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Abstract. Radial basis functions (RBFs) can be used to approximate derivatives and
solve differential equations in several ways. Here, we compare one important scheme
to ordinary finite differences by a mixture of numerical experiments and theoretical
Fourier analysis, that is, by deriving and discussing analytical formulas for the er-
ror in differentiating exp(ikx) for arbitrary k.‘Truncated RBF differences” are derived
from the same strategy as Fourier and Chebyshev pseudospectral methods: Differen-
tiation of the Fourier, Chebyshev or RBF interpolant generates a differentiation ma-
trix that maps the grid point values or samples of a function u(x) into the values of
its derivative on the grid. For Fourier and Chebyshev interpolants, the action of the
differentiation matrix can be computed indirectly but efficiently by the Fast Fourier
Transform (FFT). For RBF functions, alas, the FFT is inapplicable and direct use of the
dense differentiation matrix on a grid of N points is prohibitively expensive (O(N2))
unless N is tiny. However, for Gaussian RBFs, which are exponentially localized, there
is another option, which is to truncate the dense matrix to a banded matrix, yielding
“truncated RBF differences”. The resulting formulas are identical in form to finite dif-
ferences except for the difference weights. On a grid of spacing h with the RBF as
φ(x)=exp(−α2(x/h)2),

d f

dx
(0)≈

∞

∑
m=1

wm{ f (mh)− f (−mh)},

where without approximation wm = (−1)m+12α2/sinh(mα2). We derive explicit for-
mula for the differentiation of the linear function, f (X)≡X, and the errors therein. We
show that Gaussian radial basis functions (GARBF), when truncated to give differen-
tiation formulas of stencil width (2M+1), are significantly less accurate than (2M)-
th order finite differences of the same stencil width. The error of the infinite series
(M = ∞) decreases exponentially as α→ 0. However, truncated GARBF series have a
second error (truncation error) that grows exponentially as α→ 0. Even for α∼O(1)
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where the sum of these two errors is minimized, it is shown that the finite difference
formulas are always superior. We explain, less rigorously, why these arguments ex-
tend to more general species of RBFs and to an irregular grid. There are, however, a
variety of alternative differentiation strategies which will be analyzed in future work,
so it is far too soon to dismiss RBFs as a tool for solving differential equations.

AMS subject classifications: 65D05

Key words: Pseudospectral, radial basis function, high order finite difference, nonstandard finite
differences, spectral differences.

1 Introduction

Radial basis functions (RBFs) are a popular method for multidimensional interpolation
on irregular or scattered grids [7, 8, 35, 38]. RBFs are now widely applied for solving
differential equations in many different branches of physics and engineering [1, 9, 11–
15, 20, 22–27, 29, 31, 34, 36, 37, 39]. The form of the approximation is very simple: in any
number of dimensions d,

f (~x)≈
N

∑
j=1

λj φ
(

||~x−~cj||2
)

~x ∈Rd (1.1)

for some function φ(r) and some set of N points ~cj, which are called the “centers”. The
coefficients λj are usually found by interpolation at a set of points~xk that may or may not
coincide with the centers. Under fairly mild conditions on φ, the interpolation problem is
provably solvable even when the interpolation points and centers are scattered randomly
over an irregularly-shaped domain.

To solve partial differential equations by RBFs, it is obviously necessary to have a
strategy for differentiating the RBF series and evaluating the derivative sums at the grid
points. There are at least seven distinct strategies for RBF differentiation. Curiously, there
hasn’t been a careful review comparing these different options; for the sake of brevity
none is offered here. We shall only assert, as will be demonstrated in our future work,
that all RBF differentiation methods have liabilities. The most common strategy is to
apply RBFs as a global pseudospectral method which generates a dense matrix which is
very expensive to manipulate; consequently, most applications even in multiple space
dimensions have used a thousand basis functions or less. Our modest goal is to perform
a detailed analysis of the merits and failings of one particular strategy, dubbed “truncated
RBF differences”, which is much less expensive than the global, dense matrix approach.

Although many types of φ(r) have been used in the literature as reviewed in [17],
we prefer to forgo a catalogue of limited results in favor of an in-depth examination of a
single important case: that of Gaussian RBFs for which

φ(x)≡exp(−ǫ2x2). (1.2)
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Furthermore, we shall ignore boundary effects by assuming that the spatial domain is
unbounded and all f (x) approximated by RBFs either decay as |x|→∞ or are otherwise
sufficiently well-behaved that their RBF series converge rapidly. (However, many of the
ideas and themes developed here can be extended to other RBFs.)

Part of the reason for this choice is that these RBFs are popular for solving differential
equations as in [16]. Another reason is that Gaussian functions allow many theoretical
simplifications as illustrated below. A third reason is that infinitely differentiable, an-
alytic radial basis functions are more accurate than RBFs of finite smoothness, and are
therefore a logical testbed for investigating RBF accuracy.

In the absence of boundaries, the absolute inverse width parameter ǫ is meaningless:
what matters is only the inverse width parameter relative to the grid spacing where, de-
noting the average grid spacing by h,

α≡ǫh [Relative Width Parameter] (1.3)

so that the RBF basis is

φ(x;α,h)≡exp(−[α2/h2]x2). (1.4)

In most of this work, the grid spacing will be uniform and h will be a constant, but the
primacy of the relative width parameter α remains unchanged if h is reinterpreted as the
average grid spacing on a non-uniform grid.

The differentiation scheme that we analyze, which we dub “truncated RBF differ-
ences”, has the advantage of low cost (O(4MN) were 2M+1 is the stencil width and N
is the number of points on the grid) compared to the dense matrix obtained by using the
RBF differentiation matrix without truncation, which costs O(2N2). Our strategy also
does not require FFT-like transforms from grid point values to RBF coefficients λj or the
reverse; as explained in our forthcoming work, it is difficult to perform such transforms
efficiently in the parameter range where the RBF method is well-conditioned. Further-
more, our method does not require dividing the domain into subintervals and matching
approximations across artificial interior walls.

A different strategy for obtaining small differentiation stencils is to fit an RBF inter-
polant with (2M+1) basis functions through a point x and its 2M nearest neighbors.
Such “local RBF differences” have been applied to differential equations by Wright and
Fornberg [40], Chandhini and Sanyasiraju [10] and under a different name (“RPICM”) by
Liu et al. [30]. We briefly discuss these in the appendix.

Most of the applications of RBFs to PDEs have been demonstrations that the method
works rather than convincing exercises to show that the method is actually better than
more old-fashioned alternatives like finite differences. This article is the first of a series
in which we hope to relentlessly address the question: what’s best?
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2 Truncated differences

In Section 4, we show that the GARBF difference formulas are, for a uniform grid with
spacing h,

d f

dx
(x)≈

M

∑
m=1

(−1)m+1 α2

sinh(α2m)
{ f (x+mh)− f (x−mh)} . (2.1)

Because the difference weights decay exponentially fast with m, truncating the infinite
series at m = M yields a differentiation matrix with bandwidth M, i. e., 2M+1 nonzero
elements in each row, and at the same time an error due to truncation no worse than
roughly exp(−α2M). Put another way, the truncation error can be kept smaller than a
user-specified tolerance δ by choosing

M(δ;α)=− 1

α2
log(δ). (2.2)

For small α, the bandwidth M(δ;α) is huge, but for α∼O(1), it is indeed possible to obtain
accurate derivatives from a differentiation matrix of modest bandwidth. (Note that this
option is not available for Chebyshev and Fourier pseudospectral methods because the
corresponding derivative series decay very slowly, proportional to 1/M [3].)

Unfortunately, there is a constraint on α. When the grid spacing h → 0 with fixed
α, the error in approximating a function f (x), assumed analytic for all real x, does not
asymptote to zero. Instead, we show in our companion paper [6] that the norm of the
error asymptotes to the “α-plateau” or “error saturation”:

E( f ;α)≡ lim
h→0

max
x

| f (x)− fRBF(x;α,h)|

∼4exp(−π2/α2)|| f ||∞ +O(exp(−2π2/α2)). (2.3)

If we choose α to be as large as possible without raising this “alpha-plateau” error
greater than the user-chosen tolerance δ, and assuming that || f (x)||∞ ∼O(1), then

αoptimum(δ)=
π

√

− log(δ/4)
. (2.4)

With this optimum choice of α,

M(δ;αoptimum(δ))=
1

π2
log(δ) log(δ/4). (2.5)

Fornberg, Flyer, Hovde and Piret [18] have shown that RBFs of all flavors have dif-
ferentiation weights wm that decay exponentially with |m|†. Truncation of exponentially-
decaying RBF differentiation series is therefore a serious option, analyzed with care in
later sections.

†The cardinal functions of some RBFs of compact support decay exponentially as |m| increases and then
switch to a slower, algebraic decay. However, these tiny tails do not alter our theme that RBF cardinal
functions are spatially localized and truncation of the cardinal function-based differentiation series is an
intriguing option.
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Alas, as we show in detail below, it turns out that for a given bandwidth M, ordi-
nary centered finite differences are always more accurate. Truncated RBF differences are
successful but never optimal.

3 Background

3.1 Specialization to unit gridspacing

In most of this article, we shall restrict attention to a uniform grid with a spacing of one.
There is no loss of generality in so doing because what matters is not the grid spacing h
nor the RBF width parameter ǫ, but rather only the product of width and gridspacing,
α≡hǫ as before. More formally, we can always make the change of variable

X = x/h (3.1)

and the RBF approximation with grid spacing h in x is converted into one with the same
coefficients but unit grid spacing in X.

3.2 Poisson summation

Theorem 3.1 (Poisson Summation). If g(X) and G(K) are a function and its Fourier trans-
form,

G(K)≡
∫ ∞

−∞
g(X)exp(iKX)dX, g(x)=(1/2π)

∫ ∞

−∞
G(K)exp(−iKX)dK, (3.2)

then for any positive constant q,

q
∞

∑
n=−∞

g(q n) exp(i n qx)=
∞

∑
m=−∞

G

(

x−m
2π

q

)

. (3.3)

Furthermore,
∞

∑
n=−∞

(−1)n g(n)=
∞

∑
m=−∞

G([2m+1]π). (3.4)

In words, any periodic function can be alternatively represented as a series of identical
but translated copies of the Fourier transform of the function g(x) that gives the Fourier
coefficients. Such “imbricate” series are valuable in the theory of solitary and cnoidal
waves [2] and many other subdomains of science.

3.3 Cardinal functions

If the basis functions are linearly independent, then for any set of (N+1) interpolation
points Xj and an equal number of basis functions, new functions Cj(X), dubbed the “car-
dinal functions” or “Lagrange basis”, can be formed by taking linear combinations of the
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basis functions such that

Cj(Xi)=

{

1, i= j
0, i 6= j

. (3.5)

The cardinal functions are very convenient because the interpolant to an arbitrary f (X)
can be written as

f (X)≈ fN(X)≡
N

∑
j=0

f (Xj)Cj(X). (3.6)

In other words, the grid point values of f (X) are its coefficients in the cardinal basis.

The cardinal basis is also useful because interpolation-based differentiation formulas
are obtained by differentiating the interpolant. The weights of the differentiation formula
are just the derivatives of the cardinal functions:

d f

dX
(X)≈

M

∑
m=−M

wm f (xm), wm =
dCm

dX
(X). (3.7)

On an infinite, evenly spaced grid, the cardinal basis simplifies because all cardinal
functions are simply the translates of a ”master cardinal function” C(X):

Cj(X)=C(X− j), j=−∞,··· ,∞, (3.8)

where C(X) is just the cardinal function C0(X) which is equal to one at X = 0. Unfor-
tunately, no simple characterization of the cardinal function itself is known. However,
although not needed here, a very accurate approximation to the cardinal function for
Gaussian RBFs on an evenly spaced grid is derived in [6].

4 Fourier analysis of difference formulas

4.1 Eigenvalues of the differentiation and difference operators

One can learn much about the accuracy of RBF and finite difference formulas from a
Fourier analysis, that is, from examining how well the formulas approximate the deriva-
tive of exp(iKX) for various K. (A discussion of the generality of Fourier analysis is given
in the appendix of [5].) The reason is that exp(iKX) is not only an eigenfunction of the
derivative operator with eigenvalue iK, but also an eigenfunction of all difference for-
mulas with a slightly different eigenvalue iκ. It follows that K−κ(K) is a measure of the
accuracy of the difference formula. To be precise, let the difference formula approximate
the derivative at X =0 by

d f

dX
(X =0)≈

M

∑
m=−M

wm f (m). (4.1)
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Then the approximate eigenvalue of the difference formula when applied to exp(iKX) is,
assuming wm =−w−m as true of all RBF and centered finite difference approximations,

κ =
M

∑
m=1

2wm sin(mK). (4.2)

Fornberg and Flyer [17] show that for Gaussian RBFs

κGARBF(K;α)=

∞

∑
m=−∞

(K−m2π )exp
{

−(K−m2π )2 /(4α2)
}

∞

∑
m=−∞

exp
{

−(K−m2π )2/(4α2)
}

. (4.3)

Unfortunately, because this formula is the ratio of two series,there is no simple rela-
tionship between the coefficients of either the numerator or denominator series and the
weights of the GARBF difference formula.

4.2 Exact differentiation weights via Theta function magic:

Comparing the series

θ3(K/2;q=exp(−α2))=

√
π

α

∞

∑
m=−∞

exp

(

− (K−2πm)2

4α2

)

(4.4)

to κGARBF and using the known series for the logarithmic derivative of θ3,

d

dy
log(θ3)(y;q)=4

∞

∑
n=1

(−1)n qn

1−q2n
sin(2ny) (4.5)

shows

κGARBF(K;α)=−2α2
d

dK θ3(K/2;q=exp(−α2))

θ3(K/2;q=exp(−α2))

=−2α2 d

dK

(

log
(

θ3(K/2;q=exp(−α2))
)

)

=4α2
∞

∑
n=1

(−1)n+1 exp(−α2n)

1−exp(−2α2n)
sin(nK)

=
∞

∑
n=1

(−1)n+1 2α2

sinh(α2n)
sin(nK). (4.6)

Because the coefficients of the Fourier series for κ are also twice the weights of the
difference formula (4.1), we can truncate this series to M terms to obtain the eigenvalue
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of the Gaussian RBF when the sum over all points on the grid is truncated to (2M+1)
terms:

κGARBF(K;α,M)=
M

∑
m=1

(−1)m+1 2α2

sinh(α2m)
sin(mK) (4.7)

which implies that the differentiation weights are without approximation

wm =(−1)m+1 α2

sinh(α2m)
. (4.8)

Note that these weights are exact. Thus, for integer X, i. e., a point on the unit-spaced
grid, a truncated RBF formula is

d f

dX
(X)≈

M

∑
m=1

(−1)m+1 α2

sinh(α2m)
{ f (X+m)− f (X−m)} . (4.9)

Fast Summation RBF formulas indirectly evaluate the infinite sum, M=∞ while truncated
differentiation formulas evaluate the sum directly with a finite truncation M.

4.3 Application: Errors in differentiation of the linear function f (X)=X

Theorem 4.1 (Derivative of f (X)=X). The error in approximating the derivative of the linear
function without truncation of the Gaussian RBF series is

E∞(α)≡dX

dX
−

∞

∑
m=1

wm(m−(−m))

=1+2α2
∞

∑
m=1

(−1)m m

sinh(α2m)

=α2
∞

∑
m=−∞

(−1)m m

sinh(α2m)

=
π2

2α2

∞

∑
m=−∞

sech2

(

π2

2α2
(2m+1)

)

≈4
π2

α2
exp

(

−π2/α2
){

1+O
(

exp
(

−2π2/α2
))}

. (4.10)

Proof. The first line of the theorem is simply a definition of the error in approximating the
derivative of a function, in this instance f (X) = X, by a generalized difference approxi-
mation. The second line follows by substituting the weights obtained in the previous
section.

The third line follows from rewriting the sum to run over both positive and negative
m, a necessary precursor to applying the Poisson Summation Theorem to simplify the
sum. There is a subtlety: There should be no term for m = 0 because the weight w0 = 0,
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but the limit as m→0 of −α2m/sinh(α2m) is not zero, but rather −1. Therefore, we must
add one outside the series to cancel the m=0 term in the sum.

For small α, the series in the first three lines of the theorem converge slowly. We
can obtain an equivalent series by invoking the alternating series form of the Poisson
Summation Theorem, Eq. (3.4),

∞

∑
n=−∞

(−1)ng(n)=
∞

∑
m=−∞

G([2m+1]π),

where G(k) is the Fourier Transform of g(x). Using the Fourier Transform

∫ ∞

−∞

x

sinh(α2x)
exp( i k x)dx=

π2

2α2
sech2

( π

2α2
k
)

=FT
{

x

sinh(α2x)

}

(k) (4.11)

then gives the fourth line of the theorem.
For small α, only the m = 0 and m = −1 terms contribute, and contribute equally.

Invoking sech(z)≈2exp(−z) for large z then gives the final line.

The error of 4exp(−π2/α2) is the same as the error previously found for approximat-
ing the constant one in [6]. However, (4.10) does not follow trivially. The approximation
of f (X) ≡ 1 is a Jacobian theta function, which undulates periodically and is a sum of
Gaussians. In contrast, the approximation of dX/dX is a constant; the only error is that
the magnitude of the constant is not quite right; that magnitude is given by a sum of
squares of hyperbolic secant functions, and is in fact the value at the origin of the square
of the elliptic cosine function.

4.4 Aliasing, dealiasing and restrictions on wavenumber K

Before making comparisons between GARBF and finite differences for various K, it is
important to understand the range in K where accuracy is important and also the range
in K where accuracy is unimportant or even irrelevant.

First, all Fourier components exp(ikx) with wavelengths shorter than twice the grid-
spacing h will be aliased to lower wavenumbers [4]. Because of this, all differentiation
formulas based on a uniform grid, whether finite difference, RBF or whatever, will yield
an eigenvalue for differentiation κ which is a periodic function of wavenumber k with a
period of 2π/h, and can be expressed a truncated Fourier series in wavenumber. Conse-
quently, there is no loss of generality in restricting attention to k∈ [−π/h,π/h] or equiv-
alently, K∈ [−π,π].

Second, centered difference formulas have definite parity with respect to K=0, that is,
the fact that weights for both finite difference and GARBF satisfy w−m =−wm for the first
derivative implies that κ(K) is a sine series in wavenumber rather than a general Fourier
series with both sines and cosines, as already noted. Furthermore, the error |K−κ(K)| is a
function only of the absolute value of K, and therefore we lose no generality by restricting
attention to positive wavenumbers only.
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Third, the Fourier transform F(K) of smooth functions f (x) are typically flat for small
K, and then decay exponentially fast as |K|→∞ [4,28]. It is essential that |F(K)| is negligi-
ble at the aliasing limit, Kalias=π for a unit grid spacing, because if |F(K)| is not negligible
at the aliasing limit, then it will non-negligible for |K|> Kalias and aliasing will destroy
the accuracy of the computation irregardless of the choice of difference weights.

It follows that a good scheme must be “low-biased”. That is, accuracy for small |K| is
exponentially more important (literally!) than accuracy in differentiating high wavenum-
bers near the aliasing limit.

Finite difference schemes are always “low-biased” because the approximate differen-
tiation eigenvalue κ is not a function of k and h separately, but only of the product K=kh.
This implies that when the (2M+1) difference weights are chosen to given a relative
accuracy of h2M as h→0, this simultaneously guarantees that

|K−κFD(K;M)|∼O(K2M+1) asK→0. (4.12)

As reviewed in [5], the best weight for a function with Fourier transform F(K) is
to choose the weights to be the coefficients of a Fourier sine series approximation to K
which is a weighted least-squares approximation with a weighting of |F(K)|2. Of course,
one never knows the exact transform of the unknown solution to a differential equation.
However, the typical behavior of a transform — flat for small K, and exponentially de-
caying as |K| → ∞ — again reinforces the idea that the best approximation is heavily
weighted towards small |K|.

In the rare exceptions when F(K) has a maximum for moderate K, instead of at or
near zero, the best strategy is to use what are variously called “spectrally-weighted dif-
ferences” or “frequency-optimized differences” in which the differentiation weights are
tailored to the expected behavior of F(K) [5]. The RBF weights, in contrast, are not in any
sense tuned to the expected behavior of the Fourier transform.

Fourth, aliasing not only corrupts wavenumbers with K > π, but, in the solution of
differential equations, also corrupts smaller K. A typical term in a differential equation
such as q(x)u(x) cannot be exactly represented as a trigonometric polynomial with |K|<
π, even if this is true of the discrete approximations to q(x) and u(x) individually, because
their product generates Fourier components as high as K =2π. These are aliased to lower
wavenumbers so that the amplitude of the solution for wavenumbers |K|<π is not quite
correct.

In computational fluid mechanics, for example, it is common for energy to spuriously
accumulate in wavenumber K near the aliasing limit (“spectral blocking”), triggering a
catastrophic numerical failure known as “aliasing instability”. Phillips and Orszag [32,
33] showed that this could be fixed by filtering the upper one-third of the wavespectrum.
That is, at every timestep, the amplitudes of Fourier components with |K|∈[−2π/3,π] are
reset to zero. Orszag showed that aliasing is permitted with his Two-Thirds Rule, but this
is irrelevant (in a quadratically nonlinear system such as the hydrodynamic equations)
because the wavenumbers that are polluted are eliminated by the filter.
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Such filtering is now very common in fluid dynamics. For such models, it is obviously
pointless to accurately differentiate wavenumbers near the aliasing limit because these
will have zero amplitude, and not merely an exponentially small amplitude, after the
“Two-Thirds Rule” filter is applied. This reemphasizes the fact that it is very important
to be accurate small for small |K|, and unimportant to be accurate for |K|>2π/3.

5 Numerical comparisons of derivative approximations between

truncated Gaussian RBF differences and (standard) finite

differences

5.1 First criterion: Minimal accuracy

A differentiation formula is quite useless if it gives a poor approximation to the differen-
tiation eigenvalue. Somewhat arbitrarily, we have chosen an absolute error of 0.05 as a
threshold of minimum acceptability, and graphed the performance of truncated Gaussian
RBF differentiation formulas in the K-α plane for four different stencil widths in Fig. 1.
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Figure 1: The shaded regions show where the absolute error in the eigenvalue of the first derivative, |K−
κGARBF(K;α,M)|, is smaller than 0.05 for four different values of M.

The upper left plot shows that there are only two tiny regions of acceptability for a
five-point stencil, equivalent in work to a fourth order difference formula. The M=2 case
is a disaster for α>1 because even the M=∞ limit is inaccurate, and the RBF differentia-
tion formula is a disaster for smaller α because the error in truncating the infinite series is
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Figure 2: Finite difference error divided by Gaussian RBF error in the eigenvalue of the first derivative versus
K for M = 4, which is a stencil of nine points. The thick dashed horizontal line is where the ratio is one: the
radial basis function method is better whenever the ratio is above this line, and the finite difference is better
whenever the curve is below this dashed line. The thin dotted line marks the right one-third of the spectrum
which would be removed by a dealiasing filter in a hydrodynamics computation.
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Figure 3: Same as previous figure but with M increased to 8. Finite difference error divided by Gaussian RBF
error in the eigenvalue of the first derivative versus K for M =8, which is a stencil of seventeen points.
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Figure 4: Same as previous figure but with the stencil width increased to thirty-three points (i. e., M = 16).
Finite difference error divided by Gaussian RBF error in the eigenvalue of the first derivative, plotted on a
logarithmic scale versus K.

too severe. The M =1 three-point formula (not illustrated) is even worse. Consequently,
we shall restrict attention to M=4 and larger in the remainder of this section.

5.2 Ratios of finite difference errors to truncated Gaussian RBF errors

Figs. 2, 3 and 4 plot the ratio of finite difference errors in the eigenvalue of the first deriva-
tive κ(K) versus K for nine-point, seventeen-point, and thirty-three point stencils. The
pattern is quite consistent between different orders M: the RBF method is better for K
near the aliasing limit, but much worse by a huge factor for small K. For the thirty-three
point wide stencil, the region of RBF superiority lies wholly in the right one-third of the
wavenumber range. In realistic calculations, these Fourier components would likely be
corrupted by aliasing error and in fact are completely eliminated by a dealiasing filter of
the sort common in fluid mechanics. The range of RBF superiority is slightly larger for
smaller M.

Still, there is no doubt that plain old nineteenth century finite differences are vastly
superior to Gaussian radial basis differentiation formulas of the same order for the small
wavenumbers K where accuracy really matters.

6 Summary

Other types of infinitely-differentiable RBFs are possible, of course. However, Fornberg
and Flyer and their collaborators [17,18] have thoroughly analyzed the cardinal functions
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for

φ(X;α)=sech(αX) [“sech” RBF]

and

φ(X;α)=1/(1+α2X2) [“Inverse Quadratic”].

Like Gaussian RBFs, these other species of cardinal functions decay no faster than ex-
ponentially as |X|, which does not encourage optimism that these alternatives are any
better than Gaussians. It is an open problem to confirm this conjecture.

Thus, only a blockhead would employ truncated differences generated by Gaussian
radial basis functions on an equispaced, unbounded grid. (Because of their very high
cost, un-truncated differences are even less efficient.)

Some popular species of RBFs are practical only when combined with a linear or
quadratic polynomial. This suggests that perhaps some of the flaws of Gaussian RBFs
could be fixed by using a combined RBF-polynomial basis. Our analysis is based on trun-
cation of a global RBF basis, and generalizing this to a global mixed polynomial/RBF ba-
sis would be a very bad idea on a supercomputer because a global polynomial part would
couple all processors on a massively parallel machine. However, in the spirit of local RBF
differences [10, 30, 40], one could compute a differentiation formula at a grid point xj

by fitting a mixed polynomial/RBF interpolant through a small number of the point’s
nearest neighbors. However, one would anticipate an accuracy intermediate between
pure RBF and pure polynomial with the optimum strategy being to delete the RBF basis
functions entirely! Further discussion of either global or local mixed RBF/polynomial
interpolants is unprofitable.

It must be noted, however, that radial basis functions were originally invented for
multidimensional, scattered grid approximation; the Central Dogma of RBF enthusiasts
is that radial basis functions are better than any other alternative for irregular grids.
Franke’s masterful empirical study [21], which is the condensation of a very thorough
five hundred page technical report that compared multiple methods for many real-world
scattered grid interpolation problems, was very influential in promoting enthusiasm for
RBFs. To criticize the failings of RBFs for a one-dimensional, equispaced grid is perhaps like
criticizing a camel for being a really bad horse. Our investigation, restricted to one dimen-
sion and a uniform grid, is therefore necessarily incomplete, and making RBF/finite dif-
ference comparisons on a multidimensional, irregular grid is an important future prob-
lem.

However, it must be noted that because of the great difficulties of devising quan-
titative theories for multidimensional, scattered grids, almost all radial basis function
theorists have written at least one paper and sometimes a whole series of papers using
uniform one-dimensional grids, just like us. If this be folly or sin, then dunce caps and
hairshirts will have to be distributed very broadly indeed within the RBF community.

More important, the germ of our argument transcends the simple framework used
here. From a Fourier viewpoint, finite differences are optimized to differentiate exp(ikx)
(and its multidimensional generalizations) for small wavenumber. For most functions u(x),
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Figure 5: Left panel: schematic of |U(k)|, the Fourier transform of a typical function u(x). The transform
decays as k increases. In more than one dimension, k should be interpreted as the magnitude of the wavenumber

vector~k. Unless the grid is very coarse, it is best to use a difference scheme with weights optimized for SMALL

WAVENUMBER. For wavepackets of the form exp(ik0x)A(x) where A(x) is a slowly-varying envelope, or more
generally for other functions with Fourier transforms concentrated about some wavenumber k0 (right panel), it
is best to use weights that are optimized for accuracy near k=k0, a strategy known as “wavenumber-optimized”
or “frequency-optimized” differences. For all classes of functions, RBF differences are not the best on a uniform
or irregular grid in any number of dimensions because radial basis functions lack any strategy for optimizing
accuracy for a specific range of wavenumber.

this is where the amplitude of the Fourier transform U(k) is concentrated. The celebrated
criminal Willie Sutton, when asked why he robbed banks, famously replied, “Because
that’s where the money is!” Finite differences, in one dimension or many, on a uniform
grid or an irregular grid, are optimized in a way that Sutton would approve: they are
best “where the money is”. In contrast, Gaussian RBFs are not Fourier-optimized in any
sense and have errors which are more uniform in k. This is bad because the amplitude
of a typical Fourier transform U(k) is not uniform, but is typically concentrated at small k.
(This is always true for a well-behaved u(x) for sufficiently small grid spacing h.)

For special classes of functions, of course, the Fourier transform may be peaked well
away from k =0, and Gaussian RBFs may be better than finite differences for such func-
tions. However, such instances of“accidental superiority” of RBFs over finite difference
are little comfort to the RBF enthusiast. There is a rather large literature of “wavenumber-
optimized” differences, as catalogued in [5], that systematically choose non-standard dif-
ference weights to improve accuracy when it is known a priori that the Fourier spectrum
is peaked about a certain k0. It goes without saying that when there is such a priori infor-
mation, wavenumber-optimized differences, which are constructed specifically to exploit
it, are superior to RBFs, which benefit only by accident. Fig. 5 shows the situation: for all
classes of smooth functions, RBF truncated differences are inferior to either finite differ-
ences or wavenumber-optimized differences.

There is one exception: if the grid is so coarse that the error is large, and U(k) has
decayed only weakly by the time k is as large as the aliasing limit π/h, then optimizing
for small k, as implicit in finite differences, is no longer optimum. Thus, functions that are
so poorly resolved as to be “broad spectrum” all the way to the aliasing limit may indeed
be better approximated by RBFs than finite differences.

The irregular grid problems in Franke [21] were almost always “broad spectrum” in
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this sense because real-world observing networks are almost always coarse. Weather
forecasting models use a million grid points per level, but the data to initialize the mod-
els comes from an irregular network of only 1700 weather balloon stations. Likewise, oil
prospecting data is always poorly resolved because each data point requires seismome-
ters and each measurement a charge of explosive. Weather balloons and seismometers
must be placed where land and law allow.

Thus, there is no contradiction between our work and the “sacred scripture” of Franke.
In solving differential equations, though, the modeler has the freedom to place grid
points where he or she chooses, and the goal is to not underresolve the solution. For
well-resolved solutions, Fourier analysis suggests that finite differences should be supe-
rior to RBFs even on irregular, multidimensional grids.

We intend to confirm this with future work now in progress. At present, no mech-
anism has been identified (except for poorly-resolved functions) that can somehow re-
trieve superiority for RBFs when the dimension is increased or when the grid becomes
non-uniform.
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A Local RBF differences

Table 1: RBF weights.

Method w1 w2

Trunc-RBF α2

sinh(α2)
α2

sinh(2α2)

Local-3pt 2α2 exp(3α2)
exp(4α2)−1

—

Local-5pt 2α2 exp(3α2)(1+exp(2α2))
exp(6α2)−1

−2α2 exp(10α2)
exp(12α2)+exp(10α2)+exp(8α2)−exp(4α2)−exp(2α2)−1

Truncation of the infinite series for RBFs, as employed here, is not the only strat-
egy for obtaining small differentiation stencils from an RBF approximation. “Local RBF
differences” fit an RBF interpolant with (2M+1) basis functions through a point x and
its 2M nearest neighbors and then differentiate the interpolant to define the differentia-
tion weights [10, 30, 40]. In contrast to the simple, explicit formula for the truncated-RBF
weights, wm =(−1)m+1α2/sinh(α2m), independent of M, one must solve a matrix prob-
lem of dimension (2M+1). It is possible to obtain analytical expressions for small M, but
these rapidly escalate in complexity with M as illustrated in Table 1. Furthermore, the
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Figure 6: Comparison of the weights for local RBF differences, as the work of Fornberg and Wright (solid) and
truncated RBFs (dotted) for M =7, which implies a 15-point stencil.

matrix problem is severely ill-conditioned for small α, this difficulty worsening with M,
so that one must resort to the much more expensive “contour-Pade” algorithm [19].

We shall not discuss the local-RBF alternative at any length because the local-RBF
weights asymptote to the usual finite difference weights for small α and asymptote to
the truncated-RBF weights for moderate and large α as illustrated in Fig. 6. As M in-
creases, the local-RBF weights become graphically indistinguishable from the truncated-
RBF weights at smaller and smaller α. There is thus a rather narrow window of smallish α

where the local RBFs are significantly different from either finite differences or truncated-
RBF differences. In this window, local-RBF formulas will be more accurate than the
truncated-RBF differences, but only because the numerical weights more closely resem-
ble the finite difference weights to which they asymptote as α→0. Thus, consideration of
local-RBFs does not alter the conclusions of the main text.
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