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Abstract. We consider high order methods for the one-dimensional Helmholtz equa-
tion and frequency-Maxwell system. We demand that the scheme be higher order even
when the coefficients are discontinuous. We discuss the connection between schemes
for the second-order scalar Helmholtz equation and the first-order system for the elec-
tromagnetic or acoustic applications.
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1 Introduction

We consider the one-dimensional linear Helmholtz equation:

d2E

dz2
+k2

0ν(z)E=0, z∈ [0,Zmax], (1.1)

where the material coefficient ν(z) is assumed piecewise-constant. In this case, the so-
lution E(z) and its first derivative dE/dz are continuous everywhere [1], whereas the
second and higher derivatives undergo jumps at the points of discontinuity of ν(z). A
more complicated, nonlinear, version of Eq. (1.1) that arises in the context of nonlinear
optics was analyzed and solved numerically in [1].
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Along with the second-order equation (1.1), we consider the first-order one-dimensional
Maxwell equations in frequency space:

iωǫE=
dH

dz
, iωµH =

dE

dz
, (1.2)

where ǫ is piecewise constant and µ is constant. Eq. (1.1) with

k2
0ν(z)=ω2ǫµ=

ω2

c2

can be easily obtained from system (1.2) by differentiating its second equation with re-
spect to z and then substituting the derivative dH/dz from the first equation.

It has been recognized since the pioneering work of Kreiss and Oliger [7] that wave
propagation equations require schemes with higher order accuracy due to phase errors
and long time error accumulation. They found that the optimum scheme was between
fourth- and sixth-order accurate. When the coefficients are only piecewise continuous it
becomes much more difficult to construct higher order methods that retain their global
accuracy. One approach to this difficulty has been the use of fictitious points as in the im-
mersed interface and embedded boundary methods schemes first introduced by Zhang
and LeVeque [15]. Later papers include [2, 8, 9, 16]. An analysis of the effect of dis-
continuous coefficients on the phase and amplitude errors was done by Gustafsson and
Wahlund [4].

Our goal is to construct and test high order discrete approximations of (1.1) and (1.2)
that keep the global higher order accuracy even in the presence of discontinuities in the
coefficients. We will also examine connections between the resulting schemes similar to
the previously identified relations [3] between a system and a scalar equation.

2 Fourth-order compact scheme for the Helmholtz equation

In this section we introduce the finite volume schemes for Eq. (1.1) based on its integral
form. Let a,b∈ [0,Zmax], a< b. We integrate (1.1) between the points a and b with respect
to z:

dE(b)

dz
−

dE(a)

dz
+k2

0

∫ b

a
ν(z)Edz=0. (2.1)

Eq. (2.1) can be interpreted as the integral conservation law that corresponds to (1.1). For
sufficiently smooth solutions, the two formulations are equivalent, see [1].

Following the approach in [1], we approximate the Helmholtz equation on a uniform
grid with size h by applying the integral relation (2.1) between the midpoints of every
two neighboring cells, i.e., for [a,b]= [zm− 1

2
,zm+ 1

2
], m=1,2,.. .,M. In addition, we assume

that ν(z) may be discontinuous only at the grid nodes and denote by νm+ 1
2

the value of ν
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in the cell [zm,zm+1]. Then,

dE

dz

∣

∣

∣

∣

z
m+ 1

2

z
m− 1

2

+k2
0νm− 1

2

∫ zm

z
m− 1

2

Edz+k2
0νm+ 1

2

∫ z
m+ 1

2

zm

Edz=0. (2.2)

By virtue of Eq. (1.1), E(z) is infinitely differentiable within each cell. Hence, it can be ap-
proximated with fourth-order accuracy using cubic Birkhoff-Hermite interpolating poly-
nomials [10], which leads to a fourth-order approximation of the integrals in (2.2). To
approximate the derivatives in (2.2) with fourth-order accuracy, we employ a key idea of
compact schemes: to use the original differential equation to obtain higher order deriva-
tives that can cancel the leading terms of the truncation error. This idea has been imple-
mented, e.g., by Harari and Turkel [5] and Singer and Turkel [11]. We shall use some
elements of this equation-based approach but adapt it for material discontinuities [1].

The differential equation (1.1) inside the grid cells can be used to evaluate the one-
sided second derivatives at the grid nodes as follows:

E′′
m+

def
=

d2E

dz2

∣

∣

∣

∣

z=zm+

=−k2
0νm+ 1

2
Em, (2.3a)

E′′
(m+1)−

def
=

d2E

dz2

∣

∣

∣

∣

z=zm+1−

=−k2
0νm+ 1

2
Em+1. (2.3b)

We use formulae (2.3) to approximate each of the three terms on the left-hand side of (2.2)
with fourth-order accuracy.

To approximate the fluxes E′
m± 1

2

in (2.2), we use the Taylor expansion:

E′
m+ 1

2
=

Em+1−Em

h
−

h2

24
E

(3)

m+ 1
2

+O(h4).

Then, using

E
(3)

m+ 1
2

=−νm+ 1
2
k2

0E′
m+ 1

2
,

we obtain:

E′
m+ 1

2
=

(

1+
νm+ 1

2
(hk0)2

24

)

Em+1−Em

h
+O(h4).

We repeat the calculation for E′
m− 1

2

. Altogether, the flux difference, i.e., the first term

in (2.2), is approximated as

dE

dz

∣

∣

∣

∣

z
m+ 1

2

z
m− 1

2

=
Em+1−Em

h

(

1+νm+ 1
2

(hk0)2

24

)

−
Em−Em−1

h

(

1+νm− 1
2

(hk0)2

24

)

+O(h4).

To approximate the two integral terms in (2.2), we use cubic interpolating polynomi-
als and approximate the integrand E(z) with fourth-order accuracy.
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Lemma 2.1. Let E(z) ∈ C6[zm,zm+1]. Given its values {Em, Em+1}, as well as the values of
its one-sided second derivatives {E′′

m+, E′′
(m+1)−}, we can approximate E(z) with fourth-order

accuracy:
E(zm+ζh)= P3(ζ)+O(h4), ζ∈ [0,1] (2.4a)

using the cubic Hermite-Birkhoff polynomial:

P3(ζ) =

(

Em−
h2

6
E′′

m+

)

(1−ζ)+
h2

6
E′′

m+(1−ζ)3

+

(

Em+1−
h2

6
E′′

(m+1)−

)

ζ+
h2

6
E′′

(m+1)−ζ3. (2.4b)

Moreover, the polynomial P3(ζ) is unique.

Lemma 2.1 has been proven in [1]. Substituting expressions (2.3) into formula (2.4b),
we obtain a fourth-order approximation of E(z) on [zm,zm+1]:

E(zm+ζh)=

(

1+
(hk0)2

6
νm+ 1

2

)

Em (1−ζ)−
(hk0)2

6
νm+ 1

2
Em (1−ζ)3

+

(

1+
(hk0)2

6
νm+ 1

2

)

Em+1ζ−
(hk0)2

6
νm+ 1

2
Em+1ζ3+O(h4).

Substituting this expression for E(z) into the second integral of (2.2) we have
∫ z

m+ 1
2

zm

Edz =
3h

8

(

1+νm+ 1
2

(hk0)2

16

)

Em+
h

8

(

1+νm+ 1
2

7(hk0)2

48

)

Em+1+O(h5).

Similarly, we obtain
∫ zm

z
m− 1

2

Edz=
3h

8

(

1+νm− 1
2

(hk0)2

16

)

Em+
h

8

(

1+νm− 1
2

7(hk0)2

48

)

Em−1+O(h5).

Finally, by combining the approximations for all the individual terms in (2.2) we ar-
rive at the following fourth-order scheme:

(

1

h2
+

1

6
k2

0νm− 1
2
+

7

384
h2k4

0ν2
m− 1

2

)

Em−1

+

(

−2

h2
+

k2
0

3
(νm− 1

2
+νm+ 1

2
)+

3

128
h2k4

0(ν2
m− 1

2
+ν2

m+ 1
2
)

)

Em

+

(

1

h2
+

1

6
k2

0νm+ 1
2
+

7

384
h2k4

0ν2
m+ 1

2

)

Em+1 =0, (2.5)

or equivalently,

1

h2
(Em−1−2Em+Em+1)+

k2
0

6

(

νm− 1
2
Em−1+2(νm− 1

2
+νm+ 1

2
)Em+νm+ 1

2
Em+1

)

+
h2k4

0

384

(

7ν2
m− 1

2
Em−1+9(ν2

m− 1
2
+ν2

m+ 1
2
)Em+7ν2

m+ 1
2
Em+1

)

=0. (2.6)
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The fourth-order radiation boundary conditions for scheme (2.6), as well as their two-
way version that prescribes the given impinging wave, are discussed in [1].

For the constant coefficient case: νm+ 1
2
=νm− 1

2
≡ν, scheme (2.6) reduces to

Em−1−2Em+Em+1

h2
+k2

0ν
Em−1+4Em+Em+1

6

+h2k4
0ν2 7Em−1+18Em +7Em+1

384
=0. (2.7)

A three-point fourth-order compact approximation of the Helmholtz equation (1.1) was
derived in [11]:

Em−1−2Em+Em+1

h2
+k2

0ν
Em−1+10Em+Em+1

12
=0. (2.8)

Define

L=
d2

dz2
+k2

0ν,

the Helmholtz operator. Then, using a Taylor series expansion (2.7) yields

(

1+
h2

12
L

)

LE=O(h6)

while (2.8) yields
(

1+
h2

12

d2

dz2

)

LE=O(h6).

Hence, both are fourth-order accurate.
The issue of symmetry for the discretization (2.6) deserves a special comment. We see

that if νm− 1
2
6= νm+ 1

2
, then, technically speaking, (2.6) is not symmetric, although for the

case of constant coefficients the symmetry is restored, see formulae (2.7)-(2.8). We also
see, however, that the asymmetry of (2.6) resides only in its non-differentiated terms,
whereas the discretization of E′′ is still symmetric. Hence, even though we did not study
this question in detail, we expect that the spectral properties of the finite difference oper-
ator will not suffer much, and if there are complex eigenvalues their imaginary parts will
be O(h2). We additionally note that the original differential operator

LE≡E′′+k2
0νE

is symmetric, but only on the class of twice continuously differentiable functions. How-
ever, the solution of LE=0 does not belong to this class.

3 Extensions of the fourth-order Helmholtz scheme

Several extensions can be contemplated for the fourth-order scheme (2.6). One of those is
the extension to higher orders of accuracy. In order to achieve that, we can use one-sided
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derivatives of orders higher than second in the context of Birkhoff-Hermite interpolation.
For example, given the field values {Em, Em+1}, as well as the values of its one-sided sec-

ond and fourth derivatives {E′′
m+, E′′

(m+1)−, E
(4)
m+, E

(4)
(m+1)−

}, one can approximate E(z) with

sixth-order accuracy using a quintic polynomial:

E(zm+ζh)= P5(ζ)+O(h6),

where

P5(ζ)=

(

Em−
h2

6
E′′

m++
7h4

360
E

(4)
m+

)

(1−ζ)

+

(

h2

6
E′′

m+−
h4

36
E

(4)
m+

)

(1−ζ)3+
1

120
E

(4)
m+(1−ζ)5

+

(

Em+1−
h2

6
E′′

(m+1)−+
7h4

360
E

(4)
(m+1)−

)

ζ

+

(

h2

6
E′′

(m+1)−−
h4

36
E

(4)
(m+1)−

)

ζ3+
1

120
E

(4)
(m+1)−

ζ5.

Similarly to (2.3), the fourth derivatives are obtained from the differential equation (1.1):

E
(4)
m+ =−k2

0νm+ 1
2
E′′

m+ = k4
0ν2

m+ 1
2
Em, E

(4)
(m+1)−

= k4
0ν2

m− 1
2
Em−1.

Then, substituting P5(ζ) for E(z) into the second and third terms of (2.2) and evaluating
the integrals with respect ζ, we can obtain a sixth-order discrete approximation of the
integrals in (2.2).

To approximate the fluxes E′
m± 1

2

in (2.2) with sixth-order accuracy, we again use the

Taylor expansion:

Em+1−Em

h
=E′

m+ 1
2
+

h2

24
E

(3)

m+ 1
2

+
h4

1920
E

(5)

m+ 1
2

+O(h6).

Since Eq. (1.1) implies that

E
(3)

m+ 1
2

=−νm+ 1
2
k2

0E′
m+ 1

2
and E

(5)

m+ 1
2

=(νm+ 1
2
k2

0)
2E′

m+ 1
2
,

we obtain

Em+1−Em

h
=

(

1−
1

24
νm+ 1

2
(hk0)

2+
1

1920

(

νm+ 1
2
(hk0)

2
)2
)

E′
m+ 1

2
+O(h6).

Therefore,

E′
m+ 1

2
=

(

1+
1

24
νm+ 1

2
(hk0)

2+
7

5760

(

νm+ 1
2
(hk0)

2
)2
)

Em+1−Em

h
+O(h6).
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Altogether, we obtain the following O(h6) approximation for Eq. (1.1):

0= L1(νm− 1
2
)Em−1−

(

L0(νm− 1
2
)+L0(νm+ 1

2
)
)

+L1(νm+ 1
2
)Em+1, (3.1a)

where

L0(ν)=1−
1

3
ν(hk0)

2−
1

45

(

ν(hk0)
2
)2
−

11

5120

(

ν(hk0)
2
)3

, (3.1b)

L1(ν)=1+
1

6
ν(hk0)

2+
7

360

(

ν(hk0)
2
)2

+
31

15360

(

ν(hk0)
2
)3

. (3.1c)

Note that as Eq. (1.1) is one-dimensional, the foregoing technique can be extended further,
and the schemes of accuracy higher than O(h6) can be built in a similar way.

Another possible extension of the scheme of Section 2 can be aimed at accommodating
the material coefficient ν(z) with jump discontinuities at the points other than grid nodes,
e.g., at z∗= zm+λh, λ∈ (0,1/2). To do that, one should first split the integral in (2.1) as

∫ z
m+ 1

2

z
m− 1

2

=
∫ z∗

z
m− 1

2

+
∫ z

m+ 1
2

z∗
.

Then, one can construct a Birkhoff-Hermite approximation of the field on [zm− 1
2
, z∗], us-

ing the values at zm−1 and zm. Similarly, one can use the values at zm+1 and zm+2 to
approximate the field on [z∗, zm+ 1

2
]. Note that this approach will not involve extrapo-

lation across the discontinuity, and hence the approximations will remain fourth-order.
The proof of Lemma 2.1 given in [1] can be easily modified to show this.

4 Maxwell first-order system

We now consider the first-order system (1.2). We use a staggered mesh with E at the
nodes and H half way in between and consider the following finite difference approxi-
mation:

iωǫ
[(

α+βh2
)

Ej+
(

1−α+γh2
)

Ej−1

]

=
Hj+1/2−Hj−1/2

h
, (4.1a)

iωµ
[(

1−α+γh2
)

Hj+1/2+
(

α+βh2
)

Hj−1/2

]

=
Ej−Ej−1

h
. (4.1b)

The left-hand side (LHS) of the first equation is centered at j−1/2 and the right-hand
side at j. For the second equation we reverse the orientation and center the LHS at j and
the RHS at j−1/2. Each operator is a one-sided operator and so can be inverted trivially.

We now try and duplicate the formulae we derived for the Helmholtz equation start-
ing from (4.1). We first consider the case where both µ and ǫ are constant. We take another
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difference of the second equation (4.1b) and divide by h. We then get:

iωµ

[

(

α+βh2
)

(

Hj+1/2−Hj−1/2

h

)

+
(

1−α+γh2
)

(

Hj+3/2−Hj+1/2

h

)]

=
Ej+1−2Ej+Ej−1

h2
.

Using the first equation (4.1a) we get:

−ω2ǫµ

[

(

1−α+γh2
)(

α+βh2
)

(Ej−1+Ej+1)+
(

(

1−α+γh2
)2

+
(

α+βh2
)2
)

Ej

]

=
Ej+1−2Ej+Ej−1

h2
. (4.2)

In the notation of the Helmholtz equation

ω2ǫµ=
ω2

c2
= k2

0ν.

Matching this to the previous formula for the Helmholtz equation (2.7) we derive:

(

1−α+γh2
)(

α+βh2
)

=
1

6
+

7

384
h2k2

0ν, (4.3a)

(

1−α+γh2
)2

+
(

α+βh2
)2

=
2

3
+

18

384
h2k2

0ν, (4.3b)

or

α−α2 =
1

6
, (1−α)β+αγ=

7

384
k2

0ν, αβ+(1−α)γ=
9

384
k2

0ν.

So,

α=
1

2
+

√

1

12
, 1−α=

1

2
−

√

1

12
, β=

7−16α

1−2α

k2
0ν

384
, γ=

9−16α

1−2α

k2
0ν

384
, (4.4)

and we recover the fourth-order approximation to the Helmholtz equation (2.7). We
stress that each part of the discretization is only first-order. We can consider the first-
order system as a LU decomposition into two bi-diagonal matrices of the tridiagonal
matrix of the Helmholtz equation. Similar ideas were explored in [3] and [6]. We now
redo the calculations for the case where µ is constant but ǫ is only piecewise constant. We
consider the low order scheme with β = γ = 0 in (4.1). We now compare (4.2) with (2.6)
ignoring the O(h2) terms. The matching conditions (4.3) are replaced by

α(1−α)=
1

6
, (1−α)2 =

1

3
, α2 =

1

3
. (4.5)

However, there is no solution to these equations and hence nothing identical to that we
achieved for the Helmholtz equation even to first-order accuracy! Note, that for the con-
stant coefficient case we only need to satisfy the sum of the last two equations in (4.5)
rather than each equation individually which yields (4.4).
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Hence, for the case of discontinuous coefficients we can no longer find a high order
discretization to the Maxwell equations using only a bidiagonal approximation to each
individual equation. Instead, we replace the approximation (4.1) with a tridiagonal ap-
proximation for each equation. When combined to form the Helmholtz equation, these
will lead to a five point stencil and so will no longer be identical to (2.5). To derive this
approximation we again begin with the integral form of the equation similar to what was
done in (2.1). We use a staggered mesh with E defined at j while H is defined at j+ 1

2 . We
begin with the constant coefficient case. Integrating (1.2) over one cell we get:

iω
∫ h

2

− h
2

ǫ(z)E(z)dz=
∫ h

2

− h
2

dH

dz
dz= Hj+1/2−Hj−1/2, (4.6a)

iωµ

∫ 0

−h
H(z)dz=

∫ 0

−h

dE

dz
dz=Ej−Ej−1. (4.6b)

To obtain a numerical scheme we need to approximate the integrals using values of E
at grid points and H at halfway in between grid points. The integrals on the left hand
side are non-standard since for example, the first integral is from −h/2 to h/2 but the
function is only given at E(h),E(0) and E(−h). Nevertheless, we can get a numerical
approximation to higher order by either using a Taylor series expansion or else an appro-
priate interpolation polynomial as an extension to Newton-Cotes formulae. The result is

iω
ǫj+1Ej+1+22ǫjEj+ǫj−1Ej−1

24
=

Hj+ 1
2
−Hj− 1

2

h
, (4.7a)

iωµ
Hj+3/2+22Hj+1/2+Hj−1/2

24
=

Ej+1−Ej

h
. (4.7b)

This is equivalent to the TY scheme [12–14], which is a fourth-order compact implicit
scheme for the Maxwell equations.

We check what happens at the discontinuity when we use a fourth-order compact
implicit (TY) scheme and evaluate ǫ at the point of discontinuity by

ǫj =
ǫl +ǫr

2
,

where l and r denote values to the left and right of the discontinuity. Then

1

24
ǫj−1Ej−1+

22

24
ǫjEj+

1

24
ǫj+1Ej+1→

ǫl

24
Ej−1+

11(ǫl +ǫr)

24
Ej+

ǫr

24
Ej+1

=ǫl

(

1

2
El

j−
1

24
El′

j h+
1

24
El′′

j

h2

2

)

+ǫr

(

1

2
Er

j +
1

24
Er′

j h+
1

24
Er′′

j

h2

2

)

+O(h3).
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We estimate the integrals using derivatives:

∫ h
2

− h
2

ǫ(z)E(z)dz=
∫ 0

− h
2

ǫ(z)E(z)dz+
∫ h

2

0
ǫ(z)E(z)dz

=ǫl
∫ 0

− h
2

(

El
j +El′

j z+El′′

j

z2

2

)

dz+ǫr
∫ h

2

0

(

Er
j +Er′

j z+Er′′

j

z2

2

)

dz+O(h3). (4.8)

The error is given by

h

(

1

24
ǫj−1Ej−1+

22

24
ǫjEj+

1

24
ǫj+1Ej+1

)

−
∫ h

2

− h
2

ǫ(z)E(z)dz

=
ǫl

12
El′

j h2−
ǫr

12
Er′

j h2+O(h3)=
E

′

jh
2

12

(

ǫl−ǫr
)

+O
(

h3
)

. (4.9)

In a continuous region, where ǫl=ǫr, the leading term vanishes and gives a high order ap-
proximation to the integral. However, at a point of discontinuity it reduces the accuracy
to second-order.

To regain higher order we need to evaluate the integral on each side of the discontinu-
ity. This can be done for a general location of the discontinuity in the interval. However,
to simplify matters we consider the same case as for the Helmholtz equation when the
discontinuity occurs at a nodal point (where E is defined). We only consider ǫl and ǫr on
the two sides of the discontinuity. ǫ at the discontinuity is not defined. We substitute

E′≈
−3Ej+4Ej+1−Ej+2

2h
, E′′=−ω2ǫµE

into (4.8). Let j be the point of discontinuity. Since E is continuous we have:

∫ h
2

− h
2

ǫ(z)E(z)dz=ǫl
∫ 0

− h
2

(

El
j +El′

j z+El′′

j

z2

2

)

dz+ǫr
∫ h

2

0

(

Er
j +Er′

j z+Er′′

j

z2

2

)

dz

=ǫl
[h

2
Ej−E′

j

h2

8
−ω2ǫlµEj

h3

48

]

+ǫr
[h

2
Ej+E′

j

h2

8
−ω2ǫrµEj

h3

48

]

+O(h4)

=
ǫr +ǫl

2
Ejh+

ǫr−ǫl

8
E′

jh
2−

h3ω2µ

48

(

ǫr2+ǫl2
)

Ej. (4.10)

We approximate E′
j by a Taylor series and find:

ǫrE(h)+ǫl E(−h)

8
=

ǫr +ǫl

8
Ej+

ǫr−ǫl

8
E′

jh+
h2

16

(

ǫlEl′′

j +ǫrEr′
′

j

)

+O
(

h3
)

=
ǫr +ǫl

8
Ej+

ǫr−ǫl

8
E′

jh−
h2ω2µ

16

(

ǫr2+ǫl2
)

Ej+O
(

h3
)

.



452 G. Baruch, G. Fibich, S. Tsynkov and E. Turkel / Commun. Comput. Phys., 5 (2009), pp. 442-455

The final formula is

∫ h
2

− h
2

ǫ(z)E(z)dz=h

[

ǫlEj−1

8
+

[

3

8
(ǫr +ǫl)+

ω2h2µ

24

(

ǫr2+ǫl2
)

]

Ej+
ǫrEj+1

8

]

,

which is accurate to within h3. This is put into (4.6a). For (4.6b) µ is continuous and so
we can use (4.7a) which is compact.

4.1 Compact third-order not aligned to node

We consider the case where the discontinuity falls in between two nodes:

iωF(z)=
dH(z)

dz
, F(z)=ǫE,

where F(z) is smooth to the left and right of the discontinuity z=L between 0 and h/2,
with ǫ piecewise constant. We integrate the equation and split the integral into two parts.
We now consider a wider stencil:

iω

(

∫ L

− h
2

F(z)dz+
∫ 3h

2

L
F(z)dz

)

= H

(

+
3h

2

)

−H

(

−
h

2

)

.

Using a Taylor series expansion of F to third-order and integrating we get

iω

[

F(0)(L+h/2)+
F′(0)

2

(

L2−h2/4
)

+
F′′(0)

6

(

L3+h3/8
)

]

+iω

[

F(h)(3h/2−L)+
F′(h)

2

(

(3h/2)2−L2
)

+
F′′(h)

6

(

(3h/2)3−L3
)

]

= H(+3h/2)−H(−h/2) . (4.11)

We wish to express F, F′, and F′′ using as few nodal points as possible. For F(0) we
simply take Fj. Next we use the properties of the Maxwell equations in the smooth zone.
Define

C1 = iωǫµ, C2 =−ω2µǫ2.

Then

F′=C1H, F′′=C2F, F′′′=C1C2H,

F′
(−h

2

)

= F′(0)−
h

2
F′′(0)+

h2

8
F′′′
(−h

2

)

.
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For a Yee type scheme F is evaluated at 0, while H is evaluated at h/2. Hence,

∫ L

− h
2

F(z)dz

= F(0)(L+h/2)+
F′(0)

2

(

L2−h2/4
)

+
F′′(0)

6

(

L3+h3/8
)

= F(0)(L+h/2)+
1

2

(

F′(−
h

2
)+

h

2
F′′(0)−

h2

8
F′′′(

−h

2
)

)

(

L2−h2/4
)

+
F′′(0)

6

(

L3+h3/8
)

= F0(L+h/2)+
1

2

(

C1H− 1
2
+

h

2
C2F0−

h2

8
C1C2H− 1

2

)

(

L2−h2/4
)

+C2
F0

6

(

L3+h3/8
)

=

[

L+
h

2
+C2

h

4

(

L2−h2/4
)

+
C2

6

(

L3+h3/8
)

]

F0+
C1

2

[

L2−
h2

4
−C2

h2

8
L2

]

H− 1
2
. (4.12)

Repeating this procedure for the integral from L to 3h/2 we find the scheme has the form:

iω
(

αHj− 1
2
+βFj+γHj+ 1

2
+δFj+1

)

= Hj+ 3
2
−Hj− 1

2
.

Combinations of the electric and magnetic fields appear in the left hand side of the mag-
netic equation and so this differs from the TY scheme [12–14] even for smooth coefficients.

5 Numerical simulations

We computationally assess the performance of the fourth-order (2.5) and sixth-order
scheme (3.1) for the Helmholtz equation. At the interface we have a material disconti-
nuity:

ν(z)=

{

1, for z∈ [−∞,0),

4, for z∈ (0,+∞].
(5.1)

The value of the linear wavenumber is k0 =1. We consider the wave eiz that propagates
from z=−∞ in the positive z direction. It is partially reflected back at the interface z=0
giving rise to the left traveling wave Re−iz for z < 0, and partially transmitted, which
yields a right traveling wave Te2iz for z>0. The values of R and T can be determined by
a straightforward calculation that involves matching the field E and its derivative dE/dz
at both sides of the interface z=0.

The simulation region is z∈ [−1,1]. At the boundary z=−1, the boundary condition
should prescribe the incoming wave eiz and enable the reflectionless propagation of the
outgoing wave Re−iz. Likewise, at the boundary z = 1 the boundary condition should
enable the reflectionless propagation of the outgoing wave Te2iz. Hence, we set:

(

d

dz
+i

)

E

∣

∣

∣

∣

z=−1

=2ie−i and

(

d

dz
−2i

)

E

∣

∣

∣

∣

z=1

=0. (5.2)
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Table 1: Error of the fourth-order scheme (2.5), the sixth-order scheme (3.1), and a similar second-order scheme
applied to the analysis of the two layer configuration (5.1). The last column provides the functional dependence
of the error on the grid size h, obtained by a least squares fit. For h = 0.01, the error of the sixth-order
discretization is limited by the machine precision.

approximation grid size h error(h)
0.33 0.1 0.033 0.01

second-order 1.2·10−2 1.4·10−3 1.5·10−4 1.4·10−5 0.14·h2

fourth-order 1.0·10−3 7.8·10−6 9.4·10−8 7.6·10−10 0.078·h4

sixth-order 4.9·10−5 3.4·10−8 4.6·10−11 — 0.034·h6

Boundary conditions (5.2) are implemented directly for the discretization as in [1].

The numerical solutions are compared with the closed form continuous solutions in
the maximum norm. The results are displayed in Table 1. They corroborate the design
fourth and sixth-order convergence of the schemes, respectively. In the paper, we have
provided a formal accuracy analysis plus computational evidence, see Table 1, for the
fourth-order convergence. In [1], the fourth-order convergence has been rigorously justi-
fied for a linear equation with piecewise constant coefficients.
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