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Abstract. The main obstacle in sequential multiscale modeling is the pre-computation
of the constitutive relation which often involves many independent variables. The con-
stitutive relation of a polymeric fluid is a function of six variables, even after making
the simplifying assumption that stress depends only on the rate of strain. Precom-
puting such a function is usually considered too expensive. Consequently the value
of sequential multiscale modeling is often limited to “parameter passing”. Here we
demonstrate that sparse representations can be used to drastically reduce the compu-
tational cost for precomputing functions of many variables. This strategy dramatically
increases the efficiency of sequential multiscale modeling, making it very competitive
in many situations.
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In recent years, multiscale modeling has attracted a great deal of attention across a
wide spectrum of disciplines in science and engineering [1–4]. This has opened up the
possibility of analyzing the macroscopic behavior of a system based on first principles, by
linking together macroscopic and microscopic models, bypassing the necessity of making
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ad hoc modeling assumptions such as the ones that underly the empirical constitutive re-
lations in continuum mechanics. In broad terms, such multiscale methodologies can be
divided into two categories, sequential coupling methods and concurrent coupling meth-
ods [1, 4]. In the sequential strategy, the needed model input for the macroscale model
is computed from microscale models beforehand. One then has an effectively closed
macroscale model which can be used for analytical or computational purposes. Such a
strategy has a very long history. It is a standard practice to obtain the transport coeffi-
cients of fluids such as viscosity or diffusion coefficients from kinetic theory or molecular
dynamics simulations. Other examples of sequential coupling include calibrating em-
pirical atomistic potentials used in molecular dynamics using models from quantum me-
chanics, determining the rates used in Monte Carlo simulation using molecular dynamics
or quantum mechanics models, computing the equation of state for gases using kinetic
theory, etc. However, for a long time, this procedure has been limited to the passage of
a few parameters, due to the fact that the computational cost associated with computing
the full constitutive relation is often too expensive. For example, the constitutive relations
for fluids in general depend on at least six variables, and precomputing a function of six
variables is simply too expensive. Therefore, one has to make a priori assumption about
the functional form of the constitutive relation, and microscale models are then used to
determine a few parameters in the functional form. The assumed functional form is often
quite ad hoc, and this has been the main drawback for sequential modeling.

The philosophy of concurrent coupling is to access such information “on-the-fly” as
the computation proceeds. The advantage of such a concurrent strategy is quite clear:
Even though the needed constitutive relation may depend on many variables, in any
particular simulation, one does not need to know the constitutive relation within the
full range of these variables – only the values that actually occur in the simulation are
needed, and these might be a very small subset of the entire range. The best example for
illustrating the advantage of such a concurrent approach is the Car-Parrinello molecular
dynamics in which the needed constitutive relation is the atomic potential. This function
may depend on the coordinates of all the atoms in the system, which can easily be a
function of tens of thousands of variables. However, in any particular simulation, one
does not need to know this function entirely, but only the values needed for the particular
sequence of atomic configurations that occur in the simulation, and this is a tiny subset of
the tens of thousands dimensional space [5]. A very informative discussion of the relative
merits of sequential and concurrent coupling strategies can be found in [1].

However, whenever possible, it is still advantageous to have the constitutive rela-
tions precomputed, since this information can be used for many other purposes, such
as analyzing the properties of the system. Knowing the constitutive relations of a fluid
helps us to understand the nature of the macroscopic response of the fluid, whether it is
shear thinning or shear thickening, for example. The main purpose of the present paper
is to demonstrate that the sequential coupling strategy can be made much more pow-
erful through the use of sparse representation. For example, instead of representing the
functions on tensor-product grids, one can use sparse grids and this drastically decreases
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the number of function values needed. There exist efficient interpolation algorithms over
such grids, which allow us to make use of such a table over the sparse grids for many
different purposes, including sequential multiscale modeling [6].

We begin with a brief review of sparse representation. Let f be a smooth function
of x=(x1,··· ,xd) on the d-dimensional hypercube Ωd. We would like to represent f effi-
ciently. The simplest way to do this is to use a regular grid. Let us consider the family of
standard rectangular grids Ωl with multi-index l =(l1,··· ,ld)∈N

d. In Ωl the grid points
are:

xl,i =(xl1,i1 ,··· ,xld ,id
)= i ·hl , 0≤ i≤2l , (1)

where hl is the mesh size given by

hl =(hl1 ,··· ,hld
)=2−l . (2)

Here we have adopted the component-wise operations for multi-indices:

a·b=(a1b1,··· ,adbd) and 2a =(2a1 ,··· ,2ad).

On each grid Ωl , we define the linear space Vl spanned by piecewise d-linear functions

Vl =span{φl,i, 0≤ i≤2l}. (3)

where φl,i is of the form:

φl,i(x)=
d

∏
j=1

φlj,ij
(xj), (4)

φlj,ij
is the standard one-dimensional hat function with support [(ij−1)hlj

,(ij+1)hlj
]∩[0,1].

For l=(n,··· ,n), we get the uniform grids Ωn with 2n+1 grid points in each direction and
the associated space Vn. It is easy to see that Ωn has O(2nd) grid points. Denoting by fn

the interpolation of f in Vn, we have the error estimate

‖ f − fn‖Lp =O(h2
n). (5)

Therefore, a regular grid requires O(2nd) grid points to achieve O(h2
n) accuracy in Lp

norm.
A different strategy is to use the sparse grids introduced by Zenger [7], which is based

on a high-dimensional multiscale basis derived from a one-dimensional multiscale basis
by tensor product construction. Following [6], define the difference spaces

Wl =Vl\
d

⋃

j=1

Vl−ej
, (6)

where ej denotes the j-th unit vector and for notational ease, we set Vl to be the empty set
if l 6≥0. Using the difference spaces, it is easy to see that regular grids can be rewritten as

Vn =
⊕

|l|∞≤n

Wl , (7)
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where |·|∞ is the discrete l∞ norm. Consider the subspace V
(s)
n of Vn obtained by replacing

|l|∞ ≤n by |l|1≤n+d−1 (with l≥0) in (7):

V
(s)
n =

⊕

|l|1≤n+d−1

Wl , (8)

where |·|1 is the discrete l1 norm. Sparse grids are the grids corresponding to the approx-

imation spaces V
(s)
n , denoted by Ω

(s)
n . A straightforward calculation [6] shows that there

are O(nd−12n) grid points in Ω
(s)
n . Denoting by f

(s)
n the interpolation of f using sparse

grids, it was proven [6] that the discretization error satisfies

‖ f − f
(s)
n ‖Lp =O(nd−1h2

n), (9)

provided that the mixed derivative ∂2d f /∏j ∂x2
j exists. For the same accuracy, we now

need much fewer grid points than the regular grids.

Here we have only discussed sparse representation using piecewise d-linear interpo-
lation on grid points. The same idea can be extended to other representation, such as high
order polynomials or Fourier series [8]. In this paper, we will limit ourselves to sparse
grids.

To put this idea into practical use in sequential coupling, we need to: (1) Precompute
the constitutive relation on a sparse grid; (2) efficiently interpolate the computed values
in order to obtain the constitutive relation elsewhere. Let us first discuss the second part,
since the first part is problem-dependent.

Given the values of f on grid points in Ω
(s)
n , we use the combination technique for

interpolation to construct the approximation function fn in V
(s)
n . This is an extrapolation

method which works on a sparse grid [9]. The interpolation formula is

f
(c)
n (x)=

d−1

∑
q=0

(−1)q

(

d−1

q

)

∑
|l|1=n+(d−1)−q

fl(x). (10)

Here fl(x) is the standard interpolation on the rectangular grids Ωl, given by

fl(x)= ∑
0≤i≤2l

f (xl,i)φl,i(x). (11)

The combination solution f
(c)
n is in general not equal to the Galerkin solution f

(s)
n , but its

accuracy is usually of the same order [9].

We now turn to some concrete examples.

For our first example, we demonstrate how to analyze the macroscopic elastic de-
formation of solids using an atomistic model. In elasticity theory, one often obtains the
required constitutive relation using empirical stress-strain relation such as Hooke’s law
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in linear elasticity. Our purpose is to obtain such constitutive relations directly from a mi-
croscopic model. To this end, we precompute the stress-strain relation using the Cauchy-
Born rule [10]. To fix ideas, we consider a rectangular sample of Aluminum, occupying a
volume Ω⊂R

3. In the undeformed state, the atoms are arranged in a three-dimensional
face-centered cubic (FCC) lattice. We denote by V0 the unit cell of the crystal, and by
{ai}

3
i=1 a basis for the crystal lattice.

Given a deformation u : Ω→R
3, we denote by F =∇u the deformation tensor, and

define the elastic energy density as

ω[F]=
1

|V0|
WCB[F], (12)

where the Cauchy-Born energy, WCB[F], is the energy of the deformed unit cell, obtained
by transforming the basis vectors as bi = Fai, i = 1,2,3. Due to frame indifference, the
elastic energy depends only on the right Cauchy-Green strain tensor (RCGST), C = F

T
F,

so we can write
ω[F]=ω[C], WCB[F]=WCB[C].

At the atomistic level we consider the embedded-atom method (EAM) [11], and com-
pute WCB[C] using the glue potential parameterized by Ercolessi and Adams [12].

Consider now a finite element discretization of the domain Ω, defined by a triangu-
lation T , and the space Vh generated by the basis functions {ϕi}

M
i=1. A deformation is

represented by

u(x)=
M

∑
i=1

uiϕi(x). (13)

Given such a deformation, we write the total energy as

E[u]= ∑
K∈T

∫

K
ω(F(x))dx, (14)

where ω(F) is the energy density defined in (12). The integral on the element K∈T can
be approximated using numerical quadrature,

∫

K
ω(F(x))dx≈

p

∑
j=1

αjω(F(xj)), (15)

where {xj}
p
j=1⊂K are the quadrature nodes.

The RCGST is a symmetric, positive definite tensor, and therefore the elastic energy
density can be parameterized as a function in six-dimensional space. This parameteriza-
tion is done using the sparse grids described above. To compute the force, we need the
derivative of WCB with respect to u, which can be written as

∂WCB

∂u
=∑

i,j

∂WCB

∂Cij

∂Cij

∂u
. (16)
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Figure 1: Elastic energy for the shear and expansion deformation. We plot the energy interpolated to a uniform
grid. The sparse grid nodes are superimposed. (color online)

The derivatives of the RCGST are known explicitly, so we need to store in the interpolat-
ing table the energy and the gradient of the energy with respect to the RCGST.

We construct the table for the symmetric, positive definite tensor

C =





1+λ1 λ2 λ3

λ2 1+λ4 λ5

λ3 λ5 1+λ6



, (17)

where λi ∈ [−0.25,0.25], i = 1,··· ,6. We use seven hierarchical levels for the definition of
the grids in six dimensional space. The table is composed of 923 grids, totaling 2,572,288
grid points. We compared the interpolated values with the EAM potential computed
on a uniform grid, which showed that the energy and the gradient can be reconstructed
with up to four digits of accuracy. To achieve the same accuracy with a regular grid,
1286 ≥ 4×1012 grid points would be required. The use of sparse grids, as opposed to a
uniform grid, results in an improvement of about six orders of magnitude in this case.

By construction, the sparse grid representation is a union of grids, and the table can
be computed on each grid independently. We take advantage of this by computing the
tables in parallel. The combination technique described above for the interpolation on
the sparse grids can also be performed in parallel.

As an illustration we show in Fig. 1 the elastic energy for a deformation of the form

F =





1+λ µ 0
0 1 0
0 0 1



. (18)
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In the plot we show the energy interpolated on a uniform grid. The two-dimensional
sparse grid used is superimposed.

We have not included thermal fluctuations in this example. This is not a limitation of
this methodology, as will be evidenced by our second example, where fluctuations are in-
cluded. The addition of thermal fluctuation would only change the way the interpolation
tables are computed. With our current computational capabilities, a molecular dynam-
ics simulation for a unit cell in a solid of the kind required here can be carried out in a
matter of minutes. With the advent of massively parallel computer systems, i.e., systems
with thousands of processors, the millions of MD simulations required to construct the
interpolation tables could be computed in a few days, making multiscale coupling via
concurrent coupling a reality.

For the next example, we analyze the macroscopic behavior of fluids that consist of
chain molecules. As before, we precompute the constitutive relation for the stress tensor
from an underlying microscopic model. We assume that the stress depends only on the
rate of strain. Therefore, up to a rigid rotation, the constitutive relation is a function of
two variables for 2d flows, and a function of six variables for 3d flows.

The stresses on a sparse grid of Ω for a polymer fluid are computed using non-
equilibrium MD simulations. The polymers are modeled by the bead-spring model. Each
polymer consists of 12 beads. Neighboring beads are connected by a spring force mod-
eled by the FENE potential:

V(r)=







1

2
kr2

0 ln
(

1−(r/r0)
2
)

, r< r0,

∞, r≥ r0,
(19)

where we used k=30 and r0=1.5. In addition, the Lennard-Jones (LJ) potential is applied
between all the beads, to prevent overlapping of the beads. In the following presentation,
all the quantities are expressed in terms of the reduced LJ units. The MD simulation for
each grid point in the parameter space Ω is conducted in a finite box. The box deforms
its shape according to the given rate of strain. Periodic boundary condition is imposed
on the dynamically deforming box. To maintain a reasonable aspect ratio for the box, the
orientation of the initial simulation box is carefully chosen based on the results of Kraynik
and Reinelt on reproducible lattices [13–15]. The number density of the beads is 0.81, the
temperature is fixed at T =1.1. The MD step size is 0.002. After 12,000 steps of equilibra-
tion, the stress is computed by averaging the following Irving-Kirkwood formula over
the simulation box and over 50,000 MD steps:

τ(x,t)=−∑
i

(mivi⊗vi)δ(ri−x)

−
1

2 ∑
j 6=i

((

ri−rj

)

⊗ fij

)

∫ 1

0
δ
(

λri +(1−λ)rj−x
)

dλ, (20)

where vi = ṙi−Ari is the thermal velocity of the i-th particle, A is the imposed velocity
gradient, and fij is the force acting on the i-th particle by the j-th particle.



1032 C. J. Garcı́a-Cervera et al. / Commun. Comput. Phys., 4 (2008), pp. 1025-1033

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

x

y

Figure 2: Velocity field at steady state in the driven cavity flow. Inset in the figure is one of the normal stress
as a function of 2d velocity gradient. (color online)

The computed stress tensor can be used to solve various macroscale problems. As an
example, we computed the dynamics of a driven cavity flow. The system is driven by
a constant motion of the upper boundary in the horizontal direction. The system size is
3000×3000. The upper wall moves at the velocity U =10. The dynamics of the system is
governed by the conservation laws for the mass and momentum:

{

ρ(∂tu+∇·(u⊗u))−∇x ·τ =0, x∈Ω,
∇·u=0,

(21)

where ρ, u and τ are the fluid density, the velocity field and the stress tensor respectively.
The fluid density ρ=0.81 is the same as the density in the MD calculation of the stress. The
conservation laws are solved using the precomputed stress with the projection method
on a staggered grid with 100 grid points in each direction [16]. The velocity field at steady
state is shown in Fig. 2; also shown in the figure is one of the normal stress interpolated
to a uniform grid.

In summary, we have discussed how to use sparse representation to precompute the
constitutive relation and to do sequential multiscale modeling. The usefulness of sparse
representation is not limited to these: It can be used to represent any smooth function
of many variables. Other examples that come to mind for which sparse representa-
tion can be useful include: Modeling and calibrating empirical potentials, exploration
of free energy landscapes with many coarse-grained variables, and combined sequential-
concurrent coupling methods. It should also be remarked that at the present time, sparse
representation is only practical when the number of dependent variables is not too large.
For example, it will not be able to replace concurrent strategies such as the Car-Parrinello
method in the near future.
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