
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 5, No. 1, pp. 142-162

Commun. Comput. Phys.
January 2009

Numerical Simulation of an Aortic Flow Based on a

HLLC Type Incompressible Flow Solver

Yang-Yao Niu1,∗, Chih-Hung Chang1, Wen-Yih I. Tseng2,
Hsu-Hsia Peng2 and Hsi-Yu Yu2

1 Department of Mechanical Engineering, Chung-Hua University, Hsin-Chu, 30067
Taiwan.
2 National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei,
Taiwan.

Received 25 October 2007; Accepted (in revised version) 1 May 2008

Communicated by Kun Xu

Available online 15 July 2008

Abstract. In this study, a three-dimensional artificial compressibility solver based on
the average-state Harten-Lax-van Leer-Contact (HLLC) [13] type Riemann solution is
first proposed and developed to solve the time-dependent incompressible flow equa-
tions. To implement unsteady flow calculations, a dual time stepping strategy in-
cluding the LU decomposition method is used in the pseudo-time iteration and the
second-order accurate backward difference is adopted to discretize the unsteady flow
term. Also a third-order accurate HLLC numerical flux is derived for approximating
the inviscid terms. To verify numerical accuracy, flows over a lid-driven cavity and an
oscillating flat plate are chosen as the benchmark tests. In addition, the current solver is
extended to solve blood flows in a realistic human aorta measured from MRI (Magnetic
Resonance Imaging). The simulation geometry was derived from a three-dimensional
reconstruction of a series of two-dimensional slices obtained in vivo. Numerical re-
sults demonstrate wall stresses were highly dynamic, but were generally high along
the outer wall in the vicinity of the branches and low along the inner wall, particu-
larly in the descending aorta. The maximum wall stress distribution is presented on
the aortic arch in the systole. In addition, extensive counter-clockwise secondary flows
and three-dimensional helical vortex influenced considerably by the presence of vessel
contraction, torsion and the branches were shown in the descending aorta in the late
systole and early diastolic cycles.
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1 Introduction

One of the popular numerical algorithms for the calculations of incompressible flows
is based on Chorin’s artificial compressibility method [1]. In recent years, the artifi-
cial compressibility strategy has been applied by Pan and Chakravarthy [2], Rogers and
Kwak [3], Chen et al. [4], using an implicit line relaxation or LU decomposition scheme
in pseudo time and applying Roe type Riemann solver based on high-order upwinding
or weighted ENO interpolation on the spatial differencing. The development of the ar-
tificial compressibility method has been verified and agreed with several validated data
ranging from analytical solutions of simple flows to measured data of complicated tran-
sient vortex shedding. However, the computing efficiency of three-dimensional flow
problems is still an unsolved issue due to the tedious calculations on the high-order im-
plicit and explicit numerical inviscid and viscous fluxes. To improve numerical efficiency
and simplicity, Belov et al. [5] used an explicit artificial compressibility preconditioning
with Jameson’s artificial viscosity method to construct numerical fluxes for hyperbolic
type incompressible flow equations. They utilized second-order backward difference
to discretize the physical time term and a rational forth order Runge Kutta scheme to
proceed the subiterations in each pseudo-time step, thus allowing for the computations
to march toward a steady state during every physical time step and achieve accurate
unsteady flow calculations. In addition to Jameson type explicit preconditioning, Jin
and Xu [6, 7] recently provide another alterative to simulate the low Reynolds number
flow based on gas-kinetic BGK model. Their gas-kinetic solver has been developed in a
moving frame on the unified coordinates of Hui [8] and achieved many successful cal-
culations of the flows with free surface and moving boundaries in the incompressible
laminar flow regime. However, the applicability of gas-kinetic type solver on the cal-
culations of complex incompressible flows such as vortex shedding or turbulence is still
unknown and needs more verification. Up to the present, even so many existing hyper-
bolic type incompressible flow solvers have been developed, the Roe type approximate
Riemann solver may be the most widely used one to solve the artificial compressibility
based incompressible equations. In our previous works [9], we have developed a unified
artificial compressibility solver based on the Roe type numerical flux under the hybrid
Eulerian-Lagrangian coordinates to simulate the moving body flows. Our preliminary
results have verified the accuracy and robustness of the unified artificial compressibil-
ity solver on many steady and transient cases. However, the Roe type solver is very
time-consuming and inefficient, especially on the calculations of the three-dimensional
unsteady flow problems.

In this study, we propose an alternative artificial compressibility solver based on
average-state HLLC Riemann solutions originated from Toro’s theoretical analysis [10].
First, the concept of average-state approximations of Riemann problems was introduced
by Harten, Lax, and van Leer [11]. There is a large hierarchy of numerical flux which
arises from this approach, all of which may be applied directly to the Euler equations
without the need for additional ad hoc modifications. Unfortunately, most of these ap-
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proximations appear to be ill suited to the implicit solution of the Navier-Stokes equa-
tions. One major problem stems from the inability of the simpler flux models to exactly
preserve an isolated contact or shear wave. This results in excessive diffusion of bound-
ary layers, yet also poor convergence rates. Therefore, a clear requirement is to minimize
the degree of simplification to a level which does ruin the numerical accuracy. Against
this background, Batten et al. [12] constructed an implicit scheme based on the HLLC
Riemann solver of Toro et al. [13], which contains the most detailed physics of any of the
average-stage schemes considered. By means of implicit time integration [12], a large tol-
erance on CFL number restriction is allowed. Based on the previous efforts on HLLC type
Riemann solver, we would like to extend it to solve the incompressible flow equations. To
capture inherently unsteady physics of incompressible flows, a dual-time implicit formu-
lation containing a second-order accurate backward difference in discretizing unsteady
time term and the LU decomposition used in the pseudo-time iteration to approach the
steady-state in every physical time step. Also, a third-order HLLC numerical flux [12–14]
is derived for approximating the inviscid terms. The validation of the proposed HLLC
incompressible solver is performed on the cases of the lid-driven cavity flow [15–17].

In addition, a preliminary simulation of aortic flow is selected in the three-dimensional
numerical application. It is well known that aortic dissection, stenosis and aneurysm are
widely seen among the vascular diseases. Clinical observations [18–24] show that these
arterial diseases can alter blood flow characteristics in arteries significantly. The altered
hemodynamics may further influence the development of the disease and arterial defor-
mity. One vascular site within which the fluid mechanical environment is especially com-
plex is the region of the aortic arch and its major branches. From geometrical viewpoint,
the centerline of the arch does not lie in a plane, and the severity of the arch distortion
is suspected to be closely related to the frequency of aneurysms. Kilner et al. [19] con-
structed images of human aortas by stacking a series of computed topographical slices,
and indicated that the angle between the ascending and descending legs of the arch in
the cranial view tends to be a normal aorta case. With regards to blood flow in the aorta,
they observed a characteristic flow field that a right-handed helical blood flow prevailed
at the top of the arch and a left-handed secondary blood flow located in the descending
arch at late systole using MRA measurement. They simulated the large clockwise circu-
lation at the arch, and the large counter-clockwise one at the descending part. The arch
is characterized by extensive curvatures, which would be expected to lead to velocity
profile skewness as well as to complex secondary flow motions. Furthermore, the three
aortic arch branches which emerge in different planes are likely to have a large impact on
the flow field. Shahcheragh et al. [24] have pointed that aortic branching and curvatures
are attributable to a large degree to the combined effects of complex arterial geometry
and flow pulsatility.

From the above described works on aortic flow, the distribution of wall stresses along
the thoracic aorta with ascending branch effects is seldom discussed. Also the simula-
tion of blood flowing through the abnormal thoracic aorta and the formation vessel wall
stress caused by thoracic aortic disease were not widely documented. Therefore, the es-
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timation of wall stress distributions along a normal thoracic aorta and an aortic stenosis
with one ascending branch will be highly required. In our previous work [24], numeri-
cal results of wall shear stress distributions have been obtained for straight and curved
stenosis models. The results demonstrated that the subsequent strong positive-negative
oscillations of wall shear stresses behind the stenotic area are found in the case of Re=400
and 600 on their outer walls. Also negative maximum wall stresses are found to occur at
the upstream of the stenosis on the inner walls. These may correspond to the reattach-
ment locations of the second separation zone behind the stenosis and stronger adverse
pressure gradients on the outer wall.

In the further works on the estimations of shear stress on aorta, magnetic resonance
imaging in vivo using MRA scan imaging in National Taiwan University Hospital will
provide the reconstruction of a realistic normal aorta with three branches from a health
young male. The form of the wall stress and blood flow velocity in a health aorta with
three branches will be investigated. This paper is organized as follows: Section 2 is the
mathematical formulation of the artificial incompressible Navier-Stokes equations in gen-
eralized coordinates, and the derived HLLC numerical flux. Section 3 is about numerical
modeling. Section 4 presents the results of test cases.

2 Governing equation

The governing equations considered are the nonlinear time-dependent incompressible
Navier-Stokes equations of a laminar, constant viscosity flow without body forces. Intro-
ducing the pseudo-compressibility to connect pressure with continuity equation based
on [1], the equations of motion of the fluid can be compactly written in generalized curvi-
linear coordinate system as

∂Qv
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+
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+
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and β is the pseudo-compressibility constant, p is the static pressure, u, v, and w are the
velocity components in Cartesian coordinates. Ev, Fv and Gv are viscous terms. J is the
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Jacobian of the transformation, and U, V and W are the contravariant velocities like

U = ξt+ξxu+ξyv+ξzw,

V =ηt+ηxu+ηyv+ηzw,

W = ζt+ζxu+ζyv+ζzw. (2.2)

The inviscid flux Jacobian A=∂E/∂Q and its four distinct eigenvalues:

(λ1,λ2,λ3,λ4)=(U,U,U+C,U−C), (2.3)

where C=
√

U2+β(ξ2
x +ξ2

y+ξ2
z).

3 Numerical approach

3.1 Time integration

To implement the time evolution of the governing equations, usually the physical-time
term is discretized using a second-order, three-point, backward difference formula; that
is

∂Qv

∂t
=

1.5Q
n+1,p+1
v −2Qn

v +0.5Qn−1
v

∆t
, (3.1)

where n designates the index of the physical-time level and p is the index of the artificial-
time level. The artificial-time term is discretized by the following implicit Euler finite-
difference formula:

∂Q

∂τ
=

Qn+1,p+1−Qn+1,p

∆τ
. (3.2)

Based on Eqs. (2.3) and (3.1), the linearized governing Eqs. (2.1) can be written as
(
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=−Res(Q)p. (3.3)

The above equation can be factorized using the LU decomposition method for the pseudo
time iteration. Res(Q) is the unsteady residue vector, ∆Q is the spatial difference Qi+1−
Qi. ∆τ is chosen as the local pseudo time step which is determined by the largest eigen-
value of the preconditioning system of governing equations for each grid cell. The diffu-
sion terms are evaluated by the standard central differencing scheme. The implicit part at
the left-hand side of Eq. (3.3) is discretized using a first-order upwind difference scheme.
One of them in the ξ direction can be expressed such as:

∂A

∂ξ
=

(Ai+1,j,k−Ai,j,k)

∆ξ
, (3.4)



Y.-Y. Niu et al. / Commun. Comput. Phys., 5 (2009), pp. 142-162 147

where A= A++A−. A+ and A− are computed based on the eigenvalues of the matrix A
and the related eigenvector T and its inverse T−1 like

A±=TΛ
±T−1, (3.5)

where Λ = diag(λ1,λ2,λ3,λ4,λ5). Similarly as B and C. Eq. (3.3) can be factored after
using finite difference formulation for the derivative term as

(D−L)D−1(D+U)]∆Q
n+1,k+1

i,j,k = J∆τRes(Q)n+1,k (3.6)

where L, D and U are determined recursively as:
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Furthermore, Eq. (3.6) can be computed using the LU approach for advance the solu-
tion in pseudo-time is implemented in two steps a backward and forward step in each
direction as: First

(D−L)∆Q∗= RHSn+1,k+1/2
i,j,k . (3.10)

Then
(D+U)∆Qn+1,k+1

i,j,k = D∆Q∗. (3.11)

Finally, the primitive variables at the new pseudo-time level k+1 is then updated by

Qn+1,k+1
i,j,k =Qn+1,k

i,j,k +∆Q̂∗. (3.12)

3.2 HLLC numerical flux

As noted in [11–14] and shown in Fig. 1, the structure of the analytical solution of one-
dimensional Riemann problem contains three wave families separating four constant
states from left to right states as QL, Q∗

L, Q∗
R, QR. These states Q∗

L, Q∗
R emerge from the

interaction of the data states Q∗
L, Q∗

R and compose the so-called the star Region. The left
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and right waves are either shock or rarefaction denoted as the two acoustic waves SL and
SR seen in Fig. 1; all flow quantities change across these waves, the change being discon-
tinuous across shocks. The middle wave is always a shear wave SM across which Q∗

L, Q∗
R.

The solution strategy is based on the fact that both Q∗
L and Q∗

R are constant throughout
the star region.

Figure 1: A structure of wave patterns of one-dimensional Riemann problem.

Harten et al. [11] proposed various simplifications to the internal structure of the Rie-
mann fan by taking integral averages of the conserved variables over sections of the fan.
The most elaborate solver suggested by Harten et al. [11] is a two-state HLL approxima-
tion in which two-state averages are computed, one from the left-most acoustic wave to
the contact wave and one from the contact to the right-most acoustic wave: The detail
of this scheme are rather cumbersome. Harten, Lax and van Leer also proposed an ap-
proximated Riemann-solver to find a inviscid flux vector E∗ in the star region. However,
Toro’ HLLC [13] showed that a significant simplification could be made by assuming the
particle velocity to be constant across the Riemann fan. Moreover, Batten et al. [12] have
shown that, with a suitable choice of all wave speeds. Toro et al.’s two-state HLLC solver
resolves isolated shock and contact/shear waves exactly and is positively conservative
in the definition of Einfeldt et al. [14] split the star flux E∗

L and E∗
R based on states Q∗

L, Q∗
R.

This version of the HLLC type fluxes will be defined as the followings.

The HLLC flux considers two averaged intermediate states, Q∗
L, Q∗

R separated by the
contact wave, whose speed is denoted by SM as seen in Fig. 2. The two-state approximate
Riemann solution was defined by Harten et al. [11] as

QHLLC =















Ql if SL >0,
Q∗

L if SL ≤0≤SM,
Q∗

R if SM ≤0≤SR,
QR if SR <0.

(3.13)
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Figure 2: A two-intermediate wave pattern of one-dimensional Riemann problem.

The corresponding interface flux, denoted as FHLLC, is

EHLLC =















El if SL >0,
E∗

L(Q∗
L) if SL≤0≤SM,

E∗
R(Q∗

R) if SM ≤0≤SR,
ER if SR <0.

(3.14)

Harten et al. suggested various ways of the exact solutions Q∗ between two acoustic
waves. The HLLC flux is a modification of HLL. Instead of a single intermediate state Q∗,
two intermediate states, Q∗

L and Q∗
R, are assumed, separated by an interface moving with

the speed SM. To calculate Q∗
L and Q∗

R, we recap the approach taken by Batten et al. by
applying the Rankine-Hugoniot conditions across the shear wave. However, the simplest
approach for computing these star states was suggested by Toro et al., who ignored the
influence of expansion fans and made the particle velocity constant between the acoustic
waves. Applying the Rankine-Hugoniat condition across the SL and SR waves gives

E∗
L =EL+SL(Q∗

L−QL),

E∗
R =ER+SR(Q∗

R−QR),
(3.15)

where SL, SR are taken from Einfeldt et al. [14] as SL=UL−CL and SR=UR−CR. Based on
Eq. (3.6), the rearrangement of the left-side flux of star region, we can obtain SLQ∗

L−E∗
L =

SLQL−EL, namely,
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. (3.16)
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Furthermore, the speed SM of the shear wave can be considered as a constant U∗ which
is the average directed velocity between the two acoustic waves like

SM =U∗
L =U∗

R. (3.17)

Then the system Eqs. (3.7) can be rewritten and separated as

P∗
L =PL+

β(SM−UL)

SL
, (3.18)

u∗
L =

uL(SL−UL)

SL−SM
+

(SM−UL)ξxβ

(SL−SM)SL
, (3.19)

v∗L =
vL(SL−UL)

SL−SM
+

(SM−UL)ξyβ

(SL−SM)SL
, (3.20)

w∗
L =

wL(SL−UL)

SL−SM
+

(SM−UL)ξzβ

(SL−SM)SL
. (3.21)

Then the conserved variables at the left-hand side of the star region is rearranged as

Q∗
L =

[

PL+
β(S∗−uL)

SL
, S∗, vL

(S∗−uL)

(SL−SL)
, wL

(S∗−uL)

(SL−SL)

]T

(3.22)

with

S∗=
SRSL(PR−PL)

β(SR−SL)
+

SRuL−SLuR

SR−SL
. (3.23)

The same procedure can be working for the construction of Q∗
R.

3.3 Flux extrapolation

To achieve the high-order accurate flux approximation, one of possibility can be relied on
third-order flux extrapolations for the derivatives ∂ξ E like the work in [3]. A third order
accurate numerical flux at cell interface is defined by

Ei+ 1
2
=

1

2
[E(Qi+1)+E(Qi)]+

1

6
[∆E+

i− 1
2

−∆E+
i+ 1

2

+∆E−
i+ 1

2

−∆E−
i+ 3

2

], (3.24)

where ∆E± are the fluxes of the positive and negative traveling waves across cell inter-
faces. For the HLLC type numerical flux, the flux difference is taken as

∆E−
i+ 1

2

=Ehllc
i+ 1

2
−Ei, ∆E+

i+ 1
2

=Ei+1−Ehllc
i+ 1

2
. (3.25)
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3.4 Wall model

In this work, we will simulate blood flows through a deformable aorta as the three-
dimensional numerical test. The fluid-structure interaction is required to consider in the
numerical implementation. Here, the wall compliance is modeled using an indepen-
dent ring model [20] to compute the vessel deformations. This model assumes that the
structural nodes move only in the radial direction. In spite of its intrinsic limitations, the
extreme simplicity of this model makes it very popular. The linear elastic model equation
used here is to describe the wall motion as a damped oscillator like

m
∂2r

∂t2
+d

∂r

∂t
+kr= Pw, (3.26)

where

m=ρwh, k=
Eh

(1−ν2)a2
, d=2

√
mk

and h is the wall thickness, ρw the wall density, E the Young’s modulus, ν the Poisson ra-
tio, a the vessel radius, r the wall displacement and pw the pressure force at the wall. The
radial displacement of each structural node can be obtained by solving Eq. (3.26) using
a fourth-order Runge-Kutta scheme. The fluid-structure Eqs. (3.3) and (3.26) are solved
in an uncoupled way. Both the solutions of fluid and structure equations are updated in
an unsteady time marching manner. First, the pressure loads at the vessel wall predicted
by the fluid solver are transferred to be the source term in the structure equation at the
same time step. After that, the wall displacement is updated at each grid point along
the whole vessel surface by solving the structure equation. Next, the wall mesh velocities
are estimated by a second-order accurate estimation of wall displacements obtained from
during the previous two time steps. Finally, the flow variables are updated by the fluid
solver based on the new grid points with the mesh velocity. And the updated wall pres-
sure loads are used as the source term of the structure equation for the next time step.
The above procedure of the fluid-structure coupling is required to repeat in each subiter-
ation until mass conservation criteria is satisfied in every physical time step, then a cycle
of fluid-structure interaction is completed. However, the strategy of the moving grid
approach is inclined to produce excessive numerical errors due to the grid torsion. To
avoid numerical instability, keeping geometry conservation and grid regeneration may
be necessary in every unsteady time stepping of the calculations.

4 Validated cases and discussions

4.1 Lid driven cavity

The lid-driven cavity flow problem is a widely used benchmark test for the incompress-
ible Navier-Stokes code validation. With the simplicity of geometry, the driven cavity
flow contains complicated flow physics driven by multiple counter rotating vortices on



152 Y.-Y. Niu et al. / Commun. Comput. Phys., 5 (2009), pp. 142-162

Re=3200 Re=7500

Figure 3: Streamline patterns for lid driven cavity flow.

the corners of the cavity depending on the Reynolds number. A very detailed discussion
on computational as well as experimental studies on the lid-driven cavity flow can be
found in Shankar & Deshpande [15] and S. Garcia [16]. As noted in their studies, different
numerical method solutions found in the literature agree with each other at low Reynolds
numbers (Re= 1,000). However, the solutions at higher Reynolds numbers (Re> 7500)
have noticeable discrepancies. Nevertheless there still are very different results concern-
ing the first Hopf bifurcation and the behavior of the solution for intermediate and high
Reynolds numbers as seen in most of former works [15, 16]. It was suggested that the
first Hopf bifurcation occurs around Reynolds number Re= 7500. To avoid the unnec-
essary controversary validated data, the driven cavity flow with Reynolds number 3200
and 7500 as seen in the works of Ghia [17] et al. are chosen to verify numerical accuracy.

From all our comparisons we can conclude that even for Re=1,000 higher order ap-
proximations together with the use of fine grids are necessary for accuracy. The grid
independence study is necessary. The computations are performed on a 118×118 and
236×236 grid systems which are clustered near the wall and stretched from the wall to
the cavity center. Both computed results on the two grid meshes are close. Here, the
results on the coarse meshes are demonstrated. The streamtrace patterns in the driven
cavity flow are plotted in Fig. 3. It is shown that one primary vortex near the center
and three corner eddies are captured. Also one small secondary zone in the lower right
corner is visible. Fig. 3 exhibits the formation of the counter-rotating secondary vortices
which appear as the Reynolds number increases. It is evident that as the Reynolds num-
ber increases, the center of the primary vortex moves towards the geometric center of the
cavity. In Fig. 4, the computed u along vertical lines and v velocity along horizontal lines
through the center are shown to agree with the validated data.
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Re=3200

Re=7500

Figure 4: U velocity component along vertical centerline (left); V velocity component along horizontal centerline
(right) for the driven cavity flow.

4.2 Aortic flow

In this study, we would like to extend the current HLLC type artificial compressibility
solver to simulate blood flows in a realistic human aorta measured by MRA (Magnetic
Resonance Imaging) provide by National Taiwan University Hospital for a Reynolds
number of 4700 at entrance. The simulation geometry was derived from a three-dimen-
sional reconstruction of a series of two-dimensional slices obtained in vivo. The MRA
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Figure 5: Schematic diagram of a normal aorta with 3 branches (left), aorta outline reconstructed from by MRI
(right).

scan consisted of 20 aortic slices in the main aorta and 5 slices in each bifurcation, and the
cross-sectional area of the slices were approximated well as non-uniform circles. The cen-
terline data for the circles was determined directly from the MRA scans, and this center-
line data was filtered for small wavelength variations with the use of cubic spline-fitting.
Those data were curve-fitted to the cubic spline function, and the cross sectional grids
were generated on the normal planes defined by the principal normal and binormal at
discrete equidistant points along the centerline curve. Using this cross section definition,
a computable model can be constructed because adjacent cross sections never overlap if
the tube radius is smaller than that of curvature at the local point. A similar procedure
was used for the three major aortic branches; however the resolution of the MRA scan
data was not as fine as the main aortic arch. The cross-sectional areas of both the aortic
section and the branches decreased considerably in the direction of flow. Therefore, an
assumption of constant cross-sectional area along the length of the vessels is used for the
branches. From the reconstructed model shown in Fig. 5, we assume that the diameters
of the aortic arch, the brachiocephalic artery, the left carotid artery, and the left subclavian
artery are 2 cm, 1 cm, 0.7 cm, and 0.7 cm, respectively. Three-dimensional 660000 volume
meshes were generated for the current aorta model with the following four separated
computational meshes employed: one for the region spanning the ascending thoracic
aorta along with the aortic arch and a portion of the descending thoracic aorta, and one
for each of the three arch branches-the brachiocephalic, left common carotid, and left sub-
clavian arteries. The lengths of the branches were chosen by numerical experiments to
be long enough that there was no dependence of the flow at the inlet of the branches on
the branch exit boundary conditions.

To perform numerical simulation, one cycle of heartbeats is 0.855 seconds according
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(a) Ascending aorta. (b) Brachiocephalic artery.

(c) Left common carotid artery. (d) Left subdavian artery.

Figure 6: An inlet flow rate measured from MRA.

to MRI data. Eq. (3.3) was solved for a peak Reynolds number of 4700 at the inlet of
ascending of aorta and numerical boundaries were chosen based on flow conditions: (i)
MRA scan flow rate at the inlet of ascending aorta as shown in Fig. 6(a). (ii) Surface trac-
tion free and zero velocity gradients at the outlet of descending aorta. (iii) MRA scan
flow rates at the outlet of three branches as shown in Figs. 6(b)-6(d). (iv) Grid velocity as
the vessel wall velocity condition. The computed residues were set to satisfy the conver-
gence criterion in the calculations of equation. (v) And the final results were achieved at
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(a) (b)

Figure 7: A description of the line (a) with greater curvature (outer wall) and the line (b) with less curvature
(inner wall) along the aortic arch.

the fifth cycle of the computation which was starting from the initial conditions as zero
velocity. Pressure and shear stress distributions on vessel walls and secondary flows on
the cross sections of the aorta are shown in our computations.

First, the wall stress and pressure distributions on the greater curvature and the lesser
curvature of the aorta as defined in Fig. 7 are observed. In our numerical results, Fig. 8
presents the pressure distributions on vessel walls of the aorta in a pulsatile cycle. We
can find that the pressures were higher along the greater curvature of the aorta, and were
lower along the lesser curvature in the systole. A high pressure distribution on the greater
curvature may be resulted from a direct impact of strong flow inertia momentum in the
increased inlet flow rate. Because the inlet flow rate approaches zero in the late diastole,
the pressure has been very nearly the same in the lesser curvature and greater curvature.
It is obvious that the pressures drop at the aortic arch and downstream of the aortic arch
at t = 2/19T and 4/19T. That may be caused by the appearance of descending vessel
contraction and dilation and influenced by the presence of the bifurcations.

Fig. 9 presents the wall shear stress distributions. It is observed that there is a com-
puted peak value of the wall shear stress along the aortic wall at the aortic arch and the
wall shear stress drop at downstream of the aortic arch during t =2/19T and t =4/19T.
These phenomena may be resulted from the variation of the vessel diameter and the pres-
ence of the bifurcation. The inlet flow rate approaches zero in the late diastole, so the wall
shear stress distributions are shown to be similar as the values on the lesser curvature and
greater curvature. It demonstrates that wall shear stresses were highly dynamic, but were
generally high along the greater curvature in the vicinity of the branches and low along
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Figure 8: Pressure distributions in a pulsatile cycle (�-outer wall, ©-inner wall).

the lesser curvature, particularly in the descending thoracic aorta. The maximum wall
shear stress distribution is presented on the aortic arch in the late systole.

A diagram of each cross section in aortic arch is demonstrated and defined in Fig. 10.
A, B, C are located in ascending aorta and E, F, G, H are located in descending aorta.
The cross section D is located in aortic arch. As shown in Fig. 10, extensive secondary
flow motions are observed in the cross section D, F, G, H as t = 7/19T and 9/19T, and
the structures of these secondary flows are seen around the area of the branches. Also,
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Figure 9: Wall shear stress distributions in a pulsatile cycle (�-outer wall, ©-inner wall).

it is observed that clockwise secondary flow recirculation appears in the downstream
of aortic arch in the late systole and turn out to be a pair of counter-clockwise vortex
appearing in the turning corner of the aortic arch in the early diastole. However, the
counter-clockwise vortex disappears in the upstream of the aortic arch and moves to the
downstream of the descending aorta in the late diastole. These above predicted results
are comparably consistent with previous experimental measurements of Kilner et al. [19].
In addition, the clockwise vortex appears at the ascending parts A-C only seen during the
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Figure 10: Velocity vectors on cross sections in a
pusatile cycle, at t = 1/19T, 7/19T, 9/19T and
15/19T.
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Time=1/6T. Time=2/6T. Time=3/6T.

Time=4/6T. Time=5/6T. Time=T.

Figure 11: Particle traces along the aorta with three branches in pusatile cycle.

diastole. For the three-dimensional observations of predicted flow patterns, the particle
traces along the aorta with 3 branches during the whole cycle are shown in Fig. 11. It is
observed that secondary flow appears in the left carotid artery and left subclavian artery
at t = 2/6T. Also we can observe that the vortex existing in the left carotid artery and
left subclavian artery disappears at t = 3/6T. However, the flow in the brachiocephalic
artery become a helical type flow motion from t=3/6T to t=4/6T. The helical type flow
rotation is getting declined as the cycle approaches the late period of diastolic cycle.

5 Concluding remarks

In this paper, a transient artificial compressibility solver based on HLLC type Riemann
solver is proposed and developed. Numerical validation has been performed against
the driven cavity flow, an oscillating plate flow. Also, application is performed on the
calculations of an aortic flow based on MRI data including a realistic morphology of the
aorta and the inlet and outlet flow rates of blood vessels. The preliminary results of the
aortic flow include

1. Wall shear stresses were highly dynamic, but were generally high along the greater
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curvature in the vicinity of the branches and low along the lesser curvature. The maxi-
mum wall shear stress distribution is presented on the aortic arch in the systole;

2. Clockwise secondary flow recirculation appears in the downstream of aortic arch
in the late systole and turn out to be a pair of counter-clockwise vortex appearing in the
turning corner of the aortic arch in the early diastole. However, the counter-clockwise
vortex disappears in the upstream of the aortic arch and moves to the downstream of the
descending aorta in the late diastole;

3. Minor three-dimensional secondary flows appear in second and third branch and
flow separation occurs in right branch in the late systole;

4. Extensive secondary flow motion and three-dimensional helical vortex influenced
considerably by the presence of vessel contraction, torsion and the branches were shown
in the descending aorta in the diastolic cycle.

In the future studies, a non-linear modeling of wall motion for aortic vessel will be
considered. The information about material properties of blood vessel especially, in the
vicinity of the aortic arch bifurcations, is highly required.
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