ρ(k))/(∑Y(k)ρ(k)).

3 Numerical method

In this paper, the classical MUSCL-Hancock scheme is extended to construct input states
for Riemann problems. MUSCL scheme is the second-order extension of Godunov’s first
order upwind method. It is introduced by van Leer by representing variables distribu-
tions as linear functions in each grid cell [21]. MUSCL scheme is simplified significantly
by Hancock and the resulting algorithm is called MUSCL-Hancock scheme, which is of
predictor-corrector type [22]. Here, we reconstruct the primitive variables rather than
conserved variables so as to maintain pressure equilibrium. HLLC Riemann solver is
generalized to calculate numerical fluxes including those for the advection equation. As
the volume fraction is advected properly, the present scheme is stabler than some of other
methods. Multi-dimensional problems are handled using Strang splitting.

3.1 Variables reconstruction

We only concentrate on one-dimensional case since multi-dimensional problems can
be treated dimension by dimension using Strang splitting [18]. The augmented one-
dimensional governing equations in x direction can be expressed in terms of primitive
variables as

Wt+AWx =0, (3.1)
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where W =(Y(1)ρ(1),Y(2)ρ(2),u,v,w,p,Y(1)) is the vector of primitive variables. The Jaco-
bian matrix of the system takes the form

A=























u 0 Y(1)ρ(1) 0 0 0 0

0 u Y(2)ρ(2) 0 0 0 0

0 0 u 0 0 1
ρ 0

0 0 0 u 0 0 0
0 0 0 0 u 0 0
0 0 ρc2 0 0 u 0
0 0 0 0 0 0 u























, (3.2)

where c is the sound speed defined in Eq. (2.13).
In each cell i, Ii = [xi−1/2,xi+1/2], the reconstructed primitive variables distributions

are linear functions,

Wi(x)=Wn
i +

(x−xi)

∆x
∆i, x∈ [xi−1/2,xi+1/2], (3.3)

where ∆x= xi+1/2−xi−1/2 and ∆i is a chosen slope vector

∆i =minmod(Wi−Wi−1,Wi+1−Wi), (3.4)

where minmod limiter is defined as minmod(x,y)= 1
2(sign(x)+sign(y))min(|x|,|y|). The

interface values of Wi(x),

Wi−1/2,R =Wn
i −

1

2
∆i, Wi+1/2,L =Wn

i +
1

2
∆i. (3.5)

Next, the solution is advanced by the half time step

Wn+1/2
i =Wn

i −
∆t

2∆x
A∆i. (3.6)

This is called predictor step. Then, using the old gradient ∆i, the interface values in cell i
are given by

W̃i−1/2,R =Wn
i −

1

2
(I+

∆t

∆x
A)∆i, W̃i+1/2,L =Wn

i +
1

2
(I−

∆t

∆x
A)∆i, (3.7)

where I is the identity matrix of size 7. These interface values are the required input
states for the Riemann problems.

3.2 HLLC Riemann solver

HLLC solver is one of the most popular approximate Riemann solvers [20]. It computes
the numerical fluxes directly, and therefore is time-efficient. Here, we generalize the
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modified HLLC solver of Johnsen and Colonius in [8] to flows governed by equations
(2.1) with complex EOSs (2.4)-(2.9).

We first construct numerical fluxes for all the equations in (2.1) except for the last one.
Define intermediate states of the conserved variables as

U∗k =

(

sk−uk

sk−s∗

)



























ρ
(1)
k Y

(1)
k

ρ
(2)
k Y

(2)
k

ρks∗

ρkvk

ρkwk

ρkEk+ρk(s∗−uk)

(

s∗+
pk

ρk(sk−uk)

)



























, (3.8)

where k= L, R. sL and sR are the minimum and maximum signal velocities in solution of
the Riemann problem at a cell interface, and are defined as

sL =min(uL−cL,uR−cR), sR =max(uL+cL,uR+cR).

The speed of intermediate wave, s∗, is calculated as

s∗=
pR−pL +ρLuL(sL−uL)−ρRuR(sR−uR)

ρL(sL−uL)−ρR(sR−uR)
. (3.9)

The numerical fluxes corresponding to U∗L and U∗R are given by

F∗L =FL+sL(U∗L−UL), F∗R =FR+sR(U∗R−UR). (3.10)

Then, according to locations of these waves, the numerical fluxes can be determined,

F=



















FL if 0≤ sL,

F∗L if sL ≤0≤ s∗,

F∗R if s∗≤0≤ sR,

FR if 0≥ sR.

(3.11)

See [20] for details of this procedure. Next, we proceed to construct fluxes for the advec-
tion equation in (2.1) by following [8]. Rewrite the advection equation as

∂Y(1)

∂t
+

∂

∂x
(Y(1)u)−Y(1) ∂u

∂x
=0. (3.12)

Denoting flux Y(1)u by h and integrating the above equation over cell i produce,

d(Y(1))i

dt
=−

1

∆x
(hi+1/2−hi−1/2)+

1

∆x

∫ xi+1/2

xi−1/2

Y(1) ∂u

∂x
dx. (3.13)
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This equation can be approximated as

(Y(1))n+1
i =(Y(1))n

i −
∆t

∆x
(hi+1/2−hi−1/2)+

∆t

∆x
(Y(1))n

i (ui+1/2−ui−1/2), (3.14)

where fluxes hi±1/2 can be constructed in exactly the same manner as F. ui+1/2 is com-
puted as,

ui+1/2 =



















uL, if sL ≥0,

uL+sL[(sL−uL)/(sL−s∗)−1], if sL ≤0≤ s∗,

uR+sR[(sR−uR)/(sR−s∗)−1], if s∗≤0≤ sR,

uR, if sR ≤0.

(3.15)

The other conserved variables are updated to the new time level tn+1 using the following
scheme,

Un+1
i =Un

i −
∆t

∆x
(Fi+1/2−Fi−1/2). (3.16)

There are some advection schemes available. For example, Saurel and Abgrall [13,14]
has applied the HLL approximate Riemann solver to multi-fluid flows and derived a
discretization of the advection equation in (2.1). Although effective, HLL solver ignores
contact and shear waves which are crucial to interface capturing. Some methods based
on Roe Riemann solver were developed, but the resulting schemes are complicated.

Numerical tests show the present method based on HLLC solver is stabler than some
methods in the literature under certain situations. The model system (2.1) can be derived
using the theory of multi-phase flows. To use this system in whole computational do-
main, a pure fluid contained in a control volume is modeled as the mixture of this fluid
and a small amount of the other component. For example, in initializing the solution, in
regions containing fluid 1 only, the volume fractions of the two fluids are set to be 1−ǫ
and ǫ, respectively. Typically, ǫ is 10−8 or smaller. At each time step, we calculate the par-
tial densities ρ(1) and ρ(2) by dividing Y(1)ρ(1) and Y(2)ρ(2) by the volume fractions Y(1)

and Y(2), respectively. However, sometimes, this will lead to some numerical problems.

Take a one-dimensional, two-phase shock tube problem as an example. Initially, both
fluids are stationary throughout the domain and the material interface is located at xi−1/2

with fluid 1 on the left and fluid 2 on the right. Suppose that after the interface breaking,
the fluids move to the right. After the first time step, values of all the variables in cell
i must change. However, some of the methods advect the volume fraction Y(1) using
the velocities on the previous time step. As a result, after the first time step, Y(1) and
Y(2) do not vary as the velocities are zero initially. In cell i, dividing the updated value of
Y(1)ρ(1) by Y(1) produces an unphysical value of ρ(1), which is so large that the calculation
fails immediately. In contrast, Y(1) is advected properly through (3.14), since numerical
fluxes hi±1/2 and ui±1/2 are based on the Riemann problem solution which accounts for
information on the present velocity field. The resulting value of ρ(1) is correct. Therefore,
our method is stabler.
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3.3 Oscillation-free property of the present method

It should be guaranteed that the discretized form of governing equations (2.1), i.e.,
Eqs. (3.16) and (3.14), can also maintain the pressure equilibrium across a material in-
terface, which is a basic requirement of oscillation-free schemes design [2, 13]. As in [3],
consider a one-dimensional interface advection problem under uniform pressure and ve-
locity throughout the domain. The initial conditions are as follows: the interface is lo-
cated at xi−1/2; the state variables on the left side read

WL =(ρ(1),ρ(2),e(1),e(2),p,u,Y(1))L =(ρ
(1)
0 ,ρ

(2)
0 ,e

(1)
0 ,e

(2)
0 ,p0,u0,Y

(1)
L )

and those on the right side read

WR =(ρ(1),ρ(2),e(1),e(2),p,u,Y(1))R =(ρ
(1)
0 ,ρ

(2)
0 ,e

(1)
0 ,e

(2)
0 ,p0,u0,Y

(1)
R )

with u0>0 and Y
(1)
L 6=Y

(1)
R . All the variables are continuous except for the volume fraction

Y(1).
We compute the solution in cell i after a time step, as the interface must be in this

cell at new time level. Denote the solution by W̄. The objective is to find ū = u0, p̄ = p0.
It can be verified that at xi−1/2 , the speed of intermediate wave in (3.9) is s∗ = u0 > 0
and variables in (3.8) are U∗k = Uk. Then, from Eqs. (3.10) and (3.11), we calculate the
numerical flux

Fi−1/2 =F(UL). (3.17)

Obviously, hi−1/2 in (3.14) is given as hi−1/2 = Y
(1)
L u0. Substituting s∗ = uL = u0 > 0 into

(3.15) gives
ui−1/2 =u0. (3.18)

Similarly, at xi+1/2 we have Fi+1/2 = F(UR), hi+1/2 = Y
(1)
R u0 and ui+1/2 = u0. Substitut-

ing these fluxes into Eqs. (3.16) and (3.14) and performing some algebraic manipulations
produce,

Ȳ(k)ρ̄(k) =u0λY
(k)
L ρ

(k)
L +(1−u0λ)Y

(k)
R ρ

(k)
R , k=1,2,

ρ̄ū=(u0λρL +(1−u0λ)ρR)u0,

ρ̄ē=u0λρLeL+(1−u0λ)ρReR,

Ȳ(k) =u0λY
(k)
L +(1−u0λ)Y

(k)
R , k=1,2,

(3.19)

where λ=∆t/∆x. From the first and last equations in (3.19), we find ρ̄(k) =ρ
(k)
0 . Similarly,

we can obtain ū=u0. Rewrite the third equation as,

ρ̄ē=u0λρLeL+(1−u0λ)ρReR

=u0λ∑Y
(k)
L ρ

(k)
L e

(k)
L +(1−u0λ)∑Y

(k)
R ρ

(k)
R e

(k)
R

=∑(u0λY
(k)
L +(1−u0λ)Y

(k)
R )ρ

(k)
0 e

(k)
0 =∑Ȳ(k)ρ

(k)
0 e

(k)
0 . (3.20)
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On the other hand, ρ̄ē is defined as ρ̄ē=∑Ȳ(k)ρ̄(k) ē(k). This means

∑Ȳ(k)ρ
(k)
0 e

(k)
0 =∑Ȳ(k)ρ̄(k) ē(k). (3.21)

Expressing the internal energy in terms of the pressure and density, we find that p̄= p0 is
the unique solution of the above equation.

Since p̄= p0, there are no the pressure oscillations on the interface. Also, p̄= p0 holds
in other cells. Therefore, our method is free of oscillations.

3.4 Extension to multiple dimensions

This method can be easily extended to multiple dimensions using the Strang splitting
[18, 20]. A three-dimensional problem, for example, can be handled as follows,

Un+1 = Lz(∆t)Ly(∆t)Lx(∆t)Un,

Un+2 = Lx(∆t)Ly(∆t)Lz(∆t)Un+1,
(3.22)

where Lx,Ly,Lz denote the one-dimensional operators in the x, y and z directions, respec-
tively. This scheme is seconder-order accurate in time.

3.5 Boundary conditions

Three types of boundary conditions are employed in simulations: reflecting, non-
reflecting and periodic boundary conditions. Fig. 1 shows a domain discretized into
N grid cells in x direction, i.e., cells 1 to N. With MUSCL scheme, two fictitious
cells are needed at each boundary. One needs to determine the primitive variables,
W=(Y(1)ρ(1),Y(2)ρ(2),u,v,w,p,Y(1)), in these fictitious cells at the beginning of each time
step.

Figure 1: Boundary conditions. At each boundary, there are two fictitious cells.

Reflecting boundary represents a solid wall. In cell N+1, all the variables are given
as WN+1 = WN except that the normal velocity is reflected, uN+1 =−uN . The variables
in cell N+2 can be calculated from those in cell N−1 by taking the same procedure.
Similarly, data in cells 0 and 1 can be determined. These conditions guarantee there is
no flow across the boundaries. The non-reflecting boundary conditions allow waves to
exit the boundaries and have no any effects on the waves. The data in fictitious cells are
given by W−1,0 =W1 and WN+1,N+2 =WN. For periodic boundary conditions, W0 =WN ,
W−1 =WN−1, WN+1 =W1 and WN+2 =W2. For details of these boundary conditions, the
reader is referred to [20].
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4 Adaptive mesh refinement

The algorithm implemented in this study is categorized into the structured adaptive
mesh refinement family which was first proposed by Berger et al. [5,6]. Although flexible
and memory-efficient, the algorithm of Berger et al. results in a very complex code. This
approach was significantly simplified by MacNeice et al. [11] and the resulting AMR tool,
PARAMESH, is employed here due to its simplicity. It is based on the logically Cartesian
block-structured grid, which implies that a physical grid must be converted into a Carte-
sian grid. The computational domain is covered with a hierarchy of grid blocks having
the identical logical structure. Contrary to the algorithm of Berger et al., the present ap-
proach does not allow the grid blocks to overlap each other, to be rotated around the
coordinate axes and to be merged with other blocks at the same refinement level. These
restrictions imposed on the algorithm make the programming easier and the resulting
code simpler [11]. In the following, we present details of this algorithm.

Figure 2: The structure of a grid block. Each block has 12×12 interior cells bounded by dashed line and 2
guard cells on each side.

Fig. 5(d) illustrates a computational domain with outlines of child blocks overlaid. A
grid block is sketched in Fig. 2. It has 12×12 cells surrounded by 2 guard cells on each
side. In the refinement process, a block is cut in half in the x and y directions, respectively,
producing four children at a higher refinement level. Each of them has 12×12 cells, but
the grid spacing in each direction is half that of its parent. After the refinement, the so-
lution on the child blocks is prolonged from their parent using a quadratic interpolation.
The guard cells of a block are filled with data from its neighbor blocks or user-defined
boundary conditions, depending on its physical position. Obviously, a given point may
be contained in a set of blocks at different refinement levels and among them, the one
at the highest level is referred to as leaf block. Only the solution on the leaf blocks is
updated in calculations. It is also required that jump in refinement level between two
adjacent blocks is not larger than 1.
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Criteria are needed to determine where and whether the refinement-derefinement
procedure should be performed. They must be able to detect sharp structures before
they enter a certain block. Here, the criterion proposed by Sun and Takayama [19] is
employed. Define two error indicators

φi =
|ρi−1,j−2ρi,j+ρi+1,j|

αρi,j+|ρi+1,j−ρi−1,j|
, φj =

|ρi,j−1−2ρi,j +ρi,j+1|

αρi,j+|ρi,j+1−ρi,j−1|
, (4.1)

where α = 0.03. Define Eij = Max(φi,φj). For each block, calculate Eij at each point and
find the maximum. If the maximum is larger than 0.06, then the block is marked for
refinement; otherwise if it is smaller than 0.05, the block is marked for derefinement.

Another criterion is also used to properly refine regions containing rarefaction in one-
dimensional problems below [7, 10, 24]. It is required to calculate the difference approxi-
mation to a normalized second derivative error norm. In one dimension, the approxima-
tion is given as

Ei =
|ui+2−2ui+ui−2|

|ui+2−ui|+|ui−ui−2|+ǫ[|ui+2|+2|ui|+|ui−2|]
. (4.2)

Here, u represents a flow variable; ǫ is an adjustable parameter set to be 0.01. The maxi-
mum of Ei is calculated for each block.

We also enforce flux conservation. If there is a jump in refinement level between two
adjacent blocks, the flux density entering or leaving a coarse cell interface on the less
refined block should be equal to the average of those across two fine cells interfaces on
the more refined block, as illustrated in Fig. 3.

f1

f2

f

Figure 3: Flux conservation at a jump in refinement. In calculations, f=0.5(f1+f2).

Finally, the implementation of the hydrodynamic algorithm in conjunction with AMR
is as follows:

1. Generate a set of grid blocks covering the computational domain and initialize
the solution on this grid. Perform the refinement-derefinement process a few times to
get the desired grid resolution everywhere and then initialize the solution on the newly
generated grid.
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2. Update the solution on each leaf block independently of any of other blocks by
calling hydrodynamic subroutines and then apply the flux conservation.

3. Calculate error indicators or norms for each block to determine whether it should
marked for refinement or derefinement.

4. If a block is determined to be refined, it is cut in half in each direction, produc-
ing four child blocks with their solution prolonged from their parent. Otherwise, if the
block is determined to be derefined, the corresponding restriction process is performed.
Next,fill the guard cells of grid blocks.

5. If the present time is less than end time, return to step 2.

5 Numerical results

The present method is validated on a set of test problems. In all calculations below except
for Example 5.1, the Courant-Friedrichs-Lewy (CFL) number is set to be 0.8.

Example 5.1. To check order of accuracy of our method in space and time, we perform a
convergence study on a one-dimensional (1D) single-component density advection prob-
lem [12]. The computational domain is [0,2] with periodic boundary conditions. The
initial conditions read ρ(x,0) = 1+0.2sin(πx), p(x,0) = 1, u(x,0) = 1. The exact solution
of this problem is ρ(x,t) = 1+0.2sin(π(x−t)), p(x,t) = 1, u(x,t) = 1. As the solution is
smooth, the minmod limiter is turned off. The fluid is modeled by ideal gas EOS with
γ=1.4.

In validating spatial accuracy, the ratio of time step to grid size is fixed at ∆t/∆x =
0.2. We run this case to t = 2 and calculate L1 error in the density, which is defined as

L1 =∆x∑
Nk

i=1 |ρi−ρexact|. In this case, five sets of grids are used, i.e., Nk =20,40,80,160,320.
Log-log plot of L1 error vs grid size is shown in Fig. 4(a). As expected, the corresponding
line is parallel to the dashed line of slope 2. The slope of solid line is around 2.001, which
proves that our method is second-order accurate in space.

Figure 4: Log-Log plots of L1 errors vs grid size (a) and time step (b).
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In validating temporal accuracy, we use a 200-cell grid and a sequence of time steps,
∆t=2.58×10−3/2N with N =0−4. In the limit of ∆t→0, we obtain a numerical solution,
which is close to the exact solution. Then, we calculate error in L1 norm and plot it in
Fig. 4(b). The slope is about 2. This shows our method is also second-order accurate in
time.

Example 5.2. This example is on a 1D material interface advection [3,14]. But it is run on
a two-dimensional (2D) grid with y velocity component set to be 0 initially. In the unit
square of [0,1]×[0,1], a material interface is located at x=0.5, separating two materials un-
der uniform pressure p=105Pa and velocity u=1500m/s throughout the computational
domain. The material on the left of the interface is copper with density of ρ=8900kg/m3,
while that on the right is a solid explosive with density of ρ = 1840kg/m3. Both com-
ponents are modeled by Cochran-Chan EOS, but their material parameters are different
and listed below,

(ρ0,A,B,ǫ1,ǫ2,Γ0,e0)=

{

8900kg/m3,145.67GPa,147.75GPa,2.99,1.99,2,117.9kJ/kg,

1840kg/m3,12.87GPa,13.42GPa,4.1,3.1,0.93,326.1kJ/kg.
(5.1)

Obviously, the interface should move to the right with the uniform pressure and ve-
locity. The cross-sectional results along y=0.5 at t=240µs are presented in Fig. 5, where
dash-dot lines are solution with AMR while solid lines denote the solution with an uni-
form grid of 5000 cells. The pressure and velocity remain equilibrium throughout the do-
main, as expected. There are no any pressure oscillations on the interface, which proves
that our method is free of oscillations. As stated earlier, in the present numerical model,
it is assumed that there is no pressure jump across a material interface. However, if one
uses the so-called isothermal assumption, i.e. all components in a fluid element share the
same temperature, the serious pressure oscillations occur on the interface. This is because
this assumption does not reflect the actual physics in the interface region, see [2,3,13,14].

In this run, a grid with 7 refinement levels is used with level 1 corresponding to a
single grid block covering the domain, and the effective grid size at the highest level is
768×768. Outlines of grid blocks at end time are demonstrated in Fig. 5(d). It is observed
that interface region is maximally refined and therefore the interface remains sharp, while
elsewhere the grid is derefined as the solution is smooth. Fig. 5 presents a good agree-
ment between two sets of results, which also shows validity of AMR. If the interface
region is not locally refined, the interface will diffuse greatly and become wider.

It should be remarked that, in all 1D problems, i.e., Examples 5.2 to 5.6, the computa-
tional domain is set to be an unit square of [0,1]×[0,1]. In each figure, the dash-dot and
solid lines represent solutions obtained using AMR and a fine grid of 5000 cells, respec-
tively. Block structure of AMR grid is overlaid in frame (d) of each figure.

Example 5.3. This case is concerned with a copper-explosive impact problem of Saurel
and Abgrall [14]. The initial conditions are nearly identical to those in Example 5.2, except
that the velocity on the right side is set to be 0.
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Figure 5: Cross-sectional results along y=0.5 for a copper-explosive interface advection problem t=240µs. The
dash-dot lines are solution with AMR, while solid lines are solution with an uniform grid of 5000 cells. Frame
(d) shows outlines of AMR blocks.

The solution consists of a rightward-moving shock, a leftward-moving shock and a
material interface in between. The results of running this problem to t=85µs are demon-
strated in Fig. 6. As shown in Fig. 6, these nonlinear structures are all well resolved and
remain sharp. The pressure oscillations are not present on the material interface. This
run demonstrates that the present method can properly capture strong shock and mate-
rial interface.

Again, 7 refinement levels are used. The regions surrounding two shocks and the
material interface are maximally refined, while other regions are covered with grid blocks
at lower levels. There is an excellent agreement between the solution with AMR and that
with a fine grid.

Example 5.4. We study a two-component Riemann problem of Saurel and Abgrall [14].
The material on the left side of interface at x=0.5 is a detonation product with the pres-
sure of 3.7×1010Pa and density of 2485.37kg/m3, while the material on the right side
is copper which has the pressure of 105Pa and density of 8900kg/m3. The two materials
are both stationary initially, and modeled by Jones-Wilkins-Lee and Cochran-Chan EOSs,
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Figure 6: Results of a copper-explosive impact problem at t=85µs.

respectively, with material parameters given below,

(ρ0,A,B,R1,R2,Γ0,e0)L

=(1840kg/m3,854.5GPa,20.5GPa,4.6,1.35,0.25,8149.2kJ/kg),

(ρ0,A,B,ǫ1,ǫ2,Γ0,e0)R

=(8900kg/m3,145.67GPa,147.75GPa,2.99,1.99,2,117.9kJ/kg).

(5.2)

Because of the high pressure ratio up to 3.7×105 across the interface, there will be
a strong shock in Copper, a rarefaction in detonation product and a material interface
in between. As demonstrated in results at t = 73µs in Fig. 7, all these flow features are
resolved well, which shows our code’s ability to capture shock, material interface and to
produce profile of rarefaction correctly. Also observed is the good agreement between
two sets of solutions based on the fine grid and AMR grid with 7 refinement levels. For
this Riemann problem with the initial stationary velocity field, our method is very stable,
producing correct results, as discussed in Subsection 3.2.

In Examples 5.4-5.6, the numerical solutions contain rarefaction. It is found that (4.1)
cannot refine rarefaction regions sufficiently. Alternatively, we use criterion (4.2) with the
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Figure 7: Results of a detonation product-copper Riemann problem at t=73µs.

momentum ρu and pressure p as two variables. As observed in Fig. 7, near head and tail
of the rarefaction, the solution with AMR agrees quite well with that with the fine grid.

Example 5.5. Next, we consider a shock in molybdenum interacting with a molybdenum-
MORB interface. Here, MORB is mid-ocean ridge basalt liquid. The initial conditions
consist of a molybdenum-MORB interface at x = 0.6 and a Mach 1.163 shock in molyb-
denum traveling to the right with its front located at x =0.4. The post-shock state reads
(ρ,u,p)=(11042kg/m3,543m/s,3×1010Pa). The stationary molybdenum to the left of the
interface has initial data (ρ,u,p) = (9961kg/m3,0,0), while state variables of MORB liq-
uid are (ρ,u,p)=(2260kg/m3,0,0). Molybdenum and MORB are both modeled by shock
wave EOS with the following material parameters,

(ρ0,c0,s,Γ0,α,e0)=

{

(9961kg/m3,4770m/s,1.43,2.56,1,0kJ/kg)L,

(2660kg/m3,2100m/s,1.68,1.18,1,0kJ/kg)R.
(5.3)

After shock interaction with the material interface, there are a transmitted shock in
MORB, an interface separating two materials, and a reflected rarefaction in molybdenum.
These structures are well captured in Fig. 8. Contact discontinuity and shock are resolved
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Figure 8: Results of the interaction between a shock in molybdenum and molybdenum-MORB interface at
t=120µs.

sharply. This case demonstrates that our method can handle more complex 1D shock-
interface interaction problem.

Example 5.6. As the last 1D case, we consider a liquid-gas shock tube problem to show
that the present method can handle van der Waals and stiffened gas EOSs. At initial time,
an interface is located at x =0.7. A liquid modeled by stiffened gas EOS is on the left of
the interface with the state variables (ρ,p;γ,π)= (103kg/m3,109Pa;4.4,6×108Pa). A van
der Waals gas under atmospheric pressure is on the right of the interface and its state
variables read, (ρ,p;γ,a,b)=(50kg/m3,105Pa;1.4,5Pam6/kg,10−3m3/kg). Both fluids are
at rest.

Results at t =240µs are presented in Fig. 9. All features of interest are resolved well.
This problem developed by Shyue [15] is an extension of two-phase shock tube prob-
lem of Saurel and Abgrall [13] where gas is modeled by ideal gas EOS. In [13], small
oscillations in density are present on the interface and attributed to stiffness of this prob-
lem arising from high pressure and density ratios across the interface. However, in the
present solution, these oscillations are eliminated. In this case, 8 refinement levels are
used and the grid size at the highest level is 1536×1536.
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Figure 9: Results of a liquid-gas shock tube problem at t=240µs.

Example 5.7. As the first 2D example, this case deals with interaction of a shock in air
with a helium bubble. We set up the simulation as follows. A helium bubble of radius
2cm is suspended in a rectangular domain of [0,32]×[0,8]cm2 with its center located at
(x,y)=(30,4)cm. Initially, both helium and air are stationary under atmospheric pressure.
Helium is lighter than air and their densities are 0.167kg/m3 and 1.29kg/m3, respec-
tively. They are both modeled by ideal gas EOS with ratios of specific heat, γhelium =1.67,
γair = 1.4. A Mach 1.2 shock is on the right of the bubble and is to collide with the bub-
ble from right to left. On the left and right sides, non-reflecting boundary conditions are
employed, while the reflecting boundary conditions are imposed on top and bottom.

Schlieren images of density field in Fig. 10 show time evolution of helium bubble.
After the incident shock interacts with the bubble, there will be a transmitted shock in
helium, which is faster than the incident one in air. At t=50µs, the transmitted shock has
passed the bubble, see the first frame in Fig. 10. The doubly transmitted shock and inci-
dent one merge eventually, see frames at 400µs and 450µs. Passage of the incident shock
leads to baroclinic vorticity generation along the bubble interface. On a given point of the
interface, density gradient is in the radial direction, while pressure gradient is approxi-
mately in the horizontal direction after shock passage. Misalignment of the density and
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Figure 10: Schlieren images of density field for shock-helium bubble interaction.

pressure gradients gives rise to baroclinic vorticity, which is believed to drive the bubble
distortion. In addition, a jet forms along centerline of the bubble and moves faster than
the surrounding gas. This jet hits the left side of bubble and the bubble is eventually split
into two vortex rings at late times. All these findings are consistent with those in [9]. It
is observed that oscillations are not present on the interface. This simulation shows that
the present method can successfully resolve problem involving complex interaction of
shock, material interface and other structures.

In this case, a grid with 7 refinement levels is used. The equivalent grid size at the
highest level is 3072×768. Use of AMR greatly reduces computational cost.

Example 5.8. We consider a model underwater explosion problem of Shyue [17]. The
computational domain is a rectangle of [−2,2]×[−1.5,1.5]m2 . An air-water interface is
located at y=0. Air, modeled by ideal gas EOS, is above the interface with state variables
(ρ,p;γ)=(1.225kg/m3,1.01325×105Pa;1.4). Water is modeled as a stiffened liquid and its
initial data read (ρ,p;γ,π)= (103kg/m3,1.01325×105Pa;4.4,6×108Pa). In water, these is
a pressurized air bubble of radius 0.12m with its center located at (x,y)=(0,−0.3)m. Air
inside the bubble has density of 1250kg/m3 and pressure of 109Pa. Initially, both fluids
are at rest. The reflecting boundary conditions are imposed on bottom of the domain,
while non-reflecting boundary conditions are used on the remaining sides.
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Figure 11: Schlieren images of density and pressure fields for the underwater explosion problem.

Due to high pressure ratio across the air bubble (about 104) and high density ratio
across air-water interface (about 816), this problem is not easy to simulate. The schlieren
images of the density and pressure of this run are illustrated in Fig. 11. Following break-
ing of air bubble, a strong shock is transmitted to water, moving radially outward and
a rarefaction is generated inside the bubble. The radially-moving shock interaction with
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Figure 12: Density profiles along x = 0 for the problem in Fig. 11. Squares and solid lines are obtained using
the present and Shyue’s methods, respectively.

the air-water surface, in turn, generates a transmitted shock in air and a reflected rarefac-
tion in water, as shown in the second row of Fig. 11. The reflected rarefaction impacts
upper side of the bubble, leading to acceleration of the bubble in the vertical direction
and deformation of bubble shape, see the last three rows in Fig. 11. In addition, as the air
bubble moves upwards, the air-water surface is also accelerated in the vertical direction
and deforms. Fig. 12 provides a comparison of the density distributions along x=0 in the
present results and those of Shyue [17]. It can be seen that the two sets of results are in
good agreement. The differences in the right-most peaks in the last two frames of Fig. 12
stem from the fact the Shyue’s method did not correctly resolve these flow features.

A grid with 6 refinement levels is used with the equivalent grid size of 1536×1152 at
the highest level. Outlines of AMR blocks at t=1.2ms are overlaid in Fig. 11. The material
interfaces in the present results are sharper than those in [17], which is the consequence
of use of AMR.

Example 5.9. Finally, we are concerned with interaction of a shock in molybdenum with
a block of encapsulated MORB [16]. The computational domain is chosen to be an unit
square. A Mach 1.163 rightward-moving shock is located at x=0.3 and to impact MORB
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Figure 13: Schlieren images of density and pressure fields for shock interaction with a block of MORB.

contained in a rectangle of [0.4,0.7]×[0,0.5]. Both materials are modeled by shock wave
EOS. The initial conditions and material parameters are identical to those in Example
5.5. Reflecting boundary conditions are imposed on bottom and non-reflecting boundary
conditions are used on the other three sides.

Schlieren images of density and pressure at two selected times are illustrated in
Fig. 13. In density plot at t = 50µs, we can observe the incident shock in molybde-
num and transmitted shock in MORB with the former moving faster than the latter. By
t = 110µs, the transmitted shock has not passed the MORB block completely. The struc-
ture of diffraction of the shock by MORB is well captured in the pressure plots and there
are no pressure oscillations on the interface. These findings are consistent with those
in [16]. In this case, the highest refinement level in AMR is 8 and the equivalent grid size
is 1536×1536. Therefore, the material interfaces are sharper than those in [16] obtained
using a 200×200 grid. All these problems, i.e., Examples 5.1 to 5.9 can be simulated
successfully, which proves that our method is very stable and robust.

6 Conclusion

We present a simple interface-capturing method for resolving compressible two-fluid
flows with general EOS. Six types of equations of state are used and therefore a wide
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range of real materials can be modeled. This is a remarkable advantage of our method. A
key ingredient of this method is to generalize a modified HLLC Riemann solver to com-
pute numerical fluxes including those of the advection equation. Based on the Riemann
problem solution, the volume fraction is updated properly and the resulting scheme is
very stable and robust under different situations. In addition, HLLC solver is time-
efficient. MUSCL-Hancock scheme is extended to construct input states for Riemann
problems. The popular AMR capability is built into hydrodynamic algorithm and thus
various flow features at disparate scales can be resolved with appropriate grid resolution
while computational cost is not increased significantly. Our method is easy to implement
and numerical results show that it can be applied to many real problems.
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