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Abstract. We present the application of the recent physics-conforming COOL method
[2, 4] to the eigenvalue problem of a cylindrical waveguide filled with unmagnetized
plasma. Using the Fourier transform only along the waveguide and not in poloidal di-
rection, this is a relevant test case for a numerical discretization method in two dimen-
sions (radial and poloidal). Analytically, the frequency spectrum consists of discrete
electromagnetic parts and, depending on the electron density profile of the plasma, of
infinitely degenerate and/or continuous, essentially electrostatic parts. If the plasma
is absent, the latter reduces to the infinitely degenerate zero eigenvalue of electrostat-
ics. A good discretization method for the Maxwell equations must reproduce these
properties. It is shown here that the COOL method meets this demand properly and
to very high precision.

PACS: 02.60.Lj, 02.70.Hm, 03.50.De, 41.20.Jb

Key words: COOL method, physics-conforming, continuous spectrum, plasma waveguide, spec-
tral method.

1 Introduction

The paper describes the generalization of a finite element approach that has success-
fully been used in the past to compute the stability behaviour of Tokamaks [9, 10] and
Alfvén wave heating [3] of such fusion devices. In these applications the fundamental
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numerical problems were the elimination of the so-called spectral pollution arising from
standard finite elements and the poor precision of pollution-free conforming finite ele-
ments [9]. This mathematically non-conforming numerical approach proposed in [8, 9]
not only eliminated spectral pollution but also delivered high precision solutions with
superconvergence properties although only polynomials of order p = 1 and 0 had been
used.

Recently, the COOL (Constraints Oriented Library) method [2] has generalized this
older approach to higher order polynomial degrees p > 1. In this hp method (h being a
measure of the discretization) each term of the variational form is represented by a poly-
nomial of degree p−1 in each direction, and is discontinuous across all element borders.

Internal constraints such as ~∇·~B = 0 or ~∇×~E = 0 can then be identically satisfied. This
enables reaching lower energy levels, thus, approximating better the underlying physics.

Mathematically, the magnetohydrodynamic (MHD) Alfvén waves have a lot in com-
mon with the electrostatic Langmuir oscillations in unmagnetized cold plasma [3]. In a
waveguide filled with cold plasma the electromagnetic waveguide modes are, in general,
coupled among themselves and to the Langmuir oscillations. The degree of coupling de-
pends on the mode frequency and the density gradient of the plasma. It is therefore im-

possible to impose explicitly conditions like ~∇×~E=0 for dominantly electrostatic modes

or ~∇·~E=0 for electromagnetic ones, respectively; some modes may show such a charac-
ter to a high degree and others not. Their property must be the result of the calculation
and cannot be imposed externally. In the limiting case of vanishing plasma density, the
frequency of the electrostatic oscillation tends to zero: These eigensolutions correspond
to the electrostatic solutions of Maxwell’s equations in vacuo. If standard finite elements
are used in this case, the infinitely degenerate zero eigenvalues appear as a series of
discrete eigenvalues with an accumulation point at zero, an unacceptable result! With
standard triangular elements, the number of constraints to be satisfied doubles. There
are not enough variables to satisfy all of them, and spectral pollution appears. Edge el-
ements [5], another numerical approach based on triangles, are known to give results
without spectrum pollution. However, it is expected that the precision needed in MHD
cannot be achieved.

After presenting Maxwell’s equations for a bounded, unmagnetized plasma in a cylin-
drical waveguide of radius r = 1, the COOL method is briefly presented. Specifically, a
new type of basis functions is presented. They are zero in most of the Gauss points used
for the numerical integration, thus reducing the number of operations to compute the
matrix elements. To show the efficiency of the COOL method, a cylindrical infinitely
long plasma configuration is considered. With a Fourier analysis in the angular and lon-
gitudinal directions, the homogeneous plasma wave spectrum is analytically tractable.
Numerically, this 1D geometry is considered as a 2D geometry, the angular variation is
numerically resolved. In fact, numerical difficulties appearing in a toroidal geometry rel-
evant to ITER (www.iter.org) computations also appear in a cylinder: The periodicity in
the longitudinal direction simulates the toroidal periodicity, and the angular direction
behaves like the poloidal angle in a torus. A variable transformation done to satisfy the
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conditions at the magnetical axis leads to a weak form with radial coefficients giving rise
to new numerical challenges.

Results obtained with the COOL method are compared with analytically computed
spectra and waveforms for homogeneous and non-homogeneous plasmas.

2 Maxwell’s equations

2.1 The eigenvalue problem

A plasma filled waveguide can be represented by the curl(curl) eigenvalue problem

∇×∇×~E=
1

c2
(ω2−ω2

p)~E, in Ω̆, (2.1)

~E×~n=0, on ΓD, (2.2)

~E(r,θ,0)=~E(r,θ,L), on Ω, (2.3)

er(0,θ,z)=0, on Γ0, (2.4)

eθ(0,θ,z)=0, on Γ0, (2.5)

Ez(0,θ,z)=Ez(0,0,z), on Γ0, (2.6)

where Ω̆ is the cylinder domain obtained by rotating the rectangle {(r,z)∈]0,1[×]0,L[}
around the axis Γ0={(r=0,z) with z∈]0,L[}. In (2.1) ωp(r) is the common electron plasma
frequency and c is the velocity of light, while in (2.2) ~n denotes the outer unit normal
along the boundary

ΓD ={(r=1,θ,z) (θ,z)∈]0,2π[×]0,L[}.

The periodicity condition in (2.3) is written on

Ω={(r,θ),r∈]0,1[ and θ∈ [0,2π[}

and of this making, the eigenvalue problem (2.1)-(2.6) is replaced by a collection of bidi-
mensional problems in which the non-zero complex function

~E(r,θ,z)=~E(r,θ)eikz ≡
(

1

r
er,

1

r
eθ,iez

)

eikz,

and k is the longitudinal wave number.

We introduce the space of admissible functions

V(curl) :={~e |~e∈H1(curl;Ω), ~e×~n=0 on∂Ω},

where (see [7])

H1(curl;Ω) :=
{

~e|~e∈
(

L2
1(Ω)

)3
, curl~e∈L2

1(Ω)
}
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and L2
1(Ω) is the space of measurable functions ψ such that

||ψ||L2
1 (Ω) =

(

∫

Ω
ψ(r,θ)ψ∗(r,θ)rdrdθ

)
1
2

<∞,

where * stands for complex conjugate. ||~e||2
L2

1(Ω)
is a norm induced by the inner product

(~e,~f ∗)1 of the complex fields~e and ~f

(

~e,~f ∗
)

1
:=
∫

Ω
~e(r,θ)· ~f ∗(r,θ)rdrdθ, and ||~f ||2

L2
1(Ω) :=

(

~f ,~f ∗
)

1
.

One obtains the variational formulation of the problem by taking the inner product of

(2.1) with any ~f ∈ V(curl). After integration by parts the problem becomes: Find ~e ∈
V(curl) and ω2∈R

+ such that

A
(

~e,~f ∗
)

:=
(

~∇×~e,~∇× ~f ∗
)

1
+L

(

ω2
p

c2
,~e,~f ∗

)

=L
(

ω2

c2
,~e,~f ∗

)

, ∀~f ∈V(curl). (2.7)

where
L
(

s,~e,~f ∗
)

=
( s

r2
er, f ∗r

)

1
+
( s

r2
eθ , f ∗θ

)

1
+(sez, f ∗z )1 .

In (2.7) the expression of the curl is given by

~∇×e=

[

i

r

(

∂ez

∂θ
−keθ

)

, i

(

k

r
er−

∂ez

∂r

)

,
1

r

(

∂eθ

∂r
− 1

r

∂er

∂θ

)]

, (2.8)

and~e=(er,eθ,ez). We remind that

er(r,θ)= rEr(r,θ), eθ(r,θ)= rEθ(r,θ), ez(r,θ)=−iEz(r,θ).

3 The COOL method

3.1 Formulation in the reference element

To introduce the COOL (Constraint Oriented Library) method [2], let us start the presen-
tation on the reference domain Ω = Λ2 with Λ :=(−1,+1). Let ΣGL = {(ζi,ωi); 1≤ i≤ p}
denote the sets of Gauss-Legendre nodes and weights associated to polynomials of de-
gree p. These quantities are such that :

∀Φ∈P2p−1(Λ),
∫ +1

−1
Φ(ζ)dζ =

p

∑
j=1

Φ(ζ j)ωj, (3.1)

where Pp(Λ) denotes the space of polynomials with degree ≤ p. We recall that the nodes
ζi (1≤ i≤ p) are solution to Lp(ξ) = 0 where Lp is the Legendre polynomial of degree p
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(see [6]). For our purpose, let us introduce two polynomial basis functions defined in the
reference domain:

hj(x) =−β j
(1−x2)Lp(x)

(x−xj)(x−ζ1)
, 0≤ j≤ p, (3.2)

gj(x) = hj(x)−β j Lp(x) = β j

(x(xj+ζ1)−xjζ1−1)Lp(x)

(x−xj)(x−ζ1)
, (3.3)

where β j normalizes hj(xj) = 1 and the nodes (xj)(0≤j≤p) are such that x0 =−1, xp = +1
and xi = ζi+1,i =1,··· ,p−1. The functions hj(x) are polynomials of degree p, continuous
across element borders. They are used to represent derivatives that are polynomials of
degree p−1, discontinuous across element borders. They verify hi(xj)= δij, where δij is
Kronecker’s delta symbol. The functions gj(x) are polynomials of degree p−1, discontin-
uous across element borders, and are used to represent variations in directions without
derivatives. The set of (p+1) functions gi(x)∈Pp−1(Λ) is linearly dependent. However,
any combination of p elements in the list is linearly independent. We therefore arbitrar-
ily discard one element in the set {gi(x)}p

i=0 (for, instance the first one, g0(x)) and use
the remaining elements to span the Pp−1(Λ) space dependence of the two-dimensional
spectral element.

We therefore build a set of convenient auxiliary functions:

ex p(r,θ)=
p

∑
k=0

p

∑
ℓ=0

ex
kℓhk(r)hℓ(θ), ex p ∈Pp(Λ)⊗Pp(Λ), (3.4)

e
(0)
x p (r,θ)=

p

∑
k=1

p

∑
ℓ=1

ex
kℓ gk(r)gℓ(θ), e

(0)
x p ∈Pp−1(Λ)⊗Pp−1(Λ), (3.5)

e
(1)
x p (r,θ)=

p

∑
k=0

p

∑
ℓ=1

ex
kℓhk(r)gℓ(θ), e

(1)
x p ∈Pp(Λ)⊗Pp−1(Λ), (3.6)

e
(2)
x p (r,θ)=

p

∑
k=1

p

∑
ℓ=0

ex
kℓ gk(r)hℓ(θ), e

(2)
x p ∈Pp−1(Λ)⊗Pp(Λ). (3.7)

The number of variables has first been extended from 3 (erp,eθp,ezp) to 12
(

exp,e
(0)
xp ,e

(1)
xp ,e

(2)
xp

)

(here and until the end, the index x denotes r, θ or z), then restricted again to 3 by impos-
ing the 9 moment integral conditions

∫

Ω

[

exp(r,θ)−e
(i)
xp(r,θ)

]

η(r,θ)rdrdθ =0. (3.8)

In the test functions
η(r,θ)= rjθℓ , (3.9)

0≤ j,ℓ≤ p−1 for i = 0, 0≤ j≤ p and 0≤ ℓ≤ p−1, for i = 1, and 0≤ j≤ p−1 and 0≤ ℓ≤ p
for i =2. The goal is now to represent the new variables such that each term in Eq. (2.8)
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has the same functional dependence and the same regularities across element borders.
One can easily prove that due to the nature of the boundary conditions (2.2) and (2.4)-
(2.6) the expansions (3.5)-(3.7) involve the same sets of parameters {ex

kℓ
}, that are equal

to the values of ex p(ζi,ζ j). Note that if using an integration scheme with p Gauss points,

the moment equations (3.8) are satisfied. The only difference between ex p(x,y),e
(0)
x p (x,y),

e
(1)
x p (x,y) and e

(2)
x p (x,y) lies in the degree of the basis functions. Let us now introduce the

expansions (3.5)-(3.7) into the variational formulation (2.7). The new problem reads: Find

~e∈V(curl)∩Pp(Ω)3 and ω2∈R
+ such that ∀~f ∈V(curl)∩Pp(Ω)3

A
(

~e,~f ∗
)

:=
(

~∇×~e,~∇× ~f ∗
)

p
+Lp

(

ω2
p

c2
,~e,~f ∗

)

=
ω2

c2
Lp

(

1,~e,~f ∗
)

, (3.10)

where
Lp

(

s,~e,~f ∗
)

=
( s

r2
e
(0)
r , f

(0)∗
r

)

p
+
( s

r2
e
(0)
θ , f

(0)∗
θ

)

p
+
(

se
(0)
z , f

(0)∗
z

)

p

and s(r,θ) denotes a scalar function varying in space. The notation (·,·)p stands for the
Gauss-Legendre numerical integration. In (3.10) the expression of the curl is now

~∇×e=

[

i

r

(

∂e
(2)
z

∂θ
−ke

(0)
θ

)

, i

(

k

r
e
(0)
r − ∂e

(1)
z

∂r

)

,
1

r

(

∂e
(1)
θ

∂r
− 1

r

∂e
(2)
r

∂θ

)]

. (3.11)

3.2 The multi-element Case

The transition to the multi-element approximation is straightforward. We partition Ω̆

into N2 square subdomains Ωe of equal size h=2/N, and

Ω̆ =∪N2

e=1Ωe.

The problem (3.10) now writes :

Ah

(

~eh,~f ∗h
)

=
ω2

c2
Lh

(

1,~eh,~f ∗h
)

, (3.12)

with

Ah

(

~e,~f ∗
)

=
N2

∑
e=1

(

~∇×~e,~∇× ~f ∗
)e

h
+Lh

(

ω2
p

c2
,~eh,~f ∗h

)

, (3.13)

Lh

(

s,~eh,~f ∗h

)

=
N2

∑
e=1

[( s

r2
e
(0)
r , f

(0)∗
r

)e

h
+
( s

r2
e
(0)
θ , f

(0)∗
θ

)e

h
+
(

se
(0)
z , f

(0)∗
z

)e

h

]

.

The notation (·,·)e
h stands for any numerical integration that computes the integral on Ωe

exactly, and each subdomain Ωe must be mapped onto the reference domain. Note that
we choose the same local variables in all expansions. As a consequence, we can choose
the same mesh as in the case of standard hp methods.
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Table 1: Comparison between analytic and numerical results with COOL of the first 21 discrete eigenvalues of
the waveguide spectrum with ω2

p =0. The poloidal and radial wave numbers are m, and s, respectively.

discrete type m s analytic COOL degeneracy
mode number N=2, p=12

0 0 553
1/2 TE ±1 1 4.38994 4.389957717 2
3 TM 0 1 6.7831859630 6.783185963 1
4/5 TE ±2 1 10.3284 10.328363214 2
6 TE 0 2 15.681970642 15.681970642 1
7/8 TM ±1 1 15.6820 15.681970642 2
9/10 TE ±3 1 18.6500 18.6499885 2
11/12 TM ±2 1 27.3746 27.374616427 2
13/14 TE ±4 1 29.2763 29.2764 2
15/16 TE ±1 2 29.4243 29.424282047 2
17 TM 0 2 31.471262344 31.471262343 1
18/19 TM ±3 1 41.7064 41.706466 2
20/21 TE ±5 1 42.1602 42.16 2

4 Numerical results and discussion

4.1 The homogeneous plasma

First we start this section with the homogeneous plasma for which ωp is constant in the
plasma. This is the test case having classical analytical solutions by means of which we
validate the numerical approach. In fact, the curl(curl) eigenvalue problem (2.1)-(2.6)
has three classes of eigensolutions. One is given by

ω2 =ω2
p, ~∇×E=0. (4.1)

When ωp is constant, an infinitely degenerate solution ω2 = ω2
p is found. Moreover, the

equations (2.1) reduce to the Bessel equation

r2Z ′′+rZ ′+
(

κ2r2−m2
)

Z =0, (4.2)

where κ2= 1
c2 (ω2−ω2

p)−k2. The mode number m is due to the Fourier expansion Ez(r,θ)=

Ez(r)eimθ and the solution is Z(r)= Jm(κr). Two discrete classes of eigensolutions can be
obtained by imposing the boundary conditions Z(r = 1)= 0 and Z ′(r = 1)= 0. The first
condition leads to the Transverse Magnetic (TM) modes, and the second condition to the
Transverse Electric (TE) modes. Their waveguide frequency spectra are given by

ω2 =ω2
p+c2

(

j2m,s+k2
)

, s=1,2,3,··· (TM), (4.3)

ω2 =ω2
p+c2

(

j′2m,s+k2
)

, s=1,2,3,··· (TE), (4.4)
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Figure 1: COOL method: Exponential convergence of the (± 1, 1) TM mode (λ2
=15.681970642, lower thick

points), and of the (± 3, 1) TE mode (λ2 = 18.64998852, upper thick an fine points) as a function of the
polynomial degree p, fixing Np=24.

where jm,s and j′m,s are the zeros of the Bessel function Jm(κr) and its derivative J′m(κr),
respectively. If the plasma is absent, ω2

p=0, and the usual waveguide modes are obtained
from these expressions. This case is discussed in the result Section 4.2.

4.2 Eigenmodes of an empty cylindrical waveguide

The COOL method [2] is applied to the variational form, Eq. (3.12), with ω2
p = 0 in the

empty waveguide. In this case, the Langmuir oscillations are reduced to pure electro-
static solutions at ω2 =0. This is a correct result also contained in the Maxwell equations
in vacuo: Electrostatics! When choosing N elements in both directions and a polynomial
degree of p, the infinite degeneracy of the eigenvalue ω2=0 is represented numerically by
Np(Np−1)+1 eigenvalues with ω2=0. The discrete eigenvalues are computed choosing
N=2 and p=12. There are only physically relevant eigensolutions with the exact degener-
acy, and the precision of the eigenvalues is perfect. All the discrete eigenvalues converge
as in the traditional spectral method. In Table 1 we present a comparison between ana-
lytic and numerical results with COOL. The first 21 discrete eigenvalues of the waveguide
spectrum with ω2

p=0 are listed. The poloidal wave number is m, the radial wave number

s. The degeneracy of the irrotational eigenmodes at ω2=0 is Np(Np−1)+1=553. The an-
alytic values of the waveguide modes, Eqs. (4.3) and (4.4), are computed with the Bessel
function zeroes taken from Abramowitz-Stegun [1]. These are impressive results since to

achieve ~∇×~E≡0 implies that this numerical method is able to put all three vector com-
ponents in Eq. (2.8) identically to zero everywhere and this inspite of the 1/r coefficients
in the different terms.
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In Fig. 1 is shown the exponential convergence of the (± 1, 1) TM mode (λ2
±11 =

15.681970642, lower thick points), and of the (± 3, 1) TE mode (λ2
±31=18.64998852, upper

thick an fine points), fixing Np = 24, for instance, if p = 8, N = 3. One clearly recognizes
exponential convergence as a function of p.

4.3 The continuous spectrum

If ωp varies in space, a continuous spectrum

min
~r

ω2
p(~r)≤ω2≤max

~r
ω2

p(~r) (4.5)

appears. In addition, a ”discrete mode” can lie in the continuous spectrum, the con-
tinuous and the discrete eigensolutions couple, and the resulting eigensolutions are not
further curl-free. This corresponds to the physically relevant Alfvén wave heating mech-
anism in fusion research [3]. In fact, the energy of a global eigenmode can be deposited
on an internal surface on which the frequency of the continuous mode corresponds to the
frequency of the ”global eigenmode”. The degenerate continuum modes are difficult to
capture numerically.

A simple choice of a radially varying function is ω2
p=1−r2 (see Fig. 2). The continuous

spectrum is then represented by an infinite number of eigensolutions. For any value in
the frequency band 0≤ω2

p(r)≤1 there is a singular eigenmode which, in the mathematical
sense, is not a function but a distribution. Only weighted integrals of such eigensolutions
over finite frequency bands make physical sense. Numerically, Np(Np−1)+1 eigenval-
ues with singular eigenmodes are found between 0 and 1; this number corresponds to
that of degenerate eigenvalues given in Table 1.

The simply structured m = 0 modes show the required ±1/(r−rs) behaviour on the
Er component. The width of the peak is proportional to the mesh size, i.e., ∼1/N, and its
height ∼

√
N such that the norm

∫ 1

0
E2

r rdr≈const;

see Fig. 3, where results for the lowest order COOL method (p=1) are shown. The com-
puted eigenmodes are, however, different from what had been found in MHD [9]. With-
out applying the COOL method to the corresponding initial value and/or linear response
problems (resonant absorption of electromagnetic waves) it is difficult to know whether
these discrete eigenfunctions can well represent the distributions associated with the con-
tinuous spectrum. This is left for future investigations.

The eigenfunctions show the right dependence on the frequency, see Fig. 4. Us-
ing higher order COOL methods leads to a delocalization of the continuum modes (see
Fig. 5). This has been produced with p = 8 and 4 radial elements. Whether this Gibbs
phenomenon makes the method ill-suited for calculations in the continuum is a-priori not
clear, but it could well be that an optimum between N and p must be sought in this case.
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Figure 2: The parabolic density profile ω2
p(r) leading

to the continuous frequency spectrum in the range
0 < ω2 < 1. The three points are the numerical re-
sult (eigenfrequency and localization) taken from the
modes shown in Fig. 4.

Figure 3: Radial structure of the numerically com-
puted, now discrete, eigenmodes in the continuum
for k = 1, m = 0. Three different resolutions are
shown. The modes are localized at r=0.417 and have
ω2 = 0.8284, 0.8273 and 0.8268 for N = 12, 24 and
48.

Figure 4: Three different continuum modes with the
same method and resolution. Their frequency pre-
cisely corresponds to their localization, see Fig. 2.

Figure 5: Continuum eigenmode in a high-p COOL
method. Its distribution character has yet to be stud-
ied.

Definite answers can only be given by a linear response calculation where the singular
solutions appear under an integral, leading to a regular function.



K. Appert, M. Azaı̈ez and R. Gruber / Commun. Comput. Phys., 5 (2009), pp. 413-425 423

Figure 6: An m = 0 continuum mode which contains
the surface mode information. There are several such
modes (distributions!) with neighboring frequencies.
The one shown has ω = 0.57 whereas the analyti-
cal value is ω = 0.6012. In a certain distance from
the plasma surface the global part of the distribution
coincides well with the analytical surface mode as it
should.

Figure 7: Enlarged representation of the rEr compo-
nent of the eigenmode represented in Fig. 6.

4.4 Waveguide partially filled with uniform plasma

The case with a stepwise uniform plasma frequency is analytically accessible. We do not
discuss these calculations here. We just show numerical results and try to explain them.
The plasma we consider here, is a uniform one with ωp = 3 in the inner half (r ≤ 0.5)
of the waveguide. The space between the plasma and the metallic shell (0.5 < r < 1) is
empty, ωp = 0. In such a situation, there is always for each m a so-called surface mode
with a frequency between 0 and ωp. In the present case, its frequency is 0.6 for m = 0.
A jump in ωp cannot be treated numerically as such. We have to let the profile jump
gradually varying in a small radial region. The step is represented by a steep slope with
a width of 0.02 and three domains are used for the discretization: 0≤r≤0.49 with ωp =3,
0.49≤r≤0.51 with ωp =76.5−150r, and 0.51≤r≤1 with ωp=0. In Fig. 6, are represented
the three analytically computed components of the eigensolution with the jump in ωp at
r = 0.5. Superimposed is the numerical solution with the steep gradient in ωp instead
of the jump, Nr = 10 in all the three radial domains, Nθ = 2 in azimuthal direction, and
p = 1 in both directions. The two solutions are normalized such that the values of rEr

are equal at r=1. The analytic solution has ω2 =0.361 and the numerical one ω2 =0.330.
Their eigenfunctions agree well apart from the area 0.49≤ r≤0.51, where the numerical
problem possesses a discretized continuum with its corresponding singularities. To let
details of the numerical eigenmode appear, we enlarge the domain around r = 0.5 (see
Fig. 7). Whereas the analytical behaviour of the rEr component develops a jump, the nu-
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merically computed rEr component shows the typical behaviour of a continuous mode.
The maximum is at r =0.506 corresponding to ω2

p =0.36. This is a very satisfying result.
This effect is even more pronounced when higher p and lower Nr are used.

5 Conclusions

It has been shown that the COOL method is able to reproduce exactly the infinite de-
generacy of the irrotational Langmuir oscillations in a homogeneous plasma. This is an
important result since the geometry was not Cartesian and two of the three variables
were transformed to be able to impose the regularity conditions at the axis. This shows
that the COOL method is able to satisfy the physical internal constraint ∇×~E = 0 pre-
cisely, even with radially varying coefficients in the variational form. This shows that the
COOL method satisfies the constraints in collocation manner, i.e. at all the Gauss points.

Besides the correct reproduction of an infinite degeneracy, it is possible to compute
the continuous spectrum with high precision. The number of eigenvalues in the con-
tinuous region augments with Np(Np−1)+1. Instead of the eigenfunctions of the dis-
tributional type demanded by the theory, the numerical approximation leads, at least
for first-order polynomials, to highly localized modes with properties in agreement with
earlier methods of discretization. The higher-order approximations lead to less local-
ized modes whose distributional character can only be investigated in an application to
a linear response problem. In this context an encouraging result is the well-represented
surface mode which has been found in this paper.

Cavity modes have been obtained with only few elements to great precision even in
cases with abrupt changes of mesh size and medium (coefficients of differential equa-
tion). Despite the high-order polynomial approximations, the only slight Gibbs phenom-
ena observed at the place of these changes seem not to affect the numerical eigenmodes.
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