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Abstract. We consider two existing FFT-based fast-convolution iterative solution tech-
niques for the scalar T-matrix multiple-scattering equation [1]. The use of the FFT op-
eration requires field values be expressed on a regular Cartesian grid and the two tech-
niques differ in how to go about achieving this. The first technique [6, 7] uses the non-
diagonal translation operator [1, 9] of the spherical multipole field, while the second
method [11] uses the diagonal translation operator of Rokhlin [10]. Because of its use
of the non-diagonal translator, the first technique has been thought to require a greater
number of spatial convolutions than the second technique. We establish that the first
method requires only half as many convolution operations as the second method for a
comparable numerical accuracy and demonstrate, based on an actual CPU time com-
parison, that it can therefore perform iterations faster than the second method. We then
consider the respective symmetry relations of the non-diagonal and diagonal transla-
tors and discuss a memory-reduction procedure for both FFT-based methods. In this
procedure, we need to store only the minimum sets of near-field and far-field transla-
tion operators and generate missing elements on the fly using the symmetry relations.
We show that the relative cost of generating the missing elements becomes smaller as
the number of scatterers increases.

AMS subject classifications: 74J20, 81010

Key words: Multiple scattering, iterative method, FFT, symmetry.

1 Introduction

The scattering of acoustic waves from an ensemble of discrete scatterers is an impor-
tant, age-old problem that finds applications in areas as diverse as sonar and medical
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imaging. In many applications, multiple scattering effects cannot be ignored in deter-
mining the overall scattering characteristics, but their numerical determination can be
computationally challenging. They can be determined, for example, by solving the gov-
erning multiple-scattering equation [1] based on the T-matrix formalism [2]. If there are
Np scatterers in the ensemble and each scatterer requires P partial waves to represent its
scattering behavior, one then needs to solve a system of linear equations of size N by N,
where N≡PNp. When N is modest, one may be able to solve the matrix equation using
either a direct method such as the LU decomposition or an iterative technique such as
the conjugate gradient (CG) method [3, 4]. A direct method would require O(N3) float-
ing point operations (FPOs) and O(N2) memory units (MUs), while an iterative method
would require O(N2) FPOs per iteration and O(N2) MUs. However, as N increases, with
these unfavorable computational complexities, one quickly finds oneself unable to store
the matrix even on a supercomputer, let alone solve the matrix equation.

Significant efforts have been directed at reducing the aforementioned undesirable
computational complexities over the last decade and a half, and a number of efficient
algorithms have been proposed. Among the useful algorithms that have emerged is the
FFT T-matrix technique [6, 7] that was originally developed for electromagnetic scatter-
ing applications. This technique was later adopted by [11] for the acoustic case as part of
its comparative study on efficient prediction techniques for scattering from a cluster of
particles. The idea is to use the FFT-based fast-convolution technique to expedite matrix-
vector multiplications, which are the most costly part of an iterative solution process.

In this paper we compare and improve the computational efficiencies of two existing
FFT T-matrix methods for the scalar T-matrix multiple-scattering equation [1]. The use
of the FFT operation requires field values be expressed on a regular Cartesian grid and
the two versions differ in how to go about achieving this. The first method [6, 7, 11]
uses the non-diagonal translation operator [1, 9] of the spherical multipole field, while
the second method [11] uses the diagonal translation operator of Rokhlin [10]. Because
of its use of the non-diagonal translator, the first version is thought to require a greater
number of spatial convolutions than the second one [11]. We first establish that the first
method requires half as many spatial convolutions as the second method for a given
numerical accuracy and show, based on a CPU time comparison, that the first method
indeed performs matrix-vector multiplications faster.

As alluded to earlier, when solving scattering from a volume distribution of scatter-
ers, it is often the memory requirement that sets the upper limit on the problem size that
can be solved on a given computer. Therefore, it is highly desirable to be able to reduce
the memory requirement. Since storage of the translation matrix (TM) drives the overall
memory requirements of the FFT T-matrix methods [13], we discuss the respective sym-
metry relations of the non-diagonal and diagonal TMs and develop a memory-reduction
procedure for both FFT T-matrix methods. The procedure requires only the minimum
sets of the translators be stored and generates missing elements from them on the fly
using the symmetry relations. We show that the procedure reduces the memory require-
ments of both FFT T-matrix methods by non-trivial factors. These symmetry relations
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can easily be implemented in an existing FFT T-matrix code, allowing it to solve larger
problems.

The accuracy of the FFT T-matrix method improves with the increasing number of
partial waves, P≡(Lex

2+1)2, used in the expansion of the scattered field and the increas-
ing number of multipole terms, T ≡ (LT

2+1)2, retained in the translation to the Carte-
sian grid [6], [7], [11]. As we will discuss, the overall memory requirement scales as
O(Lex

4Np)+O(LT
4NG) for the FFT method based on the non-diagonal translator and

O(Lex
4Np)+O(LT

2NG) for the FFT method based on the diagonal translator, where Np

is the number of scatterers in the ensemble and NG is the size of the extended regular
Cartesian grid. Therefore, accurate multiple-scattering predictions require substantially
more memory and the memory-reduction procedure discussed in this work can alleviate
the increased memory requirement.

The organization of the paper is as follows. In Section 2, we briefly review the scalar
T-matrix multiple-scattering equation [1] to establish the conventions and notations used
in the paper. In Section 3, we establish the CPU and memory requirements of the existing
FFT T-matrix method based on the non-diagonal translator, and examine the respective
symmetry relations the non-diagonal TM satisfies in configuration- and k-spaces. Specif-
ically, we show that the CPU time requirement scales as O(LT

2NG log2 NG) and that the
symmetry relations reduce the near-field TM memory requirement by almost eightfold
and the far-field TM requirement by nearly sixteenfold. In Section 4, after establishing
the CPU and memory requirements of the existing FFT T-matrix method based on the
diagonal translator [11], we discuss the symmetry relations the diagonal TM satisfies in
k-space and show that they reduce the far-field TM memory requirement by eightfold.
Since the near-field TM remains un-diagonalized, we may use the same configuration-
space symmetry relations discussed in Section 3 and reduce the near-field TM memory
requirement by nearly eightfold. In Section 5, we first validate the convolution- and
memory-reduction techniques discussed in Sections 3 and 4 by computing the bistatic
acoustic cross section of an ensemble of spheres and show that their use introduces no
numerical inaccuracy. We then compare the CPU times required by the two FFT T-matrix
methods to perform matrix-vector multiplications and show that the FFT method based
on the non-diagonal translator performs matrix-vector multiplications faster. We also
show that the relative cost of using the symmetry relations to generate missing transla-
tion matrix elements on the fly decreases as the number of unknowns increases. Section
6 concludes the paper. All the symmetry relations of the non-diagonal TM used in this
paper are derived in [12] except (3.4), whose derivation is provided in the appendix.

2 T-matrix multiple scattering equation

We briefly review the T-matrix multiple-scattering equation [1,9] for the purpose of estab-
lishing the notations and conventions used in the paper and examine the computational
cost of solving the equation as a function of the number of scatterers, Np, in the ensemble
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and the order of partial waves, Lex, used in the expansion of the incident and scattered

fields. Let us consider the scattering of a plane wave, φinc(r̄) = eik̄·r̄, from an ensemble
of Np acoustically small, non-overlapping, identical spherical scatterers with radius a lo-
cated at r̄j, where j =1,··· ,Np. φinc(r̄) may be expanded in terms of ”regular” multipole
fields, Rgφ(r̄),

φinc(r̄)=
Lex

∑
l=0

l

∑
m=−l

al,m ·Rgφl,m(r̄).

Here, Rgφl,m(r̄)≡ jl(kr)Yl,m(r̂), where jl(kr) is the spherical Bessel function and Yl,m(r̂)
the spherical harmonics with r̂≡ (θ,φ) and k the wavenumber. Lex = Int(ka+n), where n
is a small integer and Int stands for the integer function. The scattered field at r̄ from the
jth scatterer, φsc

j (r̄), may be expanded in a similar way,

φsc
j (r̄)=

Lex

∑
l=0

l

∑
m=−l

b
(j)
l,m ·φl,m(r̄− r̄j).

Here,
φl,m(r̄− r̄j)≡φl,m(ρ̄j)≡hl(kρj)Yl,m(ρ̂j),

where hl(kρj) is the spherical Hankel function of the first kind and ρ̄j ≡ r̄− r̄j. The total
scattered field, φsc(r̄), is then

φsc(r̄)=
Np

∑
j=1

φj(r̄− r̄j).

The unknown expansion coefficients, b
(i)
lm , are related to the incident wave expansion co-

efficients of the jth sphere, a
(j)
lm , and the isolated single-particle T matrix of the jth particle,

t
(j)
lm , through

b
(j)
l′,m′−t

(j)
l′ ,m′

Lex

∑
l=0

l

∑
m=−l

Np

∑
i 6=j

αl,m
l′,m′(r̄j− r̄i)·b(i)

l,m = t
(j)
l′,m′a

(j)
l′ ,m′ . (2.1)

Here, αl,m
l′,m′(r̄j− r̄i) is the translation matrix of the spherical multipole field [1, 9] and acts

as a coupling coefficient (propagator) between two spatially separated multipole fields,

φl,m(r̄i) and φl′,m′(r̄j). Expressions for t
(j)
l′ ,m′ for scattering from a penetrable sphere and an

impedance sphere can be found, for example, in [5] and expressions for scattering from a
rigid sphere can be deduced as a limiting case.

We may write (2.1) in matrix form

[I−T·A]· b̄=T· ā, (2.2)

where I, T and A are, respectively, the identity, transition and translation matrices. Since
[I−T·A] is of size N by N with N≡PNp≡(Lex+1)2Np, a direct solution of (2.2) using, for
example, the LU decomposition of [I−T·A] would require O(N3) FPOs and O(N2) MUs
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[3]. An iterative solution based on, for example, the CG method [4] would require O(N2)
FPOs per iteration and O(N2) MUs. These unfavorable CPU and memory requirements
severely limit the size of the problems that can be solved by the conventional methods.

3 FFT T-matrix method with non-diagonal translator

3.1 Original formulation

In order to reduce the aforementioned computational complexities, [6] and [7] were the
first to apply the FFT-based fast-convolution technique to the T-matrix multiple-scattering
equation. Their technique exploits the translation property of the translation coefficients
of the electromagnetic multipole fields to express field values on a regular Cartesian
grid. It was adopted by [11] for the acoustic case as part of its comparative study on
efficient prediction techniques for acoustic scattering from a cluster of particles. Koc
and Chew [11] showed that the FFT-based fast-convolution technique reduces the cost of
performing the spatial convolution in (2.1) from O(N2

p) to O(NG log2 NG) FPOs for each

(l,m) and (l′,m′) combination and the overall memory requirement from O(Lex
4Np

2)

to O(Lex
4Np)+O(LT

4NG), where NG is the size of the extended regular Cartesian grid
containing the scatterers and (LT+1)4 is the total number of modal combinations of the
translation coefficient. (See (3.1).) Thus, whenever the particle distribution supports a
regular grid with O(NG log2 NG)<O(Np

2), the FFT-based fast-convolution technique can
perform the spatial convolution in (2.1) faster using less memory. A moderately uni-
form, dense particle distribution supports a regular grid that satisfies NG log2 NG ≪ N2

p.
As the particle distribution becomes more inhomogeneous or tenuous, the FFT-based
convolution technique becomes increasingly inefficient since a highly inhomogeneous or
tenuous particle distribution may not support a grid with O(NG log2 NG) <O(N2

p). For
this type of particle distribution, an adaptive method such as the one studied in [11] is
more efficient. It is, however, important to note that, while the FFT-based method and the
adaptive method are capable of performing the spatial convolution with O(NG log2 NG)
and O(Np log2 Np) FPOs, respectively, the proportionality constant for the former is sub-
stantially smaller than that of the latter. In addition, efficient FFT routines [8] exist and
some are highly optimized on many computing platforms to take advantage of their spe-
cial hardware or software features and thus FFT-based methods are able to perform con-
volution operations quite efficiently. However, for a highly inhomogeneous or tenuous
particle distribution†, an adaptive technique must be used.

The FFT-based fast-convolution method requires field values be specified on a regular
Cartesian grid. Thus, when the particles are not evenly spaced, it is necessary to express

αl,m
l′,m′(r̄j− r̄i) in terms of αl,m

l′,m′(R̄j− R̄i), where R̄j and R̄i, as shown in Fig. 1, are the grid

†For truly tenuous distributions, multiple scattering effects are small and thus may be ignored.
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Figure 1: A regular Cartesian grid showing the translation to the nearest grid points.

points nearest to r̄j and r̄i, respectively. We let

r̄i ≡ R̄i+ d̄i, r̄j ≡ R̄j+ d̄j,

where |R̄j|> |d̄j| and |R̄i|> |d̄i|. Using the translation property of αl,m
l′,m′(r̄j− r̄i) [1],

αl,m
l′,m′(r̄j− r̄i)=

LT

∑
L=0

L

∑
M=−L

βl,m
L,M(d̄j)

LT

∑
L′=0

L′

∑
M′=−L′

αL,M
L′,M′(R̄j− R̄i)βL′ ,M′

l′ ,m′ (−d̄i), (3.1)

where βl,m
L,M(d̄j) and βL′,M′

l′,m′ (−d̄i) are the same as αl,m
L,M(d̄j) and αL′,M′

l′,m′ (−d̄i) except that they

are regular at the origin [1, 9], and LT = Int(kd+n) with d = max (di,dj) and n being a
small integer.

The spatial convolution in (2.1) may be separated into two parts depending on the
distance, rji ≡|r̄j− r̄i|:

Γl′,m′(r̄j)≡
Lex

∑
l,m

∑
i 6=j

αl,m
l′,m′(r̄j− r̄i)·b(i)

l,m

=
Lex

∑
l,m

[

∑
i∈Ni

αl,m
l′,m′(r̄j− r̄i)·b(i)

l,m+ ∑
i∈Fi

αl,m
l′,m′(r̄j− r̄i)·b(i)

l,m

]

≡Γ
(N)
l′,m′(r̄j)+Γ

(F)
l′,m′(r̄j), (3.2)

where Ni and Fi, respectively, represent the particles in the near field (rji ≤ δ) and in the
far field (rji >δ) of the ith particle for some suitably chosen δ.
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The near-field convolution, Γ
(N)
l′,m′(r̄j), requires O(Lex

4Np) FPOs for all j and (l′,m′)

using precomputed αl,m
l′,m′(r̄j−r̄i) with rij <δ, for each particle has an O(1) number of par-

ticles in its near field and there are (Lex+1)4 combinations of (l,m) and (l′,m′). Similarly,
it takes O(Lex

4Np) MUs to store the precomputed near-field translation coefficients.

The far-field convolution, Γ
(F)
l′,m′(r̄j), can be expedited using (3.1) and the FFT-based

convolution technique:

Γ
(F)
l′,m′(r̄j)=

LT

∑
L′,M′

βL′,M′
l′,m′ (d̄j)

LT

∑
L,M

∑
i

α̂L,M
L′,M′(R̄j− R̄i)

Lex

∑
l,m

βl,m
L,M(−d̄i)·b(i)

l,m

=
LT

∑
L′,M′

βL′,M′
l′,m′ (d̄j)

LT

∑
L,M

FFT−1
[

α̃L,M
L′,M′(q̄)Ψ̃L,M(q̄)

]

=
LT

∑
L′,M′

βL′,M′
l′,m′ (d̄j)FFT−1

[ LT

∑
L,M

α̃L,M
L′,M′(q̄)Ψ̃L,M(q̄)

]

, (3.3)

where α̂L,M
L′,M′(R̄j− R̄i) is defined according to

α̂L,M
L′,M′(R̄j− R̄i)≡

{

αL,M
L′,M′(R̄j− R̄i) if |R̄j− R̄i|>δ,

0 otherwise.

In (3.3), FFT−1 represents the inverse fast Fourier transform (IFFT); α̃L,M
L′,M′(q̄) and Ψ̃L,M(q̄)

are, respectively, the Fourier transforms of α̂L,M
L′,M′(R̄j− R̄i) and ΨL,M(−d̄i) where

ΨL,M(−d̄i)≡∑
l,m

βl,m
L,M(−d̄i)·b(i)

l,m;

and q̄ is the Fourier conjugate variable in k-space. α̃L,M
L′,M′(q̄) are pre-computed for all

combinations of (L,M) and (L′,M′) at the computational cost of O(LT
4NG log2 NG) FPOs

and O(LT
4NG) MUs. Each iteration updates the unknown expansion coefficients b

(i)
l,m and

thus Ψ̃L,M(q̄) also needs to be updated at the cost of O(LT
2NG log2 NG). The convolution,

Γ
(F)
l′,m′(r̄j), then requires O(LT

2NG log2 NG) FPOs with the precomputed α̃L,M
L′,M′(q̄) when Np

is large.

3.2 Memory requirement reduction

With a three-dimensional volume distribution of particles, it is often the memory require-
ment, rather than the CPU requirement, that determines the size of the largest problem
that can be solved on a given computer. Therefore, it is important to be able to reduce
the memory requirement. As mentioned previously, the storage of the far-field and near-
field TMs, which respectively require O(LT

4NG) and O(L4
exNp) MUs, drives the overall
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memory requirement of the FFT-based fast-convolution method. In this section, we show
that it is possible to further reduce both the near- and far-field TM storage requirements

by exploiting the respective symmetry relations [12] of αl,m
l′,m′(r̄j−r̄i) and α̃l,m

l′,m′(q̄). Our ap-
proach is similar to the one adopted in [13] for the electromagnetic multiple-scattering
equation.

As discussed in [13], when the spatial distribution of particles is dense, it is the near-
field TM storage that drives the storage requirement of the FFT T-matrix method. As

shown in [12] and Appendix, αl,m
l′ ,m′(r̄j− r̄i) satisfies the following two symmetry relations

involving the modal indices (l,m) and (l′,m′):

αl,m
l′,m′(r̄j− r̄i)=(−1)l+l′e2i(m−m′)φji αl′,m′

l,m (r̄j− r̄i) (3.4)

and
αl,−m

l′,−m′(r̄j− r̄i)=(−1)m+m′
e2i(m−m′)φji αl,m

l′,m′(r̄j− r̄i), (3.5)

where φji is the spherical azimuth angle of r̄j− r̄i. Since particle i is in the near field
of particle j if particle j is in the near field of particle i, the following parity-symmetry
relation can also be used to reduce the memory requirement:

αl,m
l′,m′(r̄i− r̄j)=(−1)l+l′αl,m

l′,m′(r̄j− r̄i). (3.6)

Overall, (3.4)-(3.6) together reduce the storage requirement of the near-field TM by a

factor of nearly 8. (It is not exactly 8 since some modal combinations, such as α1,−1
1,−1, can

be double counted by (3.4) and (3.6)).
When the particle distribution is not too dense (but dense enough so that the FFT-

based convolution technique can be used profitably), it is the storage of the far-field TM,

α̃l,m
l′,m′(q̄), that determines the overall storage requirement of the FFT T-Matrix method.

Since all q̄≡ (qx,qy,qz) values reside on an extended regular Cartesian grid, their reflec-
tions about the qxqy-, qyqz- and qzqx-planes also reside on the same regular grid. There-
fore, the following reflection-symmetry relations can be used to reduce the far-field TM
storage:

α̃l,m
l′,m′(−qx,qy,qz)= α̃l,−m

l′,−m′(qx,qy,qz),

α̃l,m
l′,m′(qx,−qy,qz)=(−1)m+m′

α̃l,−m
l′,−m′(qx,qy,qz), (3.7)

α̃l,m
l′,m′(qx,qy,−qz)=(−1)l+m+l′+m′

α̃l,−m
l′,−m′(qx,qy,qz), etc.

With the above reflection symmetry relations, we need to store only α̃l,m
l′,m′(qx,qy,qz) with

qx ≥0, qy≥0, qz ≥0,

thus reducing the storage requirement of the far-field TM by a factor of 8. (3.4) and (3.5)
individually are ill-suited for the FFT-based convolution due to the presence of the factor

e2ı(m−m′)φji . However, we may combine the two equations and obtain

α̃l,−m
l′,−m′(q̄)=(−1)l+m+l′+m′

α̃l′,m′
l,m (q̄), (3.8)
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which permits an additional reduction by a factor of nearly two. Thus, we achieve a total
storage reduction of the far-field TM by a factor of nearly 16 with (3.7) and (3.8).

Similarly, we may apply (3.4)-(3.6) to reduce the memory requirements of βL′,M′
l′,m′ (d̄j)

and βl,m
L,M(−d̄i) in (3.3). However, the magnitude of the resulting savings is small com-

pared with those of αl,m
l′,m′(r̄j− r̄i), rij < δ and α̃l,m

l′,m′(q̄), and thus we do not pursue their
memory reduction in this work.

With (3.4)-(3.8), we need to compute and store only the minimum sets containing
the independent elements of the configuration-space near-field TM and the k-space far-
field TM and generate missing elements from them on the fly as they are needed. The
computational cost of generating the missing elements of the near- and far-field TMs
using the symmetry relations scales linearly with Np and NG, respectively. Since the
overall CPU requirement scales as O(NG log2 NG) when Np is large, it is expected that the
relative cost of executing the symmetry operations decreases as the number of unknowns
increases.

4 FFT T-matrix method with diagonal translator

One potentially serious drawback of the FFT T-matrix method discussed in the previ-

ous section is that both αl,m
l′,m′(r̄j− r̄i), rji < δ and α̃l,m

l′,m′(q̄) are non-diagonal. That is, they

depend on both (l,m) and (l′,m′). As a consequence, even though the cost of perform-
ing the convolution, (3.2), is O(LT

2NG log2 NG) as discussed in the previous section, it

still requires, respectively, O(LT
4 NG) and O(Lex

4 Np) MUs to store the far-field α̃l,m
l′,m′(q̄)

and the near-field αl,m
l′ ,m′(r̄j− r̄i), rji < δ that are needed to compute Γ

(F)
l′,m′(r̄j) and Γ

(N)
l′,m′(r̄j)

in (3.2). [11] was able to reduce the far-field TM storage requirement from O(LT
4 NG)

to O(LT
2 NG) by expanding the far-field αl,m

l′,m′(r̄j− r̄i), rji > δ, in terms of planes waves
and the diagonal translation operator [10]. In this section we examine a set of reflection
symmetry relations of the diagonal translation operator that are particularly well suited
for the FFT-based fast-convolution technique and show that they reduce the far-field TM
storage requirement by an additional factor of 8.

4.1 Original formulation

As shown in Fig. 1, we let r̄i = R̄i+ d̄i and r̄j = R̄j+ d̄j, where R̄i and R̄j are the grid points

nearest to r̄i and r̄j, respectively. The far-field αl,m
l′,m′(r̄j− r̄i), rji > δ, may be expanded in

terms of plane waves [11]:

αl,m
l′,m′(r̄j− r̄i)=

∫

Sk

eik̄·d̄j i−lYl,m(k̂)τLT
(k̂,R̄j− R̄i)il′Y∗

l′,m′(k̂)e−ik̄·d̄i dk̂, (4.1)

where

k̂≡ (θk,φk),
∫

Sk

(·)dk̂≡
∫ 1

−1

∫ 2π

0
(·)d(cosθk)dφk.
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τLT
(k̂,R̄j− R̄i) is the diagonal translator [10],

τLT
(k̂,R̄j− R̄i)≡

LT

∑
l=0

il(2l+1)hl(kRji)Pl(k̂ ·R̂ji), (4.2)

where R̄ji ≡ R̄j− R̄i; hl(.) is the spherical Hankel function of order l; Pl(.), the Legendre

polynomial of order l; and R̂ji≡ R̄ji/Rji. The numerical integration over k̂ in (4.1) requires
(LT+1) Gauss-Legendre quadrature points for the θk integration and 2(LT +1) trape-
zoidal points for the φk integration [11]. Thus, a total of 2(LT +1)2 quadrature points are
needed to perform the k̂ integration numerically. Since τLT

(k̂,R̄ji) is doubly-block Toeplitz

for given k̂, the far-field convolution, Γ
(F)
l′,m′(r̄j), in (3.2) may be written as

∑
l,m

∑
i∈F j

αl,m
l′,m′(r̄j− r̄i)·b(i)

l,m

=
Nk

∑
p=1

wpeik̄p ·d̄j i−lYl,m(k̂p)∑
i

τ̂LT
(k̂p,R̄ji)il′ e−ik̄p·d̄i ∑

l,m

Y∗
l′,m′(k̂p)b

(i)
l,m

=
Nk

∑
p=1

wpeik̄p ·d̄j i−lYl,m(k̂p)FFT−1
[

τ̃LT
(k̂p,q̄)·χ̃(k̂p,q̄)

]

. (4.3)

Here, k̂p and wp, respectively, represent the quadrature points and weights and Nk ≡
2(LT +1)2. τ̃LT

(k̂p,q̄) and χ̃(k̂p,q̄), respectively, are the Fourier transforms of τ̂LT
(k̂p,R̄ji)

and χ(k̂p,i), where

τ̂LT
(k̂p,R̄ji)≡

{

τLT
(k̂p,R̄ji) if |R̄j− R̄i|>δ,

0 otherwise,

and
χ(k̂p,i)≡ e−ik̄p ·d̄i∑

l,m

i−lY∗
l,m(k̂p)b

(i)
l,m.

In (4.3), τ̃LT
(k̂,q̄) needs to be computed only once at the cost of O(LT

2 NG log2 NG) FPOs
and requires O(LT

2 NG) MUs to store them. Thus, the use of the diagonal translator
reduces the memory requirement of the far-field TM from O(LT

4NG) to O(LT
2NG).

Since (4.1) is not valid when rji ≤ δ, the memory requirement of the near-field TM
remains unchanged (if the same δ is used). As noted in [13], when the particle distribu-
tion is dense, it is the memory requirement of the near-field TM that drives the overall
memory requirements, and thus (4.1) provides only a marginal improvement over the
FFT T-matrix method based on the non-diagonal translator. However, as the particle
distribution becomes more inhomogeneous or tenuous, it may provide a substantial im-
provement over the non-diagonal translator-based method, since for this type of particle
distribution it is the far-field TM memory requirement that drives the overall memory re-
quirements. The computation of (4.3) requires 2(LT +1)2 forward and 2(LT +1)2 inverse
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FFT operations, while (3.3), as discussed in Section 3.1, requires (LT+1)2 forward and
(LT+1)2 inverse FFT operations. Therefore, the FFT T-matrix method based on the diag-
onal translator requires twice as many spatial convolutions for a comparable numerical
accuracy.

4.2 Memory requirement reduction

Since it is only the far-field TM that gets diagonalized, the memory requirement of the
near-field TM remains the same as that of the FFT T-matrix method discussed in the
previous section (if the same δ value is used). Thus with (3.4)-(3.6), as discussed in Section
3.2, the memory requirement of the near-field TM can be reduced by a factor of nearly
eight.

It is also possible to further reduce the memory requirement of the far-field TM,
τ̃LT

(k̂,q̄). The scalar product, k̂·R̂ji, in (4.2) is invariant under the simultaneous reflec-

tions of Rji about the xy-, yz-, and zx-planes and k̂ about the kxky-, kykz-, and kzkx-planes.

Therefore, if we let k̂≡(k̂x, k̂y, k̂z) and r̄≡(x,y,z), the following set of eight reflection sym-

metry relations of τLT
(k̂,r̄) results:

τLT
(k̂,r̄)≡τLT

(k̂x, k̂y, k̂z;x,y,z)=τLT
(−k̂x, k̂y, k̂z;−x,y,z)

=τLT
(k̂x,−k̂y, k̂z;x,−y,z)=τLT

(k̂x, k̂y,−k̂z;x,y,−z)

=τLT
(−k̂x,−k̂y, k̂z;−x,−y,z)=τLT

(k̂x,−k̂y,−k̂z;x,−y,−z)

=τLT
(−k̂x, k̂y,−k̂z;−x,y,−z)=τLT

(−k̂x,−k̂y,−k̂z;−x,−y,−z). (4.4)

The R̄ji in (4.2) reside on an extended regular Cartesian grid (i.e., for each k̂p, τ̂LT
(k̂p,R̄ji)

is doubly-block circulant) and their reflection points about the xy-, yz- and zx-planes also
reside on the same extended regular grid. The above eight reflection symmetry relations
also hold for τ̃LT

(k̂,q̄) in the Fourier domain:

τ̃LT
(k̂,q̄)≡τLT

(k̂x, k̂y, k̂z;qx,qy,qz)=τLT
(−k̂x, k̂y, k̂z;−qx,qy,qz)

=τLT
(k̂x,−k̂y, k̂z;qx,−qy,qz)=τLT

(k̂x, k̂y,−k̂z;qx,qy,−qz)

=τLT
(−k̂x,−k̂y, k̂z;−qx,−qy,qz)=τLT

(k̂x,−k̂y,−k̂z;qx,−qy,−qz)

=τLT
(−k̂x, k̂y,−k̂z;−qx,qy,−qz)=τLT

(−k̂x,−k̂y,−k̂z;−qx,−qy,−qz). (4.5)

Since q̄≡ (qx,qy,qz) reside on the extended regular Cartesian grid in the Fourier space, so

do their reflection points. The aforementioned optimum k̂-integration scheme, based on
the Gauss-Legendre quadrature method for the θk integration and the trapezoidal rule for
the φk integration, also produces quadrature points and weights that remain symmetric
under the reflections. Therefore, when the symmetry properties of the quadrature points
and their weights are combined with (4.5), it is necessary to compute and store only those
τ̃LT

(k̄,q̄) values that correspond to the first octant of q̄ with qx≥0, qy≥0, and qz≥0. Thus,
the far-field TM memory requirement is reduced by a factor of eight.
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5 Validation and CPU comparisons

In this section we validate the memory- and convolution-reduction schemes introduced
in the previous sections, compare the CPU times required to perform the matrix-vector
multiplication, (3.2), by the two FFT-based fast-convolution methods, and show that the
relative cost of using the symmetry relations decreases as N increases.

For the validation, we compute the acoustic bistatic scattering cross section of an en-
semble of 100 identical 0.1λ0-diameter spheres that are randomly distributed inside a
(1.5λ0)3 cubic box using three different techniques‡: (i) the standard conjugate-gradient
(CG) method without FFT acceleration, (ii) the CG-FFT method with the non-diagonal
translator, and (iii) the CG-FFT method with the diagonal translator. When using the
CG-FFT method with the non-diagonal translator, we use (3.4)-(3.6) to reduce the near-
field TM storage requirement, and (3.7) and (3.8) to reduce the far-field TM storage re-
quirement. When computing the far-field convolution, (3.3), we perform the spatial con-
volution (LT+1)2 times. Similarly, when using the CG-FFT method with the diagonal
translator, we use (3.4)-(3.6) to reduce the near-field TM storage requirement and (4.5) to
reduce the far-field TM storage requirement. The result obtained using the standard CG
method without FFT acceleration serves as a reference solution.

For all three techniques, we use 9 partial waves corresponding to Lex =2 in (2.1) (thus

there are 900 unknown b
(j)
l,m coefficients) and terminate the CG iteration when the normal-

ized residual error (NRE) reaches 0.001. When translating αl,m
l′,m′(r̄j− r̄i) for the CG-FFT

method with the non-diagonal translator, we also retain 9 partial waves corresponding
to LT = 2 in (3.1). For the FFT method with the diagonal translator, we use 18 quadra-
ture points (corresponding to 3 and 6 points for the θk and φk integrations, respectively)
to perform the k̂ integration in (4.1). For the two CG-FFT methods, we use the forward
and inverse FFTs of size 32 x 32 x 32 that extends from −1.5λ0 to 1.5λ0 in each Cartesian
direction with the grid spacing d=0.1λ0 (λo is the wavelength). Thus, in (3.1),

max(di,dj)=(
√

3/2)d≃0.086λ0 .

When using the standard CG method without FFT acceleration, we need to store a
complex matrix of size 900 by 900. For both CG-FFT methods without memory reduc-
tion, we need approximately 81N̄n Np complex words (CWs) to store the near-field TM,
where 81 is the total number of (l,m) and (l′,m′) combinations corresponding to Lex =2,
Np the number of particles in the ensemble and N̄n the average number of particles in
the near field. N̄n is equal to the product of the particle density and the near-field vol-
ume. With δ=0.4λ0 in (3.2), we obtain N̄n≈7.9. Thus, for both CG-FFT methods without
memory reduction, we need approximately 6.4×104 CWs to store the near-field TM. The
two modal symmetry relations, (3.4)-(3.5), reduce the number of (l,m) and (l′,m′) com-
binations from 81 to 24, while the parity-symmetry relation, (3.6), provides an additional

‡Admittedly, the particle density may not be high enough to warrant the use of the FFT-based techniques.
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Figure 2: (A): Acoustic bistatic scattering cross section, as a function of scattering angle, of an ensemble of

100 0.1λ0-diameter spheres that are randomly distributed inside a (1.5λ0)
3 cubic volume, computed using the

standard CG method without FFT acceleration (solid); the CG-FFT method with non-diagonal TM (dotted);
and CG-FFT with diagonal TM(dashed). (B): Relative error in dB between the original CG-FFT method based
on non-diagonal TM (without memory and convolution reductions) and the improved CG-FFT based on non-
diagonal TM with convolution and memory reductions. (C): Relative error in dB between the original CG-FFT
based on diagonal TM (without memory reduction) and the improved CG-FFT based on diagonal TM with
memory reduction.

twofold reduction. Thus, the near-field TM can be stored using only ∼9.5×103 CWs. For
the far-field TM storage, the original CG-FFT method with the non-diagonal translator
requires 81×323 ≈ 2.7×106 CWs, while the original CG-FFT method with the diagonal
translator needs only 18×323 ≈5.9×105 CWs. (3.8) reduces the number of independent
(l,m) and (l′,m′) combinations from 81 to 45, while (3.7) produces an eightfold reduction.
Thus, the far-field non-diagonal TM requires only 45×163≈1.8×105 CWs. Similarly, (4.5)
reduces the storage for the diagonal far-field TM to 18×163 ≈ 7.4×104 CWs. We note
that, even for this low-density particle distribution, the storage requirements of the two
CG-FFT methods, augmented with the symmetry relations, are milder than that of the
standard CG method without FFT acceleration.
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Compared in Fig. 2(A) are the three sets of bistatic cross section values predicted by
the three techniques mentioned above. As evident from the figure, they are in excellent
agreement with each other. Fig. 2(B) plots the relative error in dB between the origi-
nal FFT method with the non-diagonal translator (without the memory and convolution
reductions) and the improved FFT method with the non-diagonal translator with the
memory and convolution reductions. The relative error is defined as

relative error in dB=10log10

[

max

(∣

∣

∣

∣

σ1(θ)−σ2(θ)

σ1(θ)

∣

∣

∣

∣

, 2−52

)]

,

where σ1(θ) and σ2(θ) are the complex scattering amplitudes computed using method
1 and method 2, respectively. The presence of 2−52 ≈−156 dB ensures that we don’t
take the logarithm of 0 when σ1(θ)=σ2(θ). Similarly, Fig. 2(C) plots the relative error in
dB between the original FFT method with the diagonal translator (without the memory
reductions) and the improved FFT method (with the memory reductions). It is evident
that neither the memory reduction nor the convolution reduction affects the accuracy of
the CG-FFT methods.

In Fig. 3, we compare, as a function of N, the CPU times needed to execute the matrix-
vector multiplication (2.2) by the brute-force method and (3.2) by the two FFT methods.
As defined in Section 2, N ≡ PNp ≡ (Lex+1)2Np and we set Lex = 2. For the two FFT
methods, the figure shows the size of the regular grid for each N (the size of the extended
regular grid, which corresponds to the actual size of the FFT and IFFT operations, is
eight times the size of the regular grid ). For the brute-force method, the CPU times
for N > 20000 are estimated using a quadratic fit to the actual CPU data for N < 20000.
Translation onto the regular grid is achieved using LT = 2 for the FFT method with the
non-diagonal translator and Nθk

= 3 and Nφk
= 6 for the FFT methods with the diagonal

translator. For both FFT methods, we set δ=0.3λ0 and the CPU time data for the two FFT
methods are obtained without using the symmetry relations. As expected, the two FFT
methods perform the matrix-vector multiplications significantly faster than the brute-
force method as N increases. Since the FFT method with the non-diagonal translator
requires half as many spatial convolutions as the FFT method based on the diagonal
method, the figure shows that the former is about 15 ∼ 30 % more efficient than the
latter.

The use of the symmetry relations, which reduces the memory requirements as dis-
cussed in the previous sections, will invariably increase the CPU time needed to perform
matrix-vector multiplications. We note that the phase changes associated with (3.7) and
(3.8) are separable in (l,m) and (l′,m′) and independent of q̄, while (4.5) requires no phase
change. The near-field TM symmetry relations, (3.4), (3.5), and (3.6), are used by both FFT
methods. However, the phase changes associated with (3.4) and (3.5), unlike those ac-

companying (3.7), (3.8) and (4.5), are dependent on ei2(m−m′)φij and thus (3.4) and (3.5) are
computationally more expansive to use than (3.7), (3.8) and (4.5). In order not to increase
the cost of generating missing near-field TM elements too much, we may substitute (3.4)
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and (3.5) with the configuration-space equivalent of (3.8),

αl,−m
l′,−m′(r̄i− r̄j)=(−1)l+m+l′+m′

αl′,m′
l,m (r̄i− r̄j), (5.1)

whose phase factor is independent of φij and separable in (l,m) and (l′,m′). The overall
near-field memory requirement would then be reduced by a factor of four (rather than
by a factor of 8).
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Table 1: For the definitions of the expansion parameters Lex and LT, please see (2.1) and (3.1), respectively.
Ns is the number of scatterers in the ensemble. ∗ The near-field memory reduction for the timing data shown
in Fig. 4 is ∼1/4(Lex+1)2Np.

Non-Diagonal Translation 
,

', '( )l m

l m
r

Diagonal Translation  

T
L

k rˆ( , )

No Memory, 
No Convolution 

Reduction

Reduced
Convolution & 

Reduced Memory
No Memory 
Reduction

Reduced 
Memory

# of 
Convolutions (LT+1)4 (LT+1)2 2(LT+1)2 2(LT+1)2

Near-Field
Memory   (Lex+1)4 Ns ~1/8  (Lex+1)4 Ns

 *  (Lex+1)4 Ns ~1/8(Lex+1)4 Ns
 *

Far-Field
Memory (LT+1)4 NG ~1/16 (LT+1)4 NG 2(LT+1)2 NG 1/4(LT+1)2 NG

Fig. 4 plots the relative CPU time increases for the two FFT methods when the sym-
metry relations are employed to generate missing TM elements for the cases considered
in Fig. 3. As the figure shows, the relative increase in CPU time decreases as N increases
for both methods. Since the overall CPU time for the matrix-vector multiplication scales
as O(N log2 N) while the cost of using the symmetry relations scales as O(N), the relative
cost of using the symmetry relations becomes smaller as N increases.

6 Conclusion

We compared and improved the computational efficiencies of two existing FFT-based
iterative-solution techniques for the scalar T-matrix multiple-scattering equation. We
showed that the FFT method based on the non-diagonal translator requires half as many
spatial convolutions as the FFT method based on the diagonal translator for a compara-
ble numerical accuracy. The CPU time comparison shown in Fig. 3 confirms that the first
method requires less CPU time to perform matrix-vector multiplications. When solving
scattering from an ensemble containing a large number of scatterers, it is often the mem-
ory requirement that determines the largest problem size that can be solved on a given
computer. For both FFT methods, storage requirements for the configuration-space near-
field TM and the k-space far-field TM drive the overall storage requirements. We identi-
fied a number of symmetry relations that the non-diagonal and diagonal TMs satisfy in
configuration- and k-spaces. These symmetry relations are shown to reduce the overall
storage requirements by non-trivial factors. We also showed that the relative cost of us-
ing the symmetry relations becomes smaller as the number of unknowns increases. Table
1 summarizes the memory and convolution reductions discussed in this paper. They can
easily be implemented in an existing multiple-scattering T-matrix code, allowing it solve
larger problems faster on a given computer.
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Appendix: Proof of (3.4)

In this appendix, we provide a derivation of (3.4). All other symmetry relations of αl,m
l′,m′(r̄)

used in this paper are derived in [12].
Following [9], we may write

αl,m
l′,m′(r̄)=

l+l′

∑
L=|l−l′|,2

Λ
l,m
l′,m′(L)·hL(kr)YL,m−m′(r̂), (A.1)

with

Λ
l,m
l′,m′(L)≡4πil′−l−L(−1)m′

√

(2l+1)(2l′+1)

4π(2L+1)
C(l,l′,L;0,0,0)C(l,l′,L;−m,m′,−m+m′).

(A.2)
Here, hL(kr) is the spherical Hankel function of order L; YL,m−m′(r̂), the spherical harmon-
ics of order (L,m−m′); r̄≡ (r,θ,φ); r̂≡ (θ,φ), and C(a,b,c;ma,mb,mc), the Clebsch-Gordan
coefficient.

To prove (3.4), it is necessary to relate Λ
l,m
l′,m′(L) to Λ

l′,m′
l,m (L) and YL,m′−m(r̂) to

YL,m−m′(r̂). Since C(l,l′,L;0,0,0) 6=0 only when l+l′+L is even in (A.2), and since

C(b,a,c;mb,ma,mc)=(−1)a+b+mb+mcC(a,b,c;ma,mb,mc), (A.3)

C(a,b,c;−mb,−ma,−mc)=(−1)a+b+mb+mcC(a,b,c;ma,mb,mc), (A.4)

one can show that
Λ

l,m
l′,m′(L)=(−1)l+l′+m+m′

Λ
l′,m′
l,m (L). (A.5)

In addition, using the following property of the associated Legendre polynomial,

P−m
l (cosθ)=(−1)m (l−m)!

(l+m)!
Pm

l (cosθ),

one can show that
Yl,−m(r̂)=(−1)me−2imφYl,m(r̂). (A.6)

Thus, after substituting (A.5) and (A.6) into (A.1), we have

αl,m
l′,m′(r̄)=

l+l′

∑
L=|l−l′|,2

Λ
l,m
l′,m′(L)·hL(kr)YL,m−m′(r̂)

=
l+l′

∑
L=|l−l′|,2

(−1)l+l′+m+m′
Λ

l′,m′
l,m (L)·(−1)m+m′

e2i(m−m′)φ hL(kr)Yl,m′−m(r̂)

=(−1)l+l′e2i(m−m′)φ αl′,m′
l,m (r̄),

which proves (3.4).
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