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Abstract. Using the gyrocenter-gauge kinetic theory, an electromagnetic version of
the high frequency gyrokinetic numerical algorithm for particle-in-cell simulation has
been developed. The new algorithm, being an alternative to a direct Lorentz-force
simulation, offers an efficient way to simulate the dynamics of plasma heating and
current drive with radio frequency waves. Gyrokinetic formalism enables separation
of gyrocenter and gyrophase motions of a particle in a strong magnetic field. From
this point of view, a particle may be viewed as a combination of a slow gyrocenter and
a quickly changing Kruskal ring. In this approach, the nonlinear dynamics of high
frequency waves is described by the evolution of Kruskal rings based on first prin-
ciples physics. The efficiency of the algorithm is due to the fact that the simulation
particles are advanced along the slow gyrocenter orbits, while the Kruskal rings cap-
ture fast gyrophase physics. Moreover, the gyrokinetic formalism allows separation
of the cold response from kinetic effects in the current, which allows one to use much
smaller number of particles than what is required by a direct Lorentz-force simulation.
Also, the new algorithm offers the possibility to have particle refinement together with
mesh refinement, when necessary. To illustrate the new algorithm, a simulation of
the electromagnetic low-hybrid wave propagating in inhomogeneous magnetic field
is presented.

PACS: 52.30.Gz, 52.25.Xz, 52.25.Dg
Key words: Gyrokinetics, magnetized plasmas, plasma kinetic equations.

1 Introduction

The gyrokinetic theory [1–3] is normally known as a tool for description of the low fre-
quency dynamics of plasmas in a strong magnetic field. Changing variables to a gyro-
center coordinate system in the original Vlasov and Maxwell’s equations, the gyrokinetic
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formalism yields a system of gyrophase-independent equations, which describe slow (al-
ternatively, low frequency with ω≪Ω, where Ω is the cyclotron frequency) phenomena
in plasmas. However, the physics associated with the omitted fast gyrophase part may
be important. Particularly, in fusion plasmas, radio frequency (rf) waves in both ion
and electron cyclotron frequency ranges are used for plasma heating and current drive.
In this paper we present a computational algorithm, which is an alternative to direct
Lorentz-force simulation and which allows one to numerically study an arbitrary fre-
quency dynamics of plasmas within the gyrokinetic framework. This paper addresses
electromagnetic version of the algorithm developed in the previous work by Kolesnikov
et al. [4, 5].

The high frequency gyrokinetic approach we discuss in this paper is based on the
gyrocenter-gauge kinetic theory, developed by Qin et al. [6–8] in the limit of particle gy-
roradius much smaller than the scale length of the ambient magnetic field, ρ/LB ≪ 1
(in the case of strongly magnetized plasmas). The gyrokinetic formalism transforms the
Vlasov-Maxwell system in 6D particle coordinate system z=(x,v) to a new 6D gyrocenter
system Z=(X ,U,µ,ξ). Here, X and U are the location and parallel velocity of the particle
gyrocenter, µ is the magnetic moment and ξ is the gyrophase angle. While F(x,v,t) is the
distribution function in the old particle coordinates, F(Z,t) is the distribution function in
the new coordinates, where the parallel (gyrocenter) and the perpendicular (gyrophase)
dynamics are decoupled, such that

F(Z,t)= 〈F(Z,t)〉. (1.1)

Here, the notation for a gyrophase-averaged quantity is introduced by

〈a〉
.
=(2π)−1

∫
adξ.

All the fast gyrophase dynamics is completely captured by, so called, gauge function
S(Z,t). Similar approach was used by Lee et al. [9] and Park et al. [10] for treatment of
arbitrary frequency dynamics.

An algorithm based on gyrokinetics may prove useful if we need to add an arbi-
trary frequency dynamics, like rf waves, into existing sophisticated gyrokinetic particle
codes [11] developed to study low frequency turbulence phenomena in general geome-
try. Also, the new algorithm may be much more computationally effective than the direct
Lorentz-force integration. There are several reasons for this. First, the motion of gyrocen-
ters is slow; larger time step may be used for simulation of their dynamics, thus saving
some computing time. Second, cold response may be separated from the kinetic effects
in the expression for the current, which will allow to reduce the total number of particles
required in the simulation. Third, the algorithm allows adaptive particle refinement to-
gether with mesh refinement, a feature important for the systems with different spatial
scales. This paper will address these issues in more detail.

We believe that our new approach may be especially useful for computational study
of the dynamics of propagation, conversion and absorption of radio frequency waves
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[12–14] in tokamak plasmas. Similar to a Lorentz-force simulation, the high frequency
gyrokinetic algorithm allows completely self-consistent simulation. Also, it can describe
both linear and nonlinear heating dynamics based on first principle physics without extra
assumptions about quasilinear nature of heating mechanism.

This paper is organized as follows. In Section 2 we briefly review the gyrocenter
gauge kinetic theory, which underlies our electromagnetic high frequency gyrokinetic
system of equations. The 6D algorithm based on this system is described in Section 3
with application to propagation of the low-hybrid wave in inhomogeneous magnetic
field in 3D slab. In Section 4 we address the possibility to have particle refinement and
mesh refinement coexisting dynamically in the system with different spatial scales. The
conclusions and future work are presented in Section 5.

2 Electromagnetic high frequency gyrokinetic formalism

The idea of the gyrokinetics is to identify a certain sequence of transformations from the
original particle coordinates z to a new gyrocenter coordinate system Z

Z =TGYTGCz. (2.1)

Here TGC and TGY stand for guiding center and gyrocenter transformations accordingly.
One needs to make sure that the original Vlasov equation for the distribution function
F(x,v,t) in particle coordinates

( ∂

∂t
+ ẋ·

∂

∂x
+v̇

∂

∂v

)
F=0 (2.2)

transforms to an equation for the slow gyrophase-independent part of the distribution
function F(Z,t)= 〈F(Z,t)〉. It describes the evolution of the gyrocenter (parallel) dynam-
ics according to

dF

dt

.
=

( ∂

∂t
+Ẋ ·

∂

∂X
+U̇

∂

∂U

)
F=0. (2.3)

The relation between different distribution functions is given by

F(x,v,t)=T
∗
GYT

∗
GCF(Z,t), (2.4)

where T
∗
GC and T

∗
GY are pull-back transformations, which transform the perturbed distri-

bution functions between particles and guiding center, and guiding center and gyrocen-
ter coordinates accordingly.

The near identity transformation

T
∗
GY =1+δT (2.5)
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depends on a special gauge [6] function S(Z,t), which contains fast gyrophase (perpen-
dicular) part of the dynamics. For an electromagnetic system

δTF(Z,t)
.
=

q

mc

(q

c
A·

∂ρ0

∂ξ
+

∂S

∂ξ

)∂lnF

∂µ

+
q

mc
b̂·

(
A+

c

q

∂S

∂X

)∂lnF

∂U

−
b̂

B0
×

(
A+

c

q

∂S

∂X

)
·
∂lnF

∂X
. (2.6)

Here the following partition of the electromagnetic field is used

B= B0+B1, E=E1, B1 =∇×A, (2.7)

where B0 is the equilibrium background magnetic field, B1 and E1 are the perturbed
fields and A is a vector potential.

The gauge function S(Z,t) evolves according to

Ṡ
.
=

( d

dt
+Ω0

∂

∂ξ

)
S

= qΦ̃(X+ρ,t)−
e

c
Ṽ ·A(X+ρ,t), (2.8)

where V = v⊥+Ub̂ and ã
.
= a−〈a〉. The cyclotron frequency is calculated at gyrocenter

location

Ω0 =
e

mc
B0(X). (2.9)

New coordinates Z make sure that the gyrophase dependence is completely contained in
the Eq. (2.8).

An appropriate conserved adiabatic invariant µ is obtained by expanding up to the
first order term in the smallness parameter ρ/LB ≪1, and is given by

µ=
mv2

⊥

2B0(X)
+

q

mc

( q

c
A(X+ρ0,t)·

∂ρ0

∂ξ
+

∂S

∂ξ

)
. (2.10)

The quantity µ is an approximation to the true magnetic moment, which contains all
orders in expansion in the smallness parameter. Eqs. (2.8) and (2.10) describe nonlinear
perpendicular dynamics of a particle around the cyclotron resonance. Note that exact
resonances are also allowed as long as they happen locally in space and during short
intervals of time. This is necessary to make sure that the increment in v⊥ in Eq. (2.10) is
small (compared to v⊥) during each of these wave-particle interactions near resonances,
which is the case in tokamak experiments.
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Self-consistency is obtained by solving Ampere’s and Faraday’s laws

∂

∂t
E1(x,t)= c∇×B1(x,t)−4πJ(x,t), (2.11)

∂

∂t
B1(x,t)=−c∇×E1(x,t). (2.12)

The current on the right hand side is given by the following expression

J(x,t)=∑
s

qs

∫
vFs(x,v,t)dv

= ∑
s

qs

∫
(v⊥+Ub̂)[(1+δT)Fs(Z,t)]δ(X−x+ρ)dZ, (2.13)

where s stands for species. In the gyrocenter coordinates a near-identity transformation
Eq. (2.5) divides the particle current (2.13) into two parts. The first part is due to the
gyrocenter distribution function F(Z,t). The second part is the contribution due to the
gyrophase dependent part of the distribution function, which describes polarization ef-
fects due to gyromotion.

3 Numerical algorithm

The low frequency electrostatic gyrokinetics only solves Eq. (2.3) along with an appropri-
ate gyrokinetic Poisson equation [2]. Instead of individual particle’s trajectories, the low
frequency gyrokinetics sees motion of gyrocenters with rigid uniformly charged rings at-
tached to them (Fig. 1(a)). The purpose of these rings is to take FLR effects into account
by appropriate averaging technique via a finite number of points on each ring [15].

For the arbitrary electromagnetic frequency case, Eqs. (2.3) and (2.8) for the gyrocenter
and gyrophase dynamics need to be solved together with the Maxwell’s Eqs. (2.11)-(2.12)
and the conservation of the magnetic moment (2.10). The gyrocenter dynamics described
by the Eq. (2.3) is easily simulated by a gyrocenter pusher [15], which advances each par-
ticle’s gyrocenter location X and parallel velocity U. Also, if δ f -simulation [16] is used,
then each particle will also have a gyrocenter weight wj =δ f /F|j associated with it. Here
F= F0+δ f , with F0 being the background distribution function.

The gyrophase dependent part of the dynamics described by the equation for the gen-
erating function (2.8) may be simulated by a gyrophase pusher, which solves the functions
gT(Z,t) and gξ(Z,t), where

gT

.
= Q̂TS, gξ

.
= Q̂ξS, (3.1)

and the operators are given by the following expressions

Q̂T

.
=

q

mc

∂lnF0

∂µ

∂

∂ξ
+

1

m
b̂·

∂lnF0

∂U

∂

∂X
−

c

q

∂lnF0

∂X
·
( b̂

B0
×

∂

∂X

)
, (3.2)

Q̂ξ
.
=

q

mc

∂

∂ξ
. (3.3)
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Kruskal ringgyro−ring

b)a)

gyrocentergyrocenter

Figure 1: A particle from the point of view of low frequency (a) and high frequency (b) gyrokinetics.

ring−mate

gyrocenterKruskal ring

Figure 2: A Kruskal ring is approximated by a finite number of ring-mates.

In the arbitrary frequency regime, the motion of particles from the gyrokinetic point
of view is more complicated than in the low frequency regime. Particularly, instead of
individual particle’s trajectories, the arbitrary frequency gyrokinetics sees motion of gy-
rocenters together with Kruskal rings [17] (Fig. 1(b)) attached to them. As before, the
motion of a gyrocenter j is according to Eq. (2.3). In real simulation, only a finite number
of points (ring-mates [18]) p on each Kruskal ring are followed (Fig. 2). For a particular
gyrocenter j, we use index l to enumerate simulation ring-mates (which have the same
Xj and Uj, but different ξl’s) on its Kruskal ring. Each of these ring-mates has a gyrophase
weight gT(Zjl ,t) attached to it, which evolves according to

ġT(Zjl ,t)= Q̂Tjl

(
qΦ̃jl−

e

c
Ṽjl ·Ajl

)
. (3.4)

Here a new notation is introduced by

ajl
.
= a(Xj +ρj(ξl)). (3.5)
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Then the dynamics of ring-mate l is determined by the rotation with the cyclotron
frequency ξ̇l = Ω0, together with conservation of the magnetic moment µj(ξl) = const,
which takes the following form

µj(ξl)=
v2
⊥j(ξl ,t)

2B0(Xj)
+gξ(Zjl ,t)+QA

ξ jl , (3.6)

ġξ(Zjl ,t)= Q̂ξ jl

(
qΦ̃jl−

e

c
Ṽjl ·Ajl

)
. (3.7)

This Kruskal ring is quickly changing with time in a plane perpendicular to the magnetic
field and is different for each particle. Operator Q̂A

ξ is given by the following expression

QA
ξ

.
=

q2

mc2
A·

∂ρ0

∂ξ
. (3.8)

The simulation is done self-consistently by calculating Maxwell’s equations (2.11)-
(2.12). The appropriate gyrophase integration in the current (2.13) is approximated by
the summation over p ring-mates on each Kruskal ring. On the grid, the current takes the
following form

Js(x,t)=
∫

dx′S(x′−x)Js(x′,t), (3.9)

where S(x′−x) is the shape function (first-order particle weighting is used in this paper),
and

Js(x′,t)=∑
j

p

∑
l=1

(v⊥jl+Ujb̂)[1+gT(Zjl ,t)+QA
Tjl ]δ(Xj−x′+ρjl). (3.10)

The operator Q̂A
T

is defined by

QA
T

.
=

1

m

(∂lnF0

∂µ

∂ρ0

∂ξ
+

q

mc

∂lnF0

∂U
b̂
)
·A−

b̂

B0
×A·

∂lnF0

∂X
. (3.11)

Since, numerically, the contributions to the current on the grid from the individual ring-
mates are calculated separately, the x′ integration and summation over ring-mates l in
Eqs. (3.9)-(3.10) switch places. These operations commute since the shape function S(x′−
x) is gyrophase-independent.

The accuracy of this approximation is determined by the resolution of the gyrophase
subspace by the total number of points p on each Kruskal ring. Particularly, for this
approach, the number of points p we need to keep on each Kruskal ring for accurate
estimation of averaged quantities is determined by the characteristic k⊥ρ we want to
study in the system [15]. In conventional low frequency gyrokinetics, the evolution of
the Kruskal rings is present implicitly in the polarization density term of the gyrokinetic
Poisson equation [2].
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Figure 3: Schematic structure of the direct high frequency gyrokinetic algorithm.

Fig. 3 schematically shows how this direct high frequency gyrokinetic algorithm works.
The gyrocenter and gyrophase dynamics is captured by 〈F(Z,t)〉 and S(Z,t) functions
through the evolution of the Kruskal rings. These quantities are used for calculation of
the current Js(x,t) from the Eq. (3.10). This current is then used in the Ampere’s law,
which is together with the Faraday’s law is solved on the grid. The fields obtained from
the Maxwell’s equations are projected from the grid back to the Kruskal rings, thus clos-
ing the self-consistency loop. Conservation of the magnetic moment produces nonlinear
effects in the form of the evolution of the Kruskal ring shapes.

To illustrate the new electromagnetic high frequency gyrokinetic algorithm, we shall
use an example of the low-hybrid wave propagating in inhomogeneous magnetic field
in 3D slab (Fig. 4). x is a direction of the magnetic field inhomogeneity. The ambient
magnetic field is pointing in z direction, while its amplitude is decreasing as we move
to the left in x direction away from the antenna. A simple antenna is located on the
left surface to generate y (transverse) component of the electric field with the frequency
ω=200MHz, which is above low-hybrid frequency near the antenna. As the wave prop-
agates away from the antenna, it reaches the low-hybrid resonance. The size of the
slab is 130cm×2π∗130cm×130/0.358cm. The simulation is performed in a 200×100×8-
grid. Other parameters are the ion density ni =0.17∗1014 g/cm3, the magnetic induction
B0 =8.8∗104Gauss.

As for the initial conditions, instead of loading a certain number of particles Np as
required by the Lorentz-force simulation, the high frequency gyrokinetic algorithm re-
quires loading a certain number of gyrocenters Ngc. And for each of these gyrocenters,
there must be a finite number of ring-mates p to approximate each Kruskal ring. The
number of gyrocenters and the number of ring-mates can be chosen independently. The
ion gyrocenters are distributed randomly in three spatial dimensions, while electrons
(s= e) are treated according to the linear cold Ohm’s law

∂Js

∂t
=

nsq
2
s

ms
E+Ωsb̂× Js (3.12)
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Bz

Ey

z

resonance
low−hybrid

antenna

y

x
Figure 4: 3D slab used in simulation of the low-hybrid wave propagation. The wave is excited by the antenna
and propagates in −x direction toward low-hybrid resonance.

Figure 5: Longitudinal (Ex) and transverse (Ey) components of the electric field of the low-hybrid wave in (x,y)
plane.

in both high frequency gyrokinetic and Lorentz-force simulations. Such cold approxima-
tion for the electrons is justified since finite electron FLR effects are not important for the
dynamics of the low-hybrid wave we study in this paper.

Periodic boundary conditions were used in both y and z directions, while perfectly
conducting boundary conditions were used for the x direction. Maxwell’s equations to-
gether with the cold Ohm’s law are solved on the grid using Yee’s algorithm [19] together
with locally implicit solver [20]. For this field solver part, the time step ∆t must satisfy

√
(∆x)2+(∆y)2+(∆z)2 > c∆t, (3.13)
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where ∆x, ∆y and ∆z are grid cell sizes.
Fig. 5 in x×y cross-sections shows longitudinal and transverse components of the

electric field of the low-hybrid wave. The ions are treated kinetically with the new algo-
rithm and Ngc =200 gyrocenters were used with p=4 ring-mates for each Kruskal ring.
The amplitude of the transverse component is decreasing as the wave approaches the
resonance, where it becomes almost electrostatic.

The simple fact that the motion of gyrocenters is slow compared to the motion of
ring-mates can make our new algorithm up to 6 times faster than a Lorentz-force sim-
ulation. Let us suppose that ∆T and ∆t are the time steps used for solving gyrocenter
and gyrophase equations respectively. The number of differential equations solved by
the high frequency gyrokinetic code per each gyrophase time step is (5∆t/∆T+p)Ngc (a
gyrocenter and a ring-mate need five and one equations respectively), while the number
of equations solved by the Lorentz-force code is 6Np. Using the constraint Np = pNgc

(resolution of the perpendicular dynamics is the same in both systems), we estimate that
the former approach requires solving 6p/(5+p) times fewer differential equations. In
the limits of slow gyrocenter motion (∆t≪∆T),

pNgc

6Np
→

1

6
, (3.14)

the gyrokinetic algorithm may be up to 6 times faster.
In the example in Fig. 5 we had ∆T=∆t with ∆t=6∗10−12s for the field solver as well

as gyrocenter and gyrophase pushers. The total simulation time is T =6∗10−8s.
The only kinetic effect we will look at in this paper is the ion perpendicular stochastic

heating. It is due to interaction between a wave and perpendicular particle motion. For
the low-hybrid wave propagating in the x direction, this interaction mostly happens near
the resonance, where the x component of the velocity is close to the wave phase velocity.
From the high frequency gyrokinetic point of view, such interaction occurs whenever

vx(ξ)=ω/kx (3.15)

is satisfied between the ion Kruskal ring and the wave phase velocity (Fig. 6). If some
decorrelation mechanisms are present, then particles will receive energy from the wave
on average. To make sure we have this effect, we added an artificial decorrelation mech-
anism into the system. Particularly, each Kruskal ring gyrophase changes randomly oc-
casionally.

In x×y plain, Fig. 7 shows the total perpendicular kinetic energy gained by ions in
the end of the run due to stochastic heating in the low-hybrid wave (Fig. 5) with Ngc =
200 gyrocenters and p=4 ring-mates. The stochastic heating is especially intensive near
the resonance, since the phase velocity of the wave is decreasing as it approaches the
resonance, and the majority of ions Kruskal rings can satisfy the resonant condition (3.15).

Direct high frequency gyrokinetic (or, alternatively, Lorentz-force) simulation requires
a significant number of Kruskal-rings (particles) per cell for appropriate resolution of the
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Kruskal ring

v

v

x

y
vx=ω/kxgyrocenter

Figure 6: Mechanism of the ion perpendicular stochastic heating in the low-hybrid wave from the high frequency
gyrokinetic point of view.

Figure 7: Total energy gained by ions due to perpendicular stochastic heating in the end of the run in (x,y)
plane.

dynamics. Since the wave is excited locally (by the antenna), during its propagation it
keeps the memory of its previous dynamics, and thus errors accumulate throughout the
wave evolution.

The high frequency gyrokinetic formalism can offer us a way to avoid this by dividing
the integral form of the current (2.13) into cold and kinetic contributions. Particularly,

Js(x,t) =
∫

Rs(Z,t)δ(X−x+ρ)dZ

=
∫

Rs(Z,t)δ(X−x)dZ+
∫

Rs(Z,t)(δ(X−x+ρ)−δ(X−x))dZ, (3.16)
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where
Rs(Z,t)=qs(v⊥+Ub̂)[(1+δT)Fs(Z,t)]. (3.17)

The first term on the right hand side of Eq. (3.16) produces cold response (zero perpen-
dicular temperature)

Jcold(x,t)=
∫

Rs(Z,t)δ(X−x)dZ (3.18)

when nonlinear terms are neglected. For this cold part instead of finding it directly from
the Eq. (3.18) using particles, we might use linear cold Ohm’s law (3.12). And only the
kinetic part of the response

∆Jkinetic(x,t)=
∫

Rs(Z,t)(δ(X−x+ρ)−δ(X−x))dZ (3.19)

needs to be solved using particles. If such separation is possible, the Kruskal rings in
the system will be used only for the simulation of the deviation from the cold response
instead of simulation all the dynamics how it is done in conventional Lorentz-force ap-
proach. This is similar to the δ f -scheme, when some part of the dynamics like the back-
ground distribution function is either known or may be found analytically, and particle
simulation only focuses on the deviation from this analytically known state. As a result,
the total number of simulation particles may be dramatically reduced.

Fig. 8 schematically shows how such algorithm with divided cold and kinetic parts
work. As before, the gyrocenter and gyrophase dynamics are determined by the Kruskal
rings. The quantity ∆Jkinetic(x,t) is then calculated, which is used in the Ampere’s law.
Maxwell’s equations together with the cold Ohm’s law for the ions are solved on the grid.

In Fig. 9, the light curve shows the same as Fig. 7 integrated over y direction, that
is the total perpendicular energy gained by ions versus x in the end of the run from
the direct simulation with Ngc = 200 gyrocenters and p = 4 ring-mates. The dark curve
is from the simulation which utilized the separation between cold and kinetic effects
in the current (3.16) with Ngc =1 gyrocenters and p=4 ring-mates. The dynamics of the
stochastic heating is captured correctly by this approach. This method uses much smaller
number of markers per cell and thus is much faster than the direct Lorentz-force like
simulation. The gain is due to the fact that in the high frequency gyrokinetic simulation
the Kruskal rings loaded in the system do not need to participate in resolution of the cold
wave response.

4 Particle refinement

Another advantage our new high frequency gyrokinetic algorithm can give us is the pos-
sibility to have particle refinement together with mesh refinement in a system with dif-
ferent spatial scales. In our example of the low-hybrid wave propagating in the inhomo-
geneous magnetic field, we need higher grid resolution near the low-hybrid resonance,
where the typical wave length becomes very short. This may be done by implementing
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Figure 8: Schematic structure of the high frequency gyrokinetic algorithm with separated cold and kinetic parts
in the current.

E    /Eperp th

0.0002

0.0001

1

x

0.2 0.4 0.80 0.6

Figure 9: Total energy gained by the ions due to perpendicular stochastic heating in the end of the run versus
x. The light curve is from the direct simulation, while the dark curve is from the simulation with separated cold
and kinetic parts in the current.

some adaptive mesh refinement techniques [21], which makes sure to dynamically use
finer grid when necessary.

Fig. 10 shows the regions where fine and coarse grid might be used. To imitate a
mesh refinement technique, let us imagine that the cells in fine grid region are twice as
smaller than the cells in coarse grid region, as shown in Fig. 10. This makes sure that
we have twice as higher resolution in x direction in fine grid region. In a simulation
where part of the dynamics is described by particles, the number of markers per cell
must be approximately the same independent of the cell size. This is necessary to make
sure that the resolution of the perpendicular velocity subspace is uniform in the system,
independent of the grid structure. Particularly, the problems of wave propagation and
convergence in fusion plasmas require an adequate treatment of FLR effects, and thus one
must make sure that the short wavelength dynamics is resolved by sufficient number of
particles. In a dynamically changing system, it would imply that we need to be able
to dynamically add more markers locally in a region where the grid becomes finer and
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Figure 10: Dynamical particle refinement in the high frequency gyrokinetic algorithm. In the fine grid region
(a) more ring-mates per gyrocenter are used than in the coarse grid region (b).
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Figure 11: Total energy gained by the ions due to perpendicular stochastic heating in the end of the run versus
x. The red curve is from the direct simulation with uniform fine grid. The blue curve is from the simulation
with uniform coarse grid. The black curve is from the simulation which utilizes particle refinement technique
together with mesh refinement technique.
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remove extra markers in case if the grid becomes coarse again. Within Lorentz-force
framework, such approach has been developed by Sydora et al. [21].

The new high frequency gyrokinetic algorithm offers a different way of doing per-
pendicular particle refinement. Particularly, let us imagine that in coarse grid region we
have two Kruskal rings per cell, with each ring being approximated by four ring-mates
(Fig. 10(b)). This is equivalent to having 8 markers per cell resolving perpendicular dy-
namics. Then in fine grid region with twice as smaller cells we need to have twice as
higher marker density than in the surrounding coarse grid region (number of markers
per cell must be the same everywhere in the system). There are two options. First, we
can double the number of gyrocenters with the number of ring-mates fixed. Second, we
can double the number of ring-mates for a fixed number of gyrocenters (Fig. 10(a)). The
first option is similar to the Lorentz-force situation described above and involves gener-
ation of inhomogeneous gyrocenter density dynamically with the grid.

The second option is more suitable for our needs. Since we do not change the num-
ber of gyrocenters, they will stay uniformly distributed in the system regardless of what
happens with the grid. At the same time, addition and removal of extra ring-mates is a
straightforward task and can easily keep up with the grid to maintain the same number of
markers per wavelength (same resolution of the perpendicular phase space) everywhere
in the system. The drawback of this approach is that the resolution of the gyrocenter sub-
space decreases locally where the grid becomes finer. In hot plasmas it should not be a
significant obstacle. This is due to the fact that the high frequency gyrophase dynamics is
usually much noisier than the slow gyrocenter dynamics. As a consequence, many more
markers are needed for the resolution of the perpendicular dynamics.

In Fig. 11, we treat our example of the ion stochastic heating using this method. The
red curve was obtained, as before, from the well-resolved simulation, which used fine
grid ∆x×∆y×∆z=130/200cm×2π∗130/100cm×130/0.358/8cm everywhere in the sys-
tem with 200 gyrocenters per cell (with 4 ring-mates).

The blue curve (Fig. 11) is from the simulation, which used coarse grid 2∆x×∆y×∆z
everywhere in the system with the same number of gyrocenters and ring-mates. While
this simulation is twice as fast (since the total number of particles in the system is twice
as smaller), it does not capture the dynamics near the resonance correctly.

The black curve (Fig. 11) is from the simulation, which used fine grid ∆x×∆y×∆z near
the resonance (x ≤ 0.3∗130cm), and coarse grid 2∆x×∆y×∆z away from the resonance
(x > 0.3∗130cm). 100 gyrocenters (with 8 ring-mates) and 200 gyrocenters (with 4 ring-
mates) per cell were used in fine and coarse grid regions, accordingly. By doing this,
we make sure that both the gyrocenter density and the perpendicular resolution stay
uniform in the system independent of the grid structure. This simulation captures the
dynamics correctly and is 35% faster than the simulation which uses the fine grid (red
curve).

Using realistic mesh refinement techniques together with particle refinement in our
high frequency gyrokinetic algorithm can result in 10 times and more saving in comput-
ing time, compared to the Lorentz-force simulation with uniformly fine grid.
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5 Discussion and future work

We developed an electromagnetic version of the high frequency gyrokinetic algorithm
using gyrocenter-gauge kinetic theory, which allows one to simulate arbitrary frequency
physics of strongly magnetized plasmas (ρ/LB ≪1). The algorithm solves the decoupled
system of equations for the gyrocenter distribution F(X ,U,µ,t) and gauge S(Z,t) func-
tions for eΦ/T≪1. The high frequency gyrokinetics describes each particle as a combina-
tion of a gyrocenter and a complicated, quickly changing Kruskal ring. Similar to a direct
Lorentz-force simulation, the new approach presented in this paper can self-consistently
describe the wave dynamics together with the evolution of non-Maxwellian parts of dis-
tribution functions, particle orbits, etc. Also, it allows to address the issue of interaction
between wave dynamics and microinstability-driven turbulence. In gyrokinetic formu-
lation the perpendicular heating dynamics is completely described by the evolution of
shapes of the Kruskal rings. The gyrokinetics naturally separates 1D gyrophase and 5D
gyrocenter dynamics. This allows to use larger time steps to treat slower gyrocenter mo-
tion and thus saves computing time compared to the 6D Lorentz-force simulation. Also,
separation of the cold response from the kinetic effects in the current allows one to reduce
the total number of simulation particles. Possibility to have adaptive particle refinement
together with mesh refinement allows to further reduce the number of particles in the
systems with different spatial scales.
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