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Abstract. Three dimensional free-decaying MHD turbulence is simulated by lattice
Boltzmann methods on a spatial grid of 80003 for low and high magnetic Prandtl
number. It is verified that ∇·B = 0 is automatically maintained to machine accuracy
throughout the simulation. Isosurfaces of vorticity and current show the persistence of
many large scale structures (both magnetic and velocity) for long times — unlike the
velocity isosurfaces of Navier-Stokes turbulence.
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1 Introduction

Here we examine free decaying 3D magnetohydrodynamics (MHD) by a mesoscopic al-
gorithm that, unlike standard computational fluid dynamic (CFD) algorithms, is amenable
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to massive parallelization [1]. Indeed, our lattice Boltzmann (LB) code [1] has had a sus-
tained performance of 26.25 TFlops/s on 4800 PEs of the Earth Simulator — i.e., 67% of
peak and outputting 0.25 TB of data. Moreover, the ∇·B = 0 constraint is automatically
enforced, thus side-stepping the need for divergence cleaning. Our work is a generaliza-
tion of the seminal 2D LB-MHD algorithm of Dellar [2].

The basic idea behind the LB method [3, 4] is to project the desired nonlinear macro-
scopic system into a higher dimensional phase space with the resulting kinetic system
simpler to solve and readily parallelized. The difficult nonlinear convective derivatives
u·∇u, u·∇B,··· (where u is the fluid velocity and B the magnetic field) of CFD are now
replaced by simple linear advection (a shift operation) and local collisional relaxation in
phase space. On performing the Chapman-Enskog long-time long-wavelength asymp-
totics [2–4] on the discretized LB system, one recovers the MHD equations to leading
order in the Knudsen number and thus relating the MHD transport coefficients to the re-
laxation parameters in the BGK collision operators of LB. The essential point is that non-
local macroscopic gradients, like the mean strain rate or ∇·B, are computed at the meso-
scopic LB level by simple local moments of the distribution functions. To recover [2–4] the
Navier-Stokes equation, one need only introduce a scalar distribution function f (x,ξ,t)
whose zeroth moment yields the density and first moment yields the momentum. The
importance of Dellar’s work [2] was his introduction of a vector distribution function
g(x,ξ,t) whose zeroth moment defines the magnetic field B.

One minimizes the computational memory requirements resulting from the transfor-
mation from (x,t)- to (x,ξ,t)-space by a clever choice of discretization of ξ-space. In par-
ticular, it has been shown [3, 4] that one can recover the 3D Navier-Stokes equation with
a 15-bit discretization of ξ-space. One must also consider the numerical stability of LB
— especially as one pushes to smaller and smaller transport coefficients — since LB is an
explicit, second order accurate scheme. In its simplest formulation [3,4], there are no con-
straints imposed on the discretized velocity distribution function fα(x,t) to maintain its
positive definiteness throughout the simulation. Recently this problem has been success-
fully addressed for the Navier-Stokes equation [5–11] by imposing an entropy constraint
on the discretized fα(x,t) to enforce positive-definiteness. This has resulted in an entropic
lattice Boltzmann (ELB) scheme that is unconditionally stable. An outstanding problem
is whether a similar ELB scheme can be devised to LB MHD.

In Section 2, we briefly introduce the LB and ELB schemes for Navier-Stokes tur-
bulence and introduce the lattice discretization of ξ-space by a 15-, 19- or 27-velocities
at each spatial node. We then introduce our 3D LB MHD representation. The paral-
lelization and performance our LB schemes on various supercomputer architectures is
discussed in Section 3. In Section 4 we first present some of our basically fully resolved
ELB simulations for Navier-Stokes turbulence on a 1600×1600×1600 spatial grid at a
Reynolds number of 25000. These simulations clearly indicate intermittency [12] in the
turbulence by the deviation of the energy spectrum from the k−5/3 Kolmogorov spec-
trum. In Section 4.2, we present LB-MHD simulations on a 1800×1800×1800 spatial grid
for magnetic Prandtl number Pr = 0.3 and Pr= 3.0, where Pr is the ratio of the viscosity
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to resistivity. The vorticity and current isosurfaces are presented for the high Pr case and
show the perseverance of large scale magnetic and velocity structures. ∇·B =0 is main-
tained to machine accuracy O(10−15). We also consider the magnetic field correlations
and find that they are consistent with those for a random vector solenoidal field. Some
final comments are presented in Section 5.

2 Lattice Boltzmann algorithm for MHD

It is convenient to write the MHD equations in conservation form

∂(ρui)

∂t
+

∂

∂xj

[

ρuiuj−BiBj+

(

p+
1

2
B2

)

δij

]

=ν∇2ui, (2.1)

∂Bi

∂t
+

∂

∂xj

[

uiBj−ujBi

]

=η∇2Bi, (2.2)

where ρ is the density, u the fluid velocity, B the magnetic field, ν the viscosity and η
the resistivity. The summation convention over repeated subscripts is employed. The
resistive MHD equations are closed by continuity and an isothermal equation of state:

∂ρ

∂t
+∇·(ρu)=0, ∇·B=0, p= c2

s ρ=
1

3
ρ. (2.3)

2.1 LB representation for Navier-Stokes turbulence

We now summarize the LB representation for Navier-Stokes turbulence with B = 0 in
Eqs. (2.1)-(2.2). It is well known that to recover the 3D Navier-Stokes equations from a
discrete kinetic representation [3–11] one should use a lattice geometry on the unit cube
that is at least D3Q15, D3Q19 or D3Q27, where these lattices are so designated by their
lattice vectors eα, α=1,··· ,Q

15−bit : D3Q15 : speeds 0,1,
√

3 : (0,0,0),(0,0,±1),(±1,±1,±1)

19−bit : D3Q19 : speeds 0,1,
√

2 : (0,0,0),(0,0,±1),(0,±1,±1)

27−bit : D3Q27 : speeds 0,1,
√

2,
√

3 : (0,0,0),(0,0,±1),(0,±1,±1),(±1,±1,±1)

(2.4)

with appropriate permutations. A plot of the D3Q19 lattice is shown in Fig. 1.
The underlying lattice geometry is so chosen that the lattice vectors have the follow-

ing isotropy properties to at least the 4th order moments:

Q

∑
α=1

eαi =0,
Q

∑
α=1

eαieαj =αQδij,
Q

∑
α=1

eαieαjeαk =0,

Q

∑
α=1

eαieαjeαkeαl =bQ(δijδkl +δikδjl +δilδjk),

(2.5)
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Figure 1: The D3Q19 lattice on the unit cube with lattice vectors e, α=1,··· ,Q=15. There is one ”speed 0”

(rest particle), six ”speed 1” along the axes (”1” - ”6”) and twelve ”speed
√

2” along the planar diagonals (”7”
- ”19”).

where aQ and bQare lattice-dependent constants. All odd moments of the lattice vectors
are zero (by symmetry).

The discretized LB kinetic equation for the Navier-Stokes equation, written in LB
units of |∆x |=1=∆t, is

fα(x+eα,t+1)− fα(x,t)=− 1

τu

[

fα(x,t)− f
eq
α (ρ[x,t] ,u[x,t])

]

, α=1,··· ,Q. (2.6)

The standard (discrete) moments connect the distribution function to the macroscopic
variables:

Q

∑
α=1

fα =ρ,
Q

∑
α=1

fαeα =ρu,
Q

∑
α=1

fαeαieaj =
ρ

3
δij+ρuiuj. (2.7)

The relaxation rate τu, through the Chapman-Enskog long-wavelength and long-time
asymptotics [3, 4], determines the viscosity and hence the Reynolds number

ν=
1

6
(2τu−1), (2.8)

Re=
U0L

ν
, (2.9)

for some mean velocity U0 and mean length scale L. The discrete (in the kinetic veloc-
ity space) lattice symmetry must be such that to leading order it does not lead to any
unphysical (i.e., non-Galilean invariant) effects at the O(3) continuous symmetry of the
macroscopic nonlinear system one is modeling. It [3–11] can be shown that an appropri-
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ate polynomial representation for the relaxation distribution function is

f
eq
α [ρ,u]=ρwα

[

1+3eα ·u+
9

2
(eα ·u)2− 3

2
u·u

+
9

2
(eα ·u)

{

(eα ·u)2−u·u
}

]

+O(u4). (2.10)

This form is invariant to the particular lattice geometry — whether D3Q15, D3Q19 or
D3Q27. The weight factors wα are normalized

Q

∑
α=1

wα =1, (2.11)

but are lattice dependent — see Table 1. The weight factor wα in Eq. (2.11) have subscripts
referring to the lattice directions, but in Table 1 we use a convention where the weight
factor is written as wE(α), with its subscript equal to the respective particle energy, where
E(α)=0,1,2,3 for α=1,2,··· ,Q according to the lattice stencil in Fig. 1.

Table 1: The dependence of the weight factor wE(α) on the lattice symmetry. The subscript of the weight factor

is the value of particle kinetic energy (velocity squared with m=1) which depends on α.

Speed (# velocities) D3Q15 D3Q19 D3Q27

0 (1 bit) w0 = 2
9 w0 = 1

9 w0 = 8
27

1 (6 bits) w1 = 1
9 w1 = 1

18 w1 = 2
27√

2(12 bits) - w2 = 1
36 w2 = 1

54√
3(8 bits) w3 = 1

72 - w3 = 1
216

The beauty of LB is in its simplicity: the algorithm to solve Eqs. (2.6) and (2.11) is just
kinetic streaming the distribution values to the appropriate nearby lattice followed by lo-
cal node collisional relaxation. The macroscopic nonlinearities in the relaxation distribu-
tion function are purely local but at the macroscopic level will become (under Chapman-
Enskog expansions) the convective nonlinear derivatives of the Navier-Stokes equation.
Moreover, in the spatial domain decomposition, the only MPI communication between
neighboring processors is in the streaming of information from boundary nodes.

However, the LB algorithm while an explicit second accurate scheme, is subject to nu-
merical instabilities as τu→0.5+. These instabilities arise because there are no constraints
imposed such that fα ≥0. This defect has been remedied by the introduction of entropic
lattice Boltzmann schemes [5–11] for Navier-Stokes flows.

2.2 ELB representation of Navier-Stokes turbulence

To ensure positive definiteness of the distribution functions fα ≥0 one introduces a non-
decreasing Lyapunov function

H =
Q

∑
α=1

hα ( fα) (2.12)
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for some to-be-determined convex functions hα, with h′α ≥ 0. On extremizing the Lya-
punov function subject to the local collisional invariants of mass and momentum, one
can determine the associated Lagrange multipliers analytically for low Mach number
flows for the D3Q27-lattice (but not for the D3Q15 or D3Q19 lattices [11]). In particular,
one can determine the unique form of the Lyapunov function to be

H [ fα]=
Q

∑
α=1

fα ln

(

fα

wα

)

, (2.13)

where the weights wα are exactly those in Table 1, and with the relaxation distribution
function f

eq
α

f
eq
α [ρ,u]=ρwα

3

∏
i=1

(

2−
√

1+3u2
i

)





2ui+
√

1+3u2
i

1−ui





eα,i

, α=1,··· ,27. (2.14)

A low Mach number expansion of Eq. (2.14) recovers the standard polynomial form
Eq. (2.10) for the D3Q27 lattice.

The generalized LB algorithm now becomes a two-parameter BGK scheme

fα(x+eα ,t+1)− fα (x,t)=−γ(x,t)

2τu

[

fα (x,t)− f
eq
α (ρ[x,t],u[x,t])

]

, α=1,··· ,Q, (2.15)

where the function γ(x,t) is the nontrivial root of the Lyapunov equation

H [f]= H [f−γ(f−feq)]. (2.16)

From Eq. (2.15), with 2τu =1, one sees that Eq. (2.16) simply states that the post-collision
distributions lie on the same constant entropy surface as the pre-collision distributions.
Thus, the enforcement of Eq. (2.15), with 2τu = 1, yields a reversible detailed-balance
algorithm which must be unconditionally stable. Nevertheless, at the macroscopic level
the system recovered by Chapman-Enskog expansions is irreversible: the Navier-Stokes
equation with generalized viscosity

νe f f (x,t)=
1

6

[

4τu

γ(x,t)
−1

]

. (2.17)

Moreover, we [11] have shown that the ELB-algorithm can be readily extended to both
the D3Q15 and D3Q19 models, using the polynomial equilibria of Eq. (2.10) and the
appropriate weights given in Table 1. Notice also that even if the ELB algorithm was
run in detailed-balance form [i.e., 2τu = 1], there is still some effective viscosity at the
macroscopic level νe f f (x,t) = 2−γ(x,t)/6γ(x,t) even though the bare molecular viscos-
ity, Eq. (2.8), is zero: ν=0.
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2.3 LB representation for MHD turbulence

Dellar, in a seminal paper [2], extended LB to MHD by introducing a vector distribu-
tion function for the magnetic field B(x,t). While the mean velocity is generated by the
first moment of the scalar distribution fα, the magnetic field is generated by the zeroth
moment of the vector distribution function gβ:

Q

∑
α=1

fαeα =ρu;
Q′

∑
β=1

gβ =B. (2.18)

If the MHD equations are written in conservative form (in the isothermal limit)

∂

∂t
(ρui)+

∂

∂xj

[(

ρ

3
+

1

2
B2

)

δij+ρuiuj−BiBj

]

=ν∇2ui, (2.19)

∂Bi

∂t
+

∂

∂xj

[

uiBj−ujBi

]

=η∇2Bi, (2.20)

one immediately notes that the momentum stress tensor Πij in Eq. (2.19) is symmetric in
i↔ j interchange

Πij =

(

ρ

3
+

1

2
B2

)

δij+ρuiuj−BiBj, (2.21)

while the magnetic stress tensor Λij in Eq. (2.20) is antisymmetric

Λij =uiBj−ujBi. (2.22)

These symmetries are readily preserved if the momentum stress tensor is generated by
the second (symmetric) moment of fα while the magnetic stress tensor is generated by
the first moment of gβ:

Πij =
Q

∑
α=1

fαeαieαj =Πji, Λij =
Q′

∑
β=1

gβieβj =−Λji. (2.23)

We should note that the underlying lattice determining the magnetic field could have
lower symmetry than that for determining the mean velocity field since the moment clo-
sure level for the magnetic field is at first order while that for the mean velocity field
is at second order. This is why we write the upper bound on the magnetic distribution
function moments as Q′rather than Q.

It can be shown that the following choice of relaxation distribution functions leads to
the MHD equations (2.1)-(2.3) in the Chapman-Enskog limit

f
eq
α [ρ,u,B]=ρwα

[

1+3eα ·u+
9

2
(eα ·u)2− 3

2
u2

]

+
9

2
wα

[

1

2
B2e2

α−(eα ·B)2− 1

6
B2

]

,

g
eq
βi [u,B]=wβ

[

Bi+eβj

(

ujBi−uiBj

)]

,

(2.24)
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where α,β=15,19 or 27. To keep the memory requirements in the numerical simulations
to manageable levels (since each processor/core has typically 2 GB of memory) we will
work with a Q=27-bit scalar distribution fα and a Q′=15-bit vector distribution gβ.

3 Parallelization of LB algorithms

The basic structure of LB algorithms consists of two conceptual steps, shown below for
the MHD case (in the case of ELB algorithm, of course, the vector magnetic distribution
function is absent):

(a) local collisional calculation at (x,t), with u and B also being determined locally by
simple moments:

fα (x,t)− 1

τu

[

fα(x,t)− f
eq
α (ρ[x,t] ,u[x,t] ,B[x,t])

]

→ f ′α (x,t) , α=1,··· ,27,

gβ(x,t)− 1

τB

[

gβ(x,t)−g
eq
β (u[x,t] ,B[x,t])

]

→g′
β(x,t) , β=1,··· ,15;

(3.1)

(b) streaming these post-collision distributions to the nearby spatial nodes to complete
the update to time t+1:

f ′α (x,t)→ fα(x+eα ,t+1) , α=1,··· ,27,

g′
β(x,t)→gβ

(

x+eβ,t+1
)

, β=1,··· ,15.
(3.2)

It is pointed out that (a) is computationally intensive, but requires only data local to the
grid point; (b) is a set of shift operations, moving data from grid point to grid point
according to the lattice vector.

However, a key optimization [13] is that the two stages (a) and (b) can be partially
combined — either the newly calculated post-collision distribution function is streamed
immediately to its new position as soon as it is calculated, or data can be gathered from
adjacent cells to calculate the updated value for the current cell. The memory access
pattern for the collision phase becomes more complex, but the amount of data transferred
at each time step is reduced. Typically, this is 20-30% faster than implementing the two
steps separately. All results reported here are based on code implementations that make
use of this optimization.

The optimal layout for the distribution functions for most computer architectures [13]
has the first dimensions to be the Cartesian grid points followed by the index represent-
ing the streaming vector: f(x,y,z,27) and g(x,y,z,15,3). Fortran array syntax is assumed
with x varying fastest when stepping contiguously through memory. The basic structure
of both LB applications consists of three nested loops over spatial grid points (typically
100 sec iterations per loop) with inner loops over velocity streaming vectors and, in the
case of MHD, magnetic field streaming vectors (typically 10 sec iterations). Within these
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innermost loops the various macroscopic quantities and their updated values are calcu-
lated via various algebraic expressions.

For ELB, a non-linear equation must be solved for each grid-point and at each time-
step so that the collision process satisfies the constraints described in Section 2.2. The
equation is solved via Newton-Raphson iteration (5 iterations are usually enough to con-
verge to within 10−8), and as this equation involves taking the logarithm of each compo-
nent of the distribution function at each iteration, the whole algorithm become heavily
constrained by the performance of the log function.

For the MHD case, on the ES, the innermost loops were unrolled via compiler di-
rectives and the (now) innermost grid point loop was vectorized. This proved a very
effective strategy, boosting performance from 330 MFlop/s, where the phase space loops
were vectorized, to 3.97 GFlop/s. For the superscalar architectures, Power5, BG/L, and
XT3, we did not explicitly tune further for any architecture.

In Table 2 we present our most optimized performance on the ES, where the some-
what unusual domain decomposition was chosen to keep the vector length (length of x
dimension) long.

Table 2: Performance of the 3D-LBMHD code on the Earth Simulator (a 5120 CPU vector machine with CPU
peak of 8 GFlops/s). Our 4800 CPU run achieved 26.25 TFlops/s, 67% of peak on the ES, and outputted 250
GB of data.

GRID #CPU DOMAIN %MPI AVG. MSG VECTOR GFLOPS/S/
DECOMP SIZE (MB) LENGTH CPU

5123 256 2×8×16 7.7 2.1 254.2 5.43

5123 512 2×16×16 9.1 1.1 253.2 5.19

10243 1024 4×16×16 5.1 2.3 254.5 5.44

10243 2048 4×16×32 8.6 2.1 254.5 5.36

10243 4096 4×32×32 1.1 253.3 5.16

14403 4800 2×40×60 239.8 5.47

For ELB, in the case of the Earth Simulator, the compiler was able to vectorize all
loops containing the log functions in determining the entropy surface. The routine con-
taining the nonlinear equation solver was rewritten to operate on an array of grid points,
rather than a single point, allowing vectorization of this recursive operation. After this
optimization, high performance was achieved.

For the superscalar systems, using the rewritten vector version of non-linear equa-
tion solving routine proved to be much faster than the original approach. Presumably
this is due to a reduction of routine-call overhead and better use of the functional units.
Depending on the architecture, a speedup of 20-30% is achieved on switching to the new
routine. Another important optimization was to use optimized library routines to com-
pute a vector of logarithm values per invocation. Each architecture offers an optimized
math function library: MASS for IBM Power5 and BG/L; and ACML for AMD Opteron
of the XT3. A 15-30% speedup over the “non-vector” log function is achieved.
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For parallel implementation each array is partitioned onto a 3D Cartesian processor
grid, and MPI is used for communication. Ghost cells are used to hold copies of the
planes of data from neighboring processors. There are two obvious methods of exchang-
ing data with neighbors: communicate with all 26 neighboring cells, or use the shift
method [14] where we first exchange only in one direction and so partially populate the
ghost cells. The next exchange includes this data, further populating the ghost cells, until
all the data has been exchanged. The disadvantage of the shift algorithm is that it requires
synchronization after each pair of exchanges, i.e. there are only four messages in flight at
any time. However, it has the distinct advantage of increasing the average message size,
and on most parallel architectures the message latency is relatively high compared with
the bandwidth.

Because different lattice vectors contribute to different spatial directions, the data to
be exchanged are not contiguous in the f or g arrays. For example, in the 27-bit model,
12 of the 26 lattice vectors have a component in the +x-direction and must be exchanged
in this direction, but are not contiguous in the velocity distribution function array f. The
data is packed into a single buffer, resulting in 6 message exchanges per time step, using
mpi isend/mpi irecv pairs.

In Fig. 2 we present the scaling of both the MHD and the ELB codes on various archi-
tectures (both vector and scalar) For each set of results, we use the maximum grid size
possible within the memory constraints of each architecture, basically a weak scaling ex-
periment. Not only is the scaling of the sustained TFlops/s with concurrency excellent
— no saturation is seen, even up to 32,768 cores on BG/L, but the flop-rate itself is im-
pressive. The 11% of peak on BlueGene is calculated using the peak of the SIMD double
hummer FPU, even though the SIMD unit can only be utilized under very special condi-
tions.

The LB-MHD simulations reported here were run on an SGI Altix 4200 at the Air
Force Research Laboratory with excellent scaling with cores, as seen in Fig. 3. We plot the
total CPU time for two different grids as we scale up with cores. For the 10243-grid we
used 1024 to 8192 cores and saw the wallclock time halved as we doubled the number
of cores, resulting in ‘perfect’ scaling with processors. On the other hand, for the 18003-
grid, we used both 4500 and the maximum 9000 cores and saw superlinear scaling: the
wallclock time was significant more than halved by doubling the number of cores. This
is attributable to more of the simulation data can be held in cache memory.

4 Lattice Boltzmann simulations

4.1 ELB for Navier-Stokes turbulence

The ELB algorithm [3–11, 15] is unconditionally stable and we briefly present here some
simulations results to indicate its potential in fluid turbulence and to thus emphasize the
importance of developing an analogous entropic algorithm for MHD. For Navier-Stokes
flows, we [15] consider free decaying turbulence from an initial Kida [16] incompressible
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(a) (b)

(c) (d)

Figure 2: (a):BlueGene: 32,768 PEs, 9.1 TFlops/s, 11% peak; (b):IBM-P5: 2912 PEs, 6.3 TFlops/s, 30%
peak; (c):CRAY-XT3:2048 PEs, 2.2 TFlops/s, 23% peak; (d) ES:4084 PEs, 13.5 TFlops/s, 41% peak. The
performance of Lattice Boltzmann codes on various architectures (a) MHD code on BlueGene, (b)-(d) entropic
Navier-Stokes on the IBM-P5, CRAY-XT3 and Earth Simulator. Not only is the scaling of the sustained TFlops/s
with PEs is excellent — no saturation is seen, even up to 32,768 cores on BlueGene, but the flop-rate itself is
impressive. The 11% on BlueGene is calculated using their 2 FPU units, even though the second one can only
be utilized under very special conditions. It is thus very common to quote timings as if there were only 1 FPU
— in which case our performance on BlueGene would be 22% of peak.

highly symmetric velocity profile on a 2π3-grid:

ux (x,y,z,t=0)=U0 [cos3ycosz−cosycos3z]sinx,

uy(x,y,z,t=0)=U0 [cos3zcosx−coszcos3x]siny,

uz(x,y,z,t=0)=U0 [cos3xcosy−cosxcos3y]sinz.

(4.1)

Initially this profile has zero local helicity everywhere: u(x,0)·ω(x,0) = 0, where ω is
the vorticity ω =∇×u. On a spatial grid of 1600×1600×1600, and at Reynolds number
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Figure 3: The scaling of the LB-MHD code on 10243-grid and 18003-grid on the SGI Altix. The dashed curve
represents ’perfect’ scaling: doubling the number of cores exactly halves the wallclock time. Plotted on the y-
axis is the total CPU-time (= wallclock time × #cores) which would thus remain constant for ’perfect’ scaling.
The 10243-grid showed such scaling as we increased the number of cores from 1024 to 8192. The 18003-grid
run showed even better scaling due to excellent use of cache memory, resulting in superlinear scaling: the total
CPU-time significantly decreased as the cores were scaled from 4500 to the maximum 9000 available.

Re≈25000 we plot in Fig. 4 the time evolution of the 1D energy spectra

Elong(kx,t)= ∑
ky ,kz

∣

∣ux

(

kx,ky,kz,t
)∣

∣

2
, Etrans(kx,t)= ∑

ky ,kz

∣

∣uy

(

kx,ky,kz,t
)∣

∣

2
(4.2)

from the δ-function energy spectra initial conditions

Elong(kx,t=0)=Elongδ(kx−2), Etrans(kx,t=0)=Etrans [δ(kx−2)+δ(kx−4)] (4.3)

towards a Kolmogorov inertial k−5/3
x spectrum.

The simulation is basically fully resolved at all the scales excited by the turbulence
since there is only a very slight upturn in the longitudinal energy spectrum at the very
end of the kx−spectrum. There is an even smaller upturn in the transverse energy spec-
trum, Fig. 4b. The time-dependent microscale Reynolds number for the simulation is
shown in Fig. 5, with

Reλ(t)=

(

20

3

)1/2
∫ ∞

0 dk(k,t)

ν
(∫ ∞

0 dkk2E(k,t)
)1/2

=

(

20

3

)1/2 E(t)

ν1/2
Ω (t)

, (4.4)

where E(t) is the kinetic energy, Ω(t) the entropy and ν the molecular viscosity.
In Fig. 6 we look in closer detail at the 1D transverse energy spectrum at t=28K and t=

38K. It is seen that the energy spectrum is better fitted by k−5/3−0.1
x than the Kolmogorov

energy spectrum. This shift from the k−5/3
x is an indicator of intermittency.
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Figure 4: (a) The 1D longitudinal and (b) the 1D transverse energy spectra at times t=28K, 33K, 36K, 38K,

41K and 54K as a function of wavenumber kx. The dashed green line is theKolmogorov k−5/3 inertial energy
[15].

Figure 5: The evolution of the time-dependent Tay-
lor microscale Reynolds number for the free-decaying
turbulence simulation.
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Figure 6: The 1D transverse energy spectrum at

times t = 28K and 38K which exhibits a k−5/3−0.1
x

scaling. This deviation from the Kolmogorov is in-
dictive of intermittency [12].

As first noted by Kaneda et al. [12] on a pseudo-spectral 48003-grid with judicial use
of single/double precision. It is interesting to note that we have been able to discern this
sign of intermittency with an entropic lattice Boltzmann simulation on a 16003-grid.
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Figure 7: (a) Isosurfaces of |Vorticity|; (b) Isosurfaces of |Current|.

4.2 LB for MHD turbulence

We now consider the lattice Boltzmann simulation for MHD using Eq. (2.24) for the veloc-
ity relaxation distribution functions with f

eq
α ,α=1,··· ,Q=27 and for the magnetic relax-

ation distribution function g
eq
β ,β = 1,··· ,Q′ = 15. The initial profiles were a Taylor-Green

velocity profile in an Orszag-Tang magnetic field:

u(x,t=0)=U0(sinxcosycosz,−cosxsinycosz,0),

B(x,t=0)= B0(−2sin2y+sinz,2sinx+sinz,sinx+siny).
(4.5)

The corresponding isosurfaces of vorticity and current shown in Fig. 7.
With these profiles, there is no initial magnetic helicity or cross helicity

0=
∫

d3x A(x,0) ·B(x,0) , 0=
∫

d3x u(x,0) ·B(x,0) , (4.6)

where A is the vector potential.
An extremely important property of the LB algorithm for MHD [1,2,17,18] is that from

the Chapman-Enksog expansions one can show that the trace of the first order magnetic
stress tensor is proportional the divergence of the magnetic field — and hence this must
be zero since the magnetic stress tensor is antisymmetric:

0=TrΛ(1) =∑
α,i

eαi

[

gαi−g
eq
αi

]

=−τB

3
∇·B. (4.7)

We have verified this result directly from our LB simulations by explicitly calculating the
trace of the magnetic stress tensor, Fig. 8, with TrΛ(1) =0 to machine accuracy.
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Figure 8: The time evolution of TrΛ(1) (t)=∑α,i eαi

(

gαi−g
eq
αi

)

in the LB simulation, showing it is 0 to machine

accuracy. Chapman-Enskog asymptotics yields TrΛ(1) =−τB∇·B/3.

We present results from two large simulation runs on a spatial lattice of 1800×1800×
1800 using all the 9000 cores available on the SGI Altix. The first run ran for 60K time
steps with

Case A: Re=
U0L

ν
=1000, Rm=

B0L

η
=350, Pr=

ν

η
=0.3, (4.8)

while the second run ran to 30K time steps at a higher Prandtl and magnetic Reynolds
number

Case B : Re=
U0L

ν
=350, Rm=

B0L

η
=1050, Pr=

ν

η
=3.0. (4.9)

In Fig. 9 we plot the time development of the normalized energies, enstrophies and palin-
strophy

Ekin (t)=
∫

d3x u2(x,t), Emag(t)=
∫

d3x B2(x,t) ,

Kinetic Enstrophy Ω(t)=
∫

d3x|∇×u(x,t)|2 =
〈

ω2(x,t)
〉

,

Magnetic Enstrophy ΩM(t)=
∫

d3x|∇×B(x,t)|2 =
〈

J2(x,t)
〉

,

Palinstrophy (t)=
∫

d3x|∇×ω(x,t)|2 =
〈

|∇×ω(x,t)|2
〉

,

(4.10)

which are just higher order k-moments of the energy spectra.
In Navier-Stokes turbulence [11, 12, 15], the kinetic enstrophy increases sharply at

early times due to inviscid vortex stretching — i.e., the kinetic enstrophy increase is inde-
pendent of the transport coefficient. The kinetic energy during this period is very slowly
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(a) (b)

(c)

Figure 9: The time development of the (a) ki-
netic and magnetic energies, (b) the kinetic and
magnetic enstrophy, and (c) the kinetic palin-
strophy — normalized to peak value.

decreasing. In MHD, however, we see an immediate strong energy exchange from kinetic
to magnetic which is independent of transport coefficients (Case A and B curves overlay
in Fig. 9a for t <10K) with a rapid rise in the magnetic enstrophy (i.e., mean square cur-
rent). For 10K< t < 20K, there is a flattening in the kinetic energy decay (Fig. 9a) and a
subsequent increase in the kinetic enstrophy (Fig. 9b), somewhat akin to Navier-Stokes
turbulence. The strength of the respective transport coefficient dictates which particular
enstrophy peaks at a greater value (i.e., for Case B the lower resistivity and higher vis-
cosity dictate that the magnetic enstrophy has a greater increase than in Case A while the
kinetic enstrophy has a lower increase than in Case A). This is also seen in the sharp rise
of the kinetic palinstrophy, Fig. 9c.

The directional energy spectra are shown in Fig. 10 (low magnetic Prandtl number,
Pr=ν/η=0.3) and Fig. 11 (high magnetic Prandtl number, Pr=ν/η=3.0). Initially these
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Figure 10: The time development of the directional energy spectra for the low magnetic Prandtl number case:
Pr=ν/η =0.3 (a) the longitudinal and transverse kinetic energy spectrum at t=30K, and (b) the longitudinal

magnetic energy spectrum at t = 10K, 20K and 30K. Also plotted is the Kolmogorov k−5/3 inertial range
spectrum.
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Figure 11: The time development of the directional energy spectra for the high magnetic Prandl number case:
Pr = ν/η = 3.0 (a) the longitudinal and transverse kinetic energy spectrum at t = 4K and t = 16K, and (b)
the longitudinal and transverse magnetic kinetic energy spectrum at t = 4K and t = 16K. Also plotted is the
Kolmogorov k−5/3 inertial range spectrum.

spectra are delta functions. The directional kinetic and magnetic spectra are defined by

EKx (kx,t)= ∑
ky ,kz

∣

∣ux

(

kx,ky,kz,t
)∣

∣

2
, EKy(kx,t)= ∑

ky,kz

∣

∣uy

(

kx,ky,kz,t
)∣

∣

2
, (4.11)

EMx (kx,t)= ∑
ky,kz

∣

∣Bx

(

kx,ky,kz,t
)∣

∣

2
, EMy(kx,t)= ∑

ky,kz

∣

∣By

(

kx,ky,kz,t
)∣

∣

2
, (4.12)
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Figure 12: The time development of the vorticity, |ω|, and corresponding current |J|, isosurface for the high
magnetic Prandtl number simulation. (a) t=4K, (b) t=8K, (c) t=12K, (d) t=16K, (e) t=20K, (f) t=24K.
The isosurface value chosen is that corresponding to the average |ω| and average |J| for that time instant. The

color coding is dependent on the value of û·ω̂ and B̂· Ĵ at the isosurface gridpoint, going from RED for parallel
unit vectors û·ω̂=1 to BLUE for antiparallel unit vectors û·ω̂=−1. Similarly for the current isosurfaces: from
RED for B̂· Ĵ=+1 to BLUE for B̂· Ĵ=−1. The GREY scale is for isosurfaces with û·ω̂ =0= B̂· Ĵ.
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(a) (b)

Figure 13: The (a) vorticity and (b) current isosurfaces at t=50K for the low Prandtl number (Pr=ν/η=0.3)
simulation. Some large scale magnetic structures persist, along with corresponding large scale vortex structures.

Figure 14: The vorticity isosurfaces in 3D Navier-Stokes turbulence. The flow is dominated by very small scale
structures after the inviscid vortex stretching and the peak in the fluid enstrophy. This isosurface is at t = 7K
of the ELB simulation discussed in Section 4.1 [15].

where the summation is always over the wavenumbers ky,kz: the longitudinal spectra in-
volve the x-component of the fields while the transverse spectra the y-component of the
fields. In Fig. 10a, we plot the longitudinal [initially a δ(kx−2)-spectrum] and the trans-
verse [initially a two-delta function peak spectrum at kx =2,4] directional kinetic energy
at time = 30K, while in Fig. 10b the directional longitudinal magnetic energy spectrum at
t=10K, 20K, and 30K — and the comparison to the k−5/3 Kolmogorov spectrum.

As we increase the magnetic Prandtl number to Case B one finds a substantial dif-
ference between the longitudinal and transverse spectra, Fig. 11. The transverse kinetic
and magnetic energy spectra show much stronger excitation of high kx-modes, which in
the magnetic energy case shows a quite strong semblance to the Kolmogorov inertial en-
ergy k−5/3

x -spectrum at t=16K (Fig. 11b). There is also an interesting enhancement of the
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Figure 15: Magnetic Correlations at (a) t=12K, (b) t=24K for the high magnetic Prandtl number simulation,
Case B. The very slight increase in the longitudinal correlation function for r>650 at t=12K is no longer present
at t=24K.

transverse kinetic energy spectrum for 40< kx <200 at t=16K (Fig. 11a).
This behavior maybe attributed to the strong but localized vorticity and current sheets

developing due to the turbulence. In Fig. 12 we plot some time snapshots of the isosur-
faces of vorticity and current for this high magnetic Prandtl number case.

There is much information in Fig. 12: the intensification of localized horizontal cur-
rent sheets (see Fig. 12a-c, midway at the vertical cube edges), the development of intense
vertical localized patches of vorticity and current at later times with similar isosurface
geometrical structures of vorticity and current. It is also very apparent that large scale
magnetic (and hence velocity) structures persist for long times, Fig. 12f. This is also seen
in the low magnetic Prandtl number simulation, Fig. 13, where some large scale vorticity
and current isosurface structures persist, even at t =50K. This is very unlike 3D Navier-
Stokes turbulence which is dominated by small scale vortex structures as seen in Fig. 14.

Finally, we present some correlation data for the magnetic field

Clong(r)= 〈Bx(x,y,z)Bx(x+r,y,z)〉,

C
y
trans(r)=

〈

By(x,y,z)By(x+r,y,z)
〉

,

Cz
trans(r)= 〈Bz(x,y,z)Bz(x+r,y,z)〉.

(4.13)

It is seen that as time develops, the almost constant asymptotic tail of the longitudinal
magnetic correlation function disappears, and by t=28K, C′

long(r)<0 for all r. Moreover,

we find (for r>0)

C
y
trans(r) , Cz

trans(r)<Clong(r) , for all times. (4.14)

Eq. (4.12), with C′
long(r) < 0, is consistent with the correlation statistics of a random

solenoidal vector field [19].
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5 Summary and conclusions

We have developed a 3D LB-MHD algorithm that is ideally parallelized and presented
some simulation results on a 18003-spatial grid that shows the persistence of large scale
magnetic and vorticity structures for long times. Moreover, the time development of
the correlation statistics of the magnetic field indicate that the B-field is becoming more
and more random. An important feature of the LB-MHD approach is that the algorithm
automatically ensures ∇·B=0 to machine accuracy.

The straightforward LB algorithm, while simple and explicit, suffers from numerical
instabilities as Re→∞, Rm→∞. This places upper bounds on the attainable transport
coefficients. At the Navier-Stokes level, entropic algorithms [3–11, 15] have been devel-
oped that remain unconditionally stable for arbitrary small viscosities. Indeed, we have
presented here the first large scale ELB simulations on a 16003-grid at Re=25000. While
our ELB code runs successfully for much higher Reynolds numbers, the turbulence is no
longer fully resolved on these ‘small’ grids, and so these results are not presented here.
We are currently developing entropic LB-MHD algorithms that would permit simula-
tions at arbitrary small transport coefficients.

While the simulations reported here are on a simple 3D periodic domain, LB algo-
rithms can handle arbitrary geometries [20] without loosing their intrinsic parallelization.
Nonuniform spatial grids can be readily handled. In these cases, the spatial grid and the
kinetic velocity lattice will now no longer overlay. As a result, the streaming step of the
LB algorithm will no longer give immediate data at the spatial nodes. One would then
resort to interpolation methods to get the streamed information onto the spatial nodes.
Moreover all the latest CFD methods for handling arbitrary spatial grid geometries can
be immediately brought over to LB. It remains to be seen what price will need to be paid
on the parallelization of such augmented LB codes.

Finally, we comment on another interesting aspect of ELB algorithms. The ELB-
viscosity νe f f (x,t), Eq. (2.17), gives the appearance of an eddy viscosity and immediately
raises the question of whether there is any connection between ELB and the Large Eddy
Simulations (LES) in turbulence modeling. The simplest LES model is the Smagorin-
sky [21] model in which the subgrid scales are modeled by an eddy viscosity that is
related to the mean rate of strain velocity tensor:

νsmag (x,t)=(Cs∆)2
√

SijSij, (5.1)

where the rate of strain tensor (of the resolvable scales)

Sij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

, (5.2)

∆ is the filter width (defined in the filtering function that separates the resolvable from
the subgrid scales) and CS is some empirical constant. Obviously, the connection (if any)
between the ELB and LES transport coefficients is not obvious: ELB deals with entropy
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surfaces and the determination of the collision parameter γ(x,t) that enforces detailed
balance on the pre- and post-collision distribution functions, while LES deals with the
rate of strain tensor. It is of much interest that one can immediately construct local LB-
LES models [22, 23] that recover the Smagorinsky-CFD LES model. This is because the
local strain tensor can be recovered from the second moment of the non-equilibrium dis-
tribution function

Sij =
1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

=− 3

2ρτu
∑
α

eαieαj

[

fα− f
eq
α

]

. (5.3)

Of course, this is exactly how ∇·B is recovered from the trace of the first moment of the
nonequilibrium magnetic distribution function, Eq. (4.7), and by making this first mo-
ment antisymmetric we enforce ∇·B=0 to better than O(10−15). This also opens up the
possibility of examining LES LB-MHD algorithms being developed for CFD techniques
by Carati et al. [24–26], where the LB version will be, unlike the CFD code, ideally paral-
lelized. These LES LB-MHD codes are currently being developed.
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