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Abstract. We study the biofilm-flow interaction resulting in biofilm growth, defor-
mation and detachment phenomena in a cavity and shear flow using the phase field
model developed recently [28]. The growth of the biofilm and the biofilm-flow inter-
action in various flow and geometries are simulated using an extended Newtonian
constitutive model for the biofilm mixture in 2-D. The model predicts growth pat-
terns consistent with experimental findings with randomly distributed initial biofilm
colonies. Shear induced deformation, and detachment in biofilms is simulated in a
shear cell. Rippling, streaming, and ultimate detachment phenomena in biofilms are
demonstrated in the simulations, respectively, in a shear cell. Possible merging of de-
tached biofilm blobs in oscillatory shear is observed in simulations as well. Detach-
ment due to the density variation is also investigated shedding light on the possible
bacteria induced detachment.

AMS subject classifications: 65M06, 76D05, 76A05, 76T30, 76Z05, 92C05
Key words: Biofilm, Cahn-Hilliard equation, phase filed, finite difference method, multiphase
flow.

1 Introduction

Biofilms are ubiquitous in nature and manmade materials. Biofilms form when bacteria
adhere to surfaces in moist environments by excreting a slimy, glue-like substance. Sites
for biofilm formation include all kinds of surfaces: natural materials above and below
ground, metals, plastics, medical implant materials, plants and body tissues. Wherever
you find a combination of moisture, nutrients and a surface, you are likely to find biofilms
[8, 14, 16, 20].

A biofilm community can be formed by a single bacterial species, but in nature biofilms
almost always consist of rich mixtures of many species of bacteria, as well as fungi, algae,
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yeasts, protozoa, other microorganisms, debris and corrosion products. Biofilms are held
together by sugary molecular strands, collectively termed ”extracellular polymeric sub-
stances” or ”EPS”. The cells produce EPS and are held together by these strands, allowing
them to develop complex, three-dimensional, resilient, attached communities. Biofilms
cost the U.S. literally billions of dollars every year in energy losses, equipment damage,
product contamination and medical infections. But biofilms also offer huge potential for
bio-remediating hazardous waste sites, bio-filtering municipal and industrial water and
waste water, forming bio-barriers to protect soil and ground water from contamination,
as well as heap leaching.

It is a challenge to model the live microorganism in biofilms and their transient growth
and transport behavior. There have been various multi-fluid models proposed to predict
growth behavior of biofilms [1,7,19,27] and models to simulate biofilm growth and trans-
port phenomena [9, 17, 18, 22–25]. However, it becomes tricky when one uses the multi-
fluid models to study biofilm dynamics in another fluid since the velocity boundary con-
ditions for the multi-fluid model are often hard to define. When constitutive equations
are also present for viscoelastic components, there could also be boundary conditions for
the extra elastic stress tensor corresponding to the components, creating another layer of
complications for the use of the models. Hence, for flow-biofilm interaction, a single fluid
model would be more appropriate and efficient, in which a single mass average velocity
serves as the measurable macroscopic velocity.

Recently, we developed a phase-field based hydrodynamic theory for mixtures of
biofilm and solvent using the one fluid multi-component formulation [2, 28]. The model
captures the long wave growth phenomenon exhibited in the biofilm growth. The pre-
liminary study on 1-D biofilm growth shows promising results for the theory to be used
in studying dynamics of the biofilm and the interaction with the ambient solvent. In this
paper, we continue our investigation of the biofilm dynamics in 2 space dimensions us-
ing the phase field theory with an extended Newtonian constitutive equation for the EPS
polymer network in the biofilm.

2 Mathematical model

We first recall the mathematical model developed for the mixture of biofilms and solvent
in [28]. Let v be the average velocity, p the pressure, φn and φs the volume fraction of the
polymer network and solvent respectively, and c the nutrient concentration. The phase
field theory for biofilms consists of four sets of equations of multiple variations.

2.1 Momentum and continuity equation

Consider

∇·v=0,

ρ
dv

dt
=∇·(φnτn+φsτs)−[∇p+γ1kT∇·(∇φn∇φn)],

(2.1)
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where ρ=φnρn+φsρs is the effective density for the mixture, ρn and ρs are the density for
the polymer network and the solvent, respectively, τn and τs are the extra stress tensor for
the polymer network and the solvent, respectively, k is the Boltzmann constant, T is the
temperature, γ1 is a parameter measures the strength of the conformation entropy and γ2

is the strength of the bulk free energy in the extended Flory-Huggin’s mixing free energy
density defined by [11, 12]

f =
γ1

2
kT‖∇φn‖

2+γ2kT

[

φn

N
lnφn+(1−φn)ln(1−φn)+χφn(1−φn)

]

. (2.2)

Here γ2 is proportional to the reciprocal of the volume of the solvent molecule, N is the
polymerization index for the polymer strand in the EPS network and χ is the mixing
parameter. We note that the incompressibility condition implies

φs+φn =1. (2.3)

2.2 Transport equation for nutrient substrates

Consider

∂

∂t
(φsc)+∇·(cvφs−Dsφs∇c)=−gc , CA-model,

∂

∂t
(φsc)+∇·(cvsφs−Dsφs∇c)=−gc, CN-model,

(2.4)

where c is the nutrient concentration and the nutrient consumption rate is given by

gc =φn Ac, (2.5)

A is a constant and Ds is the diffusion constant for the nutrient substrate. The suffix A
and N in CA and CN indicate either the average (v) or the solvent (vs defined below)
velocity is used in the transport equations.

2.3 Transport equation for the volume fraction of the polymer network

Consider
∂φn

∂t
+∇·(φnv)=∇·

[

λφn∇
δ f

δφn

]

+gn, MCH-model, (2.6)

where λ is the mobility parameter and the polymer network production rate is given by

gn =ǫµφn
c

Kc+c
, (2.7)

µ is the maximum production rate, Kc is the half-saturation constant and ǫ is a scaling
parameter. The prefix M indicates the transport equation is a modified or singular Cahn-
Hilliard equation with a polymer volume fraction dependent mobility [4, 5, 21, 26].
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2.4 Constitutive equations

Consider

τn =2ηnD,τs =2ηsD, VA-model

τn =2ηnDn,τs =2ηsDs, VN-model

∂τn

∂t
+v·∇τn−W·τn +τn ·W−a[D·τn +τn ·D]

+
τn

λ1
=

2ηn

λ1
D, τs =2ηsD, JSA-model

∂τn

∂t
+vn ·∇τn−Wn ·τn +τn ·Wn−a[Dn ·τn +τn ·Dn]

+
τn

λ1
=

2ηn

λ1
Dn, τs =2ηsDs, JSN-model

(2.8)

where ηn and ηs are the viscosity for the polymer network and the solvent respectively.
We note that the infinite relaxation time limit λ1 →∞ and ηn/λ1 → const yields the pure
elastic theory while λ1 → 0 gives rise to the viscous limit [3, 10, 15]. The suffix A and
N in the above equations indicate that either the average or network velocity is used in
convection, respectively, where the polymer network velocity is defined by

vn =v−λ∇
δ f

δφn
. (2.9)

The solvent velocity is defined by

vs =v+
λφn

φs
∇

δ f

δφn
. (2.10)

The rate of strain tensor and the vorticity tensor with respect to the average velocity are
given by

D=
1

2
[∇v+∇vT ], W=

1

2
[∇v−∇vT].

The corresponding ones with respect to the network velocity are defined analogously

Dn =
1

2
[∇vn+∇vT

n ], Wn =
1

2
[∇vn−∇vT

n ].

We investigate the dynamics of the biofilm in 2 space dimensions: (x,y)∈Ω=[0,L]×
[0,H], where H and L are positive constants. For the cavity geometry, we impose bound-
ary conditions as follows on the boundary ∂Ω.

[cvφs−Dsφs∇c]·n|∂Ω =0, ∇φn ·n|∂Ω =0,

[vφn−Λφn∇
δ f

δφn
]·n|∂Ω =0, v|∂Ω =0,

(2.11)
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in which the first and the third boundary condition indicate vanishing normal fluxes for
the nutrient flow and the polymeric flow, respectively. In some simulations, we impose a
feeding condition,

c|y=H = c∗,

at the top of the domain y=H. A moving top is also possible, where a prescribed bound-
ary condition for the velocity is given to simulate shear flows. For shear flows, we im-
pose periodic boundary conditions in x direction and the following physical ones in y
direction: no-flux boundary conditions for the volume fraction of polymer network and
nutrient substrate concentration, Dirichelet boundary condition for the velocity:

[cvφs−Dsφs∇c]·n|y=0,H =0, ∇φn ·n|y=0,H =0,

[vφn−Λφn∇
δ f

δφn
]·n|y=0,H =0, v|y=0 =0,v|y=H =v0.

(2.12)

Again the top feeding boundary condition could be given for c at y= H: c|y=H = c∗.

3 Nondimensionalization

We use a characteristic time scale t0 and length scale h to nondimensionalize the variables

t̃=
t

t0
, x̃=

x

h
, ṽ=

vt0

h
, p̃=

pt2
0

ρ0h2
, c̃=

c

c0
, (3.1)

where c0 is a characteristic nutrient substrate concentration. The length scale h is deter-
mined by the computational geometry while the time scale is done by either the growth
time scale of the biofilm or the flow induced time scale. The following dimensionless
equations arise

Λ=
λρ0

t0
, Γ1 =

γ1kTt2
0

ρ0h4
, Γ2 =

γ2kTt2
0

ρ0h2
,

Res =
ρ0h2

ηst0
, Ren =

ρ0h2

ηnt0
, D̃s =

Dst0

h2
,

ρ̃=φs
ρs

ρ0
+φn

ρn

ρ0
, Ã= At0, µ̃=µt0, K̃c =

Kc

c0
,

(3.2)

where Res and Ren are the Reynolds number for the solvent and the polymer respec-
tively, ρ0 is an averaged density. In this paper, we use the extended Newtonian model
for the polymeric stress tensor. For simplicity, we drop the ˜ on the dimensionless vari-
ables and the parameters and the system of governing equations for the biofilm in these
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dimensionless variables are given by

∇·v=0,

ρ
dv

dt
=∇·(φnτn+φsτs)−[∇p+Γ1∇·(∇φn∇φn)],

∂

∂t
(φsc)+∇·(cvφs−Dsφs∇c)=−gc,

∂φn

∂t
+∇·(φnv)=∇·(Λφn∇

δ f

δφn
)+gn.

(3.3)

where

τn =
2

Ren
D, τs =

2

Res
D, gc = Aφnc,

gn =ǫµφn
c

Kc+c
.

(3.4)

The dimensionless mixing free energy density is now given by

f =
Γ1

2
‖∇φn‖

2+Γ2

[

φn

N
lnφn+(1−φn)ln(1−φn)+χφn(1−φn)

]

. (3.5)

Analogously, the other dimensionless equations can be obtained. To save space, we will
not enumerate them here.

4 Numerical schemes

We use the finite difference method to solve the coupled flow, phase field equation, and
nutrient concentration transport equation. We solve the coupled momentum transport
equation and the continuity equation using a velocity corrected projection scheme devel-
oped by Guermond et al. [13]. We denote

R=−∇·(Γ1∇φn∇φn)+∇·(φnτn+φsτs−
2

Rea
D), (4.1)

where Rea is an averaged Reynolds number. The momentum transport equation is rewrit-
ten as

ρ(
∂

∂t
v+v·∇v)=−∇p+

1

Rea
∇2v+R. (4.2)

We calculate v and the pressure in three steps. We present the scheme for the case of
periodic boundary conditions in the x direction and physical one in the y direction in
the following. For simplicity, the second order extrapolation in time of any function f is

denoted by f
n+1

=2 f n− f n−1.
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Step 1:

{

ρn+1[ 3un+1−4vn+vn−1

2∆t ]+ρn+1vn+1 ·∇un+1+∇pn + 1
Rea

[∇sn−∇2un+1]=R
n+1

,

un+1|y=0 =0,un+1|y=H =v0.
(4.3)

Step 2: We implement the projection step by solving a Poisson equation with the
Neumann boundary condition:

{

−∇·( 1
ρn+1∇ψn+1)=∇·un+1,

∂ψn+1

∂n |y=0,H =0.
(4.4)

Step 3: We correct the velocity, pressure and the auxiliary variable s.











vn+1 =un+1+ 1
ρn+1∇ψn+1,

sn+1 = sn−∇·un+1,

pn+1 = pn− 3ψn+1

2∆t + 1
Rea

sn+1.

(4.5)

Here s0 =0 and v1,s1,p1,φ1
n,c1 are computed by a first order scheme.

The phase field equation for the polymer volume fraction φn is discretized by

3φn+1
n −4φn

n +φn−1
n

2∆t
+vn+1 ·∇φn+1

n

= gn+1
n +Λ∇·φn

n+1
∇

(

−Γ1∇
2φn+1

n −2Γ2χφn+1
n −Γ2(−

1

N
lnφn

n+1
+ln(1−φn)

n+1
)
)

. (4.6)

The substrate concentration transport equation is discretized by

3φn+1
s cn+1−4φn

s cn+φn−1
s cn−1

2∆t
+vn+1 ·∇(cn+1φn+1

s )

= gn+1
c +∇·(Dsφ

n+1
s ∇cn+1). (4.7)

The spatial discretization is done using central differences to ensure at least second order
accuracy in space. The boundary conditions at the top and the bottom boundary y=1,0
are handled in the following way.

We use uniform mesh size in both spatial and temporal discretization, where the time
step size is ∆t and spatial mesh size is ∆x=L/Mx,∆y=1/My. The computational domain
Ω=[0,L]×[0,1] is divided into uniform cells by nodes (xi,yj)=(i∆x, j∆y), i=0,··· ,Mx, j=
0,··· ,My. we denote the value of the numerical solution of (4.6) and (4.7) at (n∆t,i∆x, j∆y)
by φn

n,i,j, cn
i,j respectively. For either the case of the cavity or the shear flow geometry, we

have v·n|y=0,1 =0. Thus, the boundary conditions for φn and c given by (2.12) becomes

∇c·n|y=0,1 =0, ∇φn ·n|y=0,1 =0, ∇
δ f

δφn
·n|y=0,1 =0. (4.8)
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The discrete forms of the boundary conditions (4.8) are given by

φn
n,i,1 =φn

n,i,−1, φn
n,i,2 =φn

n,i,−2,

φn
n,i,My+1 =φn

n,i,My−1, φn
n,i,My+2 =φn

n,i,My−2,

cn
i,1 = cn

i,−1, cn
i,My+1 = ci,My−1, i=0,··· ,Mx.

(4.9)

The overall scheme is second order in space and time. To achieve second order accuracy
in time, extrapolation is used for the R term in momentum transport equation (4.3) and
the lnφn and ln(1−φn) terms in the phase filed equation (4.6). The density of solvent
and polymer network are set to be the same, thus ρn is in fact a constant. The averaged
Reynolds number Rea is computed by

Rea =φn
maxRen+(1−φn

max)Res,

where
φn

max =max{φn
n,i,j, 0≤ i≤Mx,0≤ j≤My}.

Thus Rea is a constant at each time step tn, but varies with time. We run the mesh re-
finement test for ∆x=∆y=1/32,1/64,1/128 respectively. The results show second order
error reduction in both time and space. Thus our numerical scheme is convergent and
stable upon mesh refinement. All numerical results presented here are for ∆x=∆y=1/64
except in Fig. 1 where ∆x=∆y=1/128 are used.

5 Numerical results

We study dynamics of the biofilm-solvent interaction in two representative 2-D flow ge-
ometries: a rectangular cavity where the velocity is zero at the boundaries or maybe
nonzero at the top (mimicking a cavity in a well-established flow field) and a shear cell
with the periodic boundary condition for all physical variables in the principal flow di-
rection and the physical one in the transverse direction. The physical or shear boundary
condition is divided into the case of steady and oscillatory transient conditions, respec-
tively. The dimensionless parameter values in the simulations for the cavity case are set
at

Res =9.98×10−4, Ren =2.33×10−9, Λ=1×10−10,

Γ1 =33.467, Γ2 =1.29×106, Ds =2.3,

µ=0.14, Kc =0.15, A=100.

For the weak shear flow, the polymer viscosity is reduced to Ren =2.33×10−6 to achieve
the detachment effect in the computational time scale. Table 1 lists the range of the di-
mensional parameter values used in our simulations.

In the simulations presented next, we first examine the growth of biofilms in a cavity
and their dynamics while coupled with the solvent flow; then, we simulate the growth
and detachment phenomena in a shear cell in both the weak and strong flow regimes.
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Table 1: Parameter values used in the simulation.

Symbol Parameter value Unit

T Temperature 303 Kelvin
γ1 Distortional energy 8×106 kgm−1s−2

γ2 Mixing free energy 3×1017 kgm2s−2

χ Flory-Huggins parameter 0.6

λ Mobility parameter 1×10−10 kg−1m3s
N Generalized polymerization parameter 1×103

µ Max. Production rate 1.4×10−4 kgm−3s−1

Kc Half saturation constant 1.5×10−4 kgm−3

A Max. Consumption rate 0.1 kgm−3s−1

Ds Substrate diffusion coefficient 2.3×10−9 m2s−1

ηn Dynamic viscosity of network 4.3×102 kgm−1s−1

ηs Dynamic viscosity of solvent 1.002×10−3 kgm−1s−1

ρn Network density 1×103 kgm−3

ρs Solvent density 1×103 kgm−3

c0 Characteristic substrate concentration 1×10−3 kgm−3

h Characteristic length scale 1×10−3 m
t0 Characteristic time scale 1×103 s
L x-direction size of Ω 1 or 4
Mx x-direction number of sub-intervals 64 or 256
My y-direction number of sub-intervals 64

5.1 Growth of biofilms in a cavity

The 1-D study on the linearized stability of constant steady states can be extended to mul-
tidimensional cases trivially. We will refer readers to our work in part I on the detailed
derivation of the 1-D case [28]. The stability analysis shows that a homogeneous biofilm
is subject to a long wave instability leading to growth whenever the wave length of the
2-D biofilm colony exceeds a critical value.

In the 2-D simulation presented below, the no-flux boundary conditions are imposed
for the polymer network volume fraction φn and the nutrient concentration c on all
boundaries except that c = c⋆ is given at y = 1 (this is also known as the top feeding
boundary condition). The velocities are assumed to be vanishing at all the boundaries
when boundaries are fixed. This setup mimics a fixed container with nutrient being fed
through the top boundary. For instance, a cavity in a large flow field where the velocity
at the open end of the cavity is slow can be essentially approximated by this boundary
condition.

We first consider the scenario in which the initial distribution of the biofilm is uniform
except for a hump extruding into the solvent region shown in Fig. 1. The hump is located
at the center of the biofilm-solvent interface and eventually grows to a mushroom shape
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Figure 1: Growth of the biofilm with a single hump extruding into the solvent region in the initial profile in a
cavity. A mushroom shaped growth is shown at a later time. The growth at the center sucks up some polymer
network from interior to grow upward. The curves shown are level curves of φn. The biofilm solvent interface
is defined by φn =0.

due to the accessibility to nutrients at the interface as well as in the interior. This pattern
of growth is often observed in biofilm growth [6, 7]. Here, our model captures it nicely.
Fig. 1 plots the growth of the biofilm at a few selected time slots. We note that the char-
acteristic time scale used in the simulation is t0 = 1000 seconds, thus the dimensionless
time t=300 is approximately 3.5 days.

To explain the situation better, we also plot the contour of the polymer network ve-
locity vn given by (2.9) in Fig. 2(a) and the contour of the pressure in Fig. 2(b) at time
t = 200. Fig. 2(a) clearly demonstrates the agreement of the growth of the biofilm with
the velocity profile. Namely, the horizontal velocity u is positive on the right half of the
mushroom shaped hump and negative on the left half while the vertical velocity v is pos-
itive on the network-solvent interface, demonstrating the spatial growth/expansion of
biomass into the solvent region. If the excessive velocity −λ∇δ f /δφn is denoted by ve,
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Figure 2: Contour plot of the velocity and the pressure at t=200 for the biofilm with a single mushroom shaped
growth pattern at the center. The velocity profile correlates with the growth direction and the pressure correlates
inversely with the volume fraction, which explains the upward migration of the polymer network pulled behind
the growing hump.

then (2.9) becomes
vn =v+ve.

We observe that the magnitude of ve is 10−4 while it is 10−5 for v, thus the network ve-
locity is indeed dominated by the excessive velocity induced by the gradient of chemical
potential. In another word, the spatial expansion is fueled essentially by mixing! Fig. 2(b)
shows that the pressure contour is very closely related to the polymer network profile.
The pressure is almost constant in the pure solvent region and has the largest gradient
at the network-solvent interface. In the interior of the mushroom region, the pressure
drops leaving a low pressure core; it recovers near the bottom substrate right under the
mushroom region. From the figures, we can see that the pressure correlates with the mag-
nitude of the polymer volume fraction inversely: the lower is the pressure in the region,
the higher the volume fraction is.

In a more general setting, we simulate the evolution of multiple humps in the initial
distribution shown in Fig. 3, an analogous growth for each hump occurs nearly uni-
formly. It also shows that the top part of the mushroom grows faster due to its accessibil-
ity to the nutrient than its lateral region due to apparent topological constraints imposed
by the neighboring mushrooms. We note that these results are similar to those obtained
in [6] using a two-fluid derivation. We view these results as a validation of our model
formulation.

Fig. 4 shows the growth of the biofilm with an initially flat interface between the
biofilm and the solvent but with inhomogeneously distributed volume fraction values.
It can be seen that the biofilm-solvent interface becomes inhomogeneous as the biofilm
grows. This is because areas with higher network concentration has a larger network
production rate, lower pressure, and thus grows faster. The polymer-network inhomo-
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Figure 3: Growth of the biofilm with multiple humps at various time. An array of mushroom shaped growth is
shown.

geneity induced growth can be linked to the biofilm colonies where the polymer volume
fraction is inhomogeneous perhaps due to the presence of bacteria or solvent. Although
the current model does not model the bacteria species explicitly, the simulation nonethe-
less reveals some growth features loosely related to inhomogeneity in the effective poly-
mer network due to the presence of bacteria clusters.

When the biofilm is distributed as an inhomogeneously distributed array of colony
islands, we simulate their respective growth. Fig. 5 is the contour plot of the polymer vol-
ume fraction φn of the randomly distributed biofilm colonies with variable initial volume
fraction values. It shows that the initial volume fraction of the islands is not essential to
the growth, but the distance from island to the top (y=1 where the nutrient is supplied)
is more relevant to the growth. At the beginning of the growth process, all islands are
growing since they all have access to the nutrient nearby. The colonies close to y=1 grow
larger and consume large amount of the nutrient supplied from the top such that the nu-
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Figure 4: Growth of the flat-interface of an inhomogeneous biofilm. The volume fraction varies in space and
higher concentrated areas bulges into the solvent region after the growth begins. The interface grows into the
solvent region non-uniformly.

trient supply to the bottom is somehow hampered leading to reduced or even stopped
growth of the islands at the bottom. Eventually the biofilm colonies expand to the top
boundary where there are continuous supplies of the nutrient so that the biofilm grows
exponentially. When this happens, the computation may eventually break down.

We next examine biofilm dynamics in a plane shear flow to investigate the detach-
ment phenomena associated with the flow biofilm interaction.

5.2 Biofilm dynamics in shear flows

We investigate the biofilm flow interaction in shear in two distinct regimes: weak shear
and strong shear. In order to contrast these two cases, we retain the growth characteristic
time scale t0. Then, the dimensionless driving speed of the shearing plate is signatured
by small and large values, respectively.
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Figure 5: Growth of inhomogeneously distributed colony islands with variable volume fraction values. The
contour plots of the polymer volume fraction φn showing the growth of randomly distributed colony islands.
The biofilm colonies grows faster near the boundary where the nutrient is continuously fed.

5.2.1 Dynamics in weak shear

In this set of simulations, we adjust the viscosity of the biofilm to the lower end in order
to capture the detachment phenomenon within a reasonable computational time frame
since in the higher viscosity range, the biofilm is essentially too viscous to disintegrate
in the time scale we simulate. Considering the inhomogeneity in the actual biofilm and
the spatially distributed bacteria sites, it makes sense to use the lower viscosity value for
the biofilm in the study. We first consider a computational cell of the same size in both
x and y direction as in the previous cavity case. The boundary condition in x direction
is periodic while it is physical in the y-direction. Fig. 6 shows the effect of shear flow
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Figure 6: Shear flow over two humps with EPS production showing shedding effect. The driving velocity at
y=1 is u=0.1.

generated by the moving plate on the top at the velocity

u|y=1 =0.1, v|y=1 =0

over two humps of biofilm while the nutrient is continuously fed at the top. Since the
size of the humps is large and interface between the biofilm and the solvent is smooth,
we observe only small pieces of biofilm shed off or separate away from the bulk biofilm
and then grow on their own. This simulation perhaps can be linked to the streaming
phenomenon seen in the flow biofilm interaction.

We next look into the growth of two necked mushroom shaped humps with less vol-
ume fraction in the neck region. The interfacial deformation pattern changes. Instead of
shedding off of smaller colonies, the large chunk of biofilm from the neck up is blown
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Figure 7: Shear flow over two mushroom shaped biofilm humps without EPS production showing pinching and
detachment effect. The driving velocity at y=1 is u=0.5.

off. There is little shedding going on before the blob is completely blown off the base.
Fig. 7 shows some snap shots of the deformation process and the break-off of the blob
region above the neck. The smaller one with thinner neck is snapped away first. It then
overtakes the larger mushroom biofilm blob downstream.

We next enlarge the computational domain of the shear cell to 4:1 in x vs y direction.
We simulate the deformation of two peninsula shaped biofilm extrusions. They differ
from the mushroom shaped in that the necks are now thicker than the heads. Fig. 8
shows the shear flow over the two peninsula on a flat base, where the value of φn at the
thin end is around 0.11 (higher than the value at the base 0.09). The shear velocity at y=1
is u=0.1,v=0. We observe that these two humps are bent and stretched downstream due
to the shear flow, but are not detached from the base in the simulation.
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Figure 8: Shear flow over two peninsula shaped humps with EPS production showing bending effects in shear.

Fig. 9 depicts the shear flow over two mushroom shaped humps on a flat base, where
the neck is thin and the value of φn at the neck is around 0.08 (lower than the value at
the base 0.09). This mimics the situation where the bacteria are rich around the neck of
the mushroom and the polymer eps volume fraction is low. Shear velocity at y = 1 is
u = 0.1,v = 0. We observe that these two humps are not only bent and stretched to the
downstream direction by the shear flow, but also separated from the base eventually. We
also note the second downstream hump pinches off in this simulation. (This is different
from what we observe in the square domain [0,1]×[0,1] in that the two humps pinch off
here equally easily, whereas the upstream one detaches more easily in the smaller square
domain case.)

Fig. 10 portraits the shear flow over two smooth humps with u|y=1 = 0.5. It clearly
demonstrates the shedding effect on the downstream hump. It also shows that as time
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Figure 9: Shear flow over two mushroom shaped humps with thin necks while the EPS production is considered
in the model. The mushroom shaped downstream hump detaches first.

goes by, the dispersed polymer islands grow and could split into even smaller pieces.
Fig. 11 depicts the contour plot of the vorticity and the pressure in this simulation. We
observe that at t = 50 (before the shedding ensues), the maximum of the magnitude of
the vorticity (all negative) appears at the top of the second hump (around x = 1.5,y =
0.25). This may explain why shedding takes place on the top of the second hump first,
namely, shedding is caused by the larger vorticity of the flow and takes place at where
the vorticity is the largest. Similarly, at t = 100, the magnitude of the vorticity is large
above the dispersed pieces of polymers to the right (around x=3.5,y=0.28), and we see
at t=125, there is a small piece of polymer network splits off.

We also repeat the simulation without the EPS production. We notice that the shed-
ding and detachment effect occurs slightly earlier when EPS production is not included.
This indicates that the EPS production enhances or strengthens the polymer network and
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Figure 10: Shear flow over two humps with smooth interface while the EPS production is considered in the
model. Shedding or streaming occurs from the top of the downstream hump.
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Figure 11: Contour plots of the vorticity and the pressure for shear flows over two humps with smooth interfaces
while the EPS production is considered in the model.
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Figure 12: Rippling effect in shear flows over an array of low amplitude humps in biofilm-solvent interface while
the EPS production is turned on. The driving velocity at y=1 is u=1.

tend to stabilize against the flow induced interfacial instability in the pinch-off and shed-
ding scene.

Fig. 12 shows a simulation of the shear flow over an array of low amplitude humps
while the EPS production is considered in the model, where the driving speed is set at
u|y=1 =1. Due to their small amplitudes, the humps are skewed with their peaks tilting
towards the flow direction demonstrating the rippling effect pattern in the biofilm by an
ambient flow field. At a later time, some streaming is shown to emerge at the peaks of
the ripples.

Next, we investigate the effect of an oscillatory shear on the biofilm-flow interaction.
Fig. 13 shows the effect of an oscillatory shear flow with velocity

u=0.5sin(
2π

100
t), v=0 at y=1

over the biofilm with two humps on a flat base. The EPS production is not considered
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Figure 13: Oscillatory shear flow over two sturdy humps without EPS production, showing stronger pinching

effect. Shear velocity at y=1 is u=0.5sin( 2π
100 t).
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Figure 14: Oscillatory shear flow over two mushroom shaped humps with thin necks while the EPS production
is considered. Some shedding effect is shown.

in the simulation. The period of the driving velocity is 100. We observe that the biofilm
float to the right after half period of positive speed u (t = 50,250), and then to the left
after the other half period of negative u (t=200,400). Also, both humps detach from the
base biofilm in the end. For oscillatory shear flows, it demonstrates that both humps of
biofilms are equally easily to detach from the base. But for the shear flow with uniform
speed at y=1, the hump upstream is prone to detach than the downstream hump.

Our simulations in weak shear demonstrate whether shedding or pinching-off occurs
depends crucially on the initial profile of the biofilm as well as the driving speed of the
shearing plate. If the biofilm-solvent interface has a smooth surface, then shedding is
more easy to happen. On the other hand, if the biofilm-solvent interface has a rough
surface or there are humps on a relative flat base connecting to the bulk by thin necks
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Figure 15: Shear flow over two mushroom shaped humps with thick necks in the middle of the domain while
the EPS production is considered. The plate speed is u=1000. The two humps bend to the flow direction.

or bridges, then pinching-off (or detachment) is more likely to occur. Apparently, higher
shear rate facilitates shedding and pinch-off to occur sooner.

Fig. 14 shows another oscillatory shear flow over two mushroom shaped humps on a
flat base with thin necks. The moving plate velocity at y=1 is

u=0.1sin(
2π

100
t), v=0.

With the EPS production on, the simulation depicts a wobbling pair of mushroom shaped
humps. They shed small pieces biofilm colonies during the wobbling motion. This is
distinct from the case where the EPS production is turned off and the computational do-
main is shorter. Through the simulations conducted, one observes that both shedding
and pinching-off occurs more easily in the square domain than in the long channel. For
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Figure 16: Shear flow over two mushroom shaped humps with thin necks while the EPS production is considered.
The plate speed is u=1000. Both humps pinch off.

the square domain, the periodic boundary condition in x-direction may not be quite re-
alistic for the oscillatory shear flow and it magnifies the impact of the shear flow on the
biofilm, thus causes a stronger pinching-off effect. For the longer channel, on the other
hand, in oscillatory shear flows, the u velocity component oscillates between positive
and negative values and cancel each other’s effect, thus it leads to a weaker pinching-off
effect.

We next simulate dynamics of the biofilm in strong shear flows.

5.2.2 Dynamics in strong shear

We again use the growth time scale as the characteristic time in the nondimensionaliza-
tion process. In a strong shear, the dimensionless plate driving speed is then large. In all
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Figure 17: Shear flow over two humps with smooth interfaces while the EPS production is considered. The
plate speed is u=1000. Slight bending is shown.

simulations presented below, the dimensionless speed is set at u=1000, the characteristic
time scale t0 = 1000s, and the viscosity for the polymer network is identical to the case
used in the simulation in a cavity.

We first repeat the calculation with the similar initial data as in Fig. 8. Fig. 15 shows
the simulation with the shear flow over two humps with thick necks in the middle of a flat
base. The outcome is qualitatively the same as the one in the weak shear. The humps are
bent toward the flow direction without detaching in the time period we simulated. Next,
we examine humps with thin necks. Fig. 16 shows the shear flow over two humps at the
middle of a flat base, where the necks are thin. Both humps quickly deform and detach
from the base. These two cases are qualitatively the same as the corresponding ones in
the weak shear flow, but the deformation and detachment takes place in much short time
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Figure 18: Shear flow over two mushroom shaped humps in a square domain while the EPS production is
considered. The plate speed is u=1000. The humps deform severely without pinching off.
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scales in the current situation. We remark that the humps in the weak shear case are set
close to the left boundary in order to have longer flow biofilm interaction range within
one period of the computational domain. We observe that a notch is developed in the
bottom right of Fig. 8(d). We set the humps at the middle of the base in the strong shear
case to ensure that periodic boundary conditions are being correctly implemented, and
no notch is developed then.

Fig. 17 depicts the shear flow flowing over two sturdy humps with smooth interfaces
rooted on the substrate. The observed shedding phenomena in weak shear is not ob-
served in the time scale we simulate (t = 10). At even stronger shear, shedding can be
observed though. However, the pinched-off pieces are convected quickly downstream.
Fig. 18 shows the shear flow flowing over two mushrooms in a square domain. The de-
tachment and merger of detached pieces does occur like in the previous case, but the
elongated humps are stretched over the computational (periodic) domain.

The dynamics repeated in strong shear correlates with what we observed in the weak
shear in long time with the reduced polymeric viscosity. In light of this, these numerical
studies demonstrate the capability of the model and the numerical schemes for studying
this complicated biological system. The phenomena simulated here correlate with what
have been observed in experiments and natural settings qualitatively [6, 23].

6 Conclusion

We present some numerical simulations of the growth of biofilm colonies, their deforma-
tion, and detachment in a cavity and under plane shear using the extended Newtonian
model we developed for biofilm and solvent mixtures recently [28]. Rippling of bumpy
biofilm-solvent interfaces under shear, interface shedding of small pieces and pinching
off of the large chunk of biofilms are observed in the simulations. The mechanism as-
sociated with shedding occurs when the extrusion or hump of biofilms into the solvent
region connects to the bulk biofilm region through strong connections (thick necks or
bridges); whereas, the detachment is observed only in the mushroomed islands connect-
ing to the based biofilm colony by thin necks or bridges. The growth and coalesce of
detached biofilm blobs are captured by our simulations. The EPS production is shown to
stabilize or strengthen the biofilm and thereby reduces or delay the pinching off and/or
shedding effect. These studies demonstrate the capability of the model and the numerical
simulation tools associated with it. We look forward to seeing simulations in fully 3-D
and more realistic geometries.
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