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Abstract. In this paper we study the behavior of a family of implicit numerical meth-
ods applied to stochastic differential equations with multiple time scales. We show by
a combination of analytical arguments and numerical examples that implicit methods
in general fail to capture the effective dynamics at the slow time scale. This is due to
the fact that such implicit methods cannot correctly capture non-Dirac invariant distri-
butions when the time step size is much larger than the relaxation time of the system.
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1 Introduction

Implicit stiff ODE solvers have been very successful and have become the method of
choice for a large class of stiff ODEs [7]. In a system for which different components
evolve on different time scales, these methods allow us to capture the dynamics of the
system on the slow time scale without resolving the transient effects on the fast time scale.

Most problems for which stiff ODE solvers have been successful are those for which
the trajectories reach a stable manifold after a possible initial transient corresponding to
a fast scale. A convenient way to think about these problems is to use the concept of slow
manifolds to which the fast variables are attracted. This happens over a short relaxation
time scale over which the slow variables can be considered fixed.
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Figure 1: Illustration of the difference between implicit stiff ODE solvers applied to stiff ODEs (left) and SDEs
(right).

In this paper we examine the situation when such stiff ODE solvers are applied to
stochastic dynamical systems with multiple time scales. We will demonstrate that for
such systems, stiff ODE solvers may not be effective when the invariant measure is non-
Dirac and produce wrong solutions when the fast scale dynamics are not resolved.

The main point of this paper is shown in Fig. 1. Denote by xε,δt the numerical solution
using an stiff ODE solver with time stepsize δt. ε is a parameter that measures the ratio of
the fast and slow time scales in the system. In the case of stiff ODEs of dissipative type,
we expect the following to hold:

lim
ε→0

lim
δt→0

xε,δt = lim
δt→0

lim
ε→0

xε,δt. (1.1)

The right hand side is much less costly to compute and this is at the heart of the effec-
tiveness of these stiff ODE solvers. However, we will demonstrate that for stiff stochastic
differential equations (SDEs) in general

lim
ε→0

lim
δt→0

xε,δt 6= lim
δt→0

lim
ε→0

xε,δt. (1.2)

More precisely, we will see that if we fix the ratio δt/ε=c and we let ε go to zero, we have

lim
δt/ε=c, ε→0

xε,δt = x̄c, (1.3)

and x̄c in general varies with c.

2 An illustrative example

Consider the following example of a multiscale ODE:

ẋ=−y2+5sin(2πt), (2.1)

ẏ=
1

ε
(x−y), (2.2)



T. Li, A. Abdulle and W. E / Commun. Comput. Phys., 3 (2008), pp. 295-307 297

where ε≪ 1. In this system x is the slow variable, y is the fast variable and we are only
interested in the detailed dynamics of x but not of y. Using asymptotic analysis, we see
that when ε is small, y lies near the slow manifold of the system:

M=
{

(x,y)∈R
2, such that y= x

}

. (2.3)

In fact, if y is placed away from this slow manifold, in O(ε) time, the dynamics of (2.1)-
(2.2) will bring y to the neighborhood of the slow manifold without causing much change
to x. In other words, the quasi-equilibrium distribution obtained by holding x fixed is
simply a Dirac distribution δ(y−y(x)) where y(x) is chosen such that (x,y(x))∈M. The
effective dynamics of x is described by

˙̄x=−x̄2+5sin(2πt) (2.4)

as ε goes to zero.
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Figure 2: Implicit Euler scheme applied to equations (2.1)-(2.2). The small parameter ε is chosen as 10−4 and
10−6, respectively. The stepsizes are δt = 10−3,10−5 and 10−7. The left figure shows the time history of x.
The right figure shows the orbit of the numerical solution (xn,yn) in the x-y plane. The results shows good
accuracy for x no matter whether y is resolved or not.

Now we apply the implicit Euler scheme to this system. The setup is as follows.
We take ε = 10−4 and 10−6 and initial value (x(0),y(0)) = (2,1). We take the stepsize to
be δt = 10−3,10−5 and δt = 10−7, corresponding respectively to the under-resolved and
resolved case for the fast variable y. The numerical results are shown in Fig. 2. We see
that whether the fast dynamics is resolved or not, the correct effective behavior for the
slow variable x is produced. The right panel of Fig. 2 shows a brief transient period for
(x,y) and afterwards the solution stays near the slow manifold y=x. This behavior is well
known and the development of efficient solvers for such problems has been thoroughly
investigated [7].
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Figure 3: Implicit Euler scheme applied to Eqs. (2.5)-(2.6). Here ε is chosen as 10−4 and 10−6. The time
stepsizes are chosen as δt = 10−3,10−5 and 10−7. The solid line in the top figure corresponds to the solution
of (2.9). The top figure shows the time history of x. The bottom figure shows the orbit of (xn,yn) in the x-y
plane. There is a clear gap between the under-resolved result and the resolved result. In the under-resolved
case, the effect of the noise is not captured.

It is natural to ask whether stiff ODE solvers such as implicit Euler or the trapezoidal
rule are also effective for stochastic dynamical systems that have both slow and fast time
scales. We will see that the answer to this question is negative in general for implicit
solvers, because the quasi-equilibrium distributions for the fast variables (with the slow
variables held fixed) are not Dirac distributions. The existence of slow manifolds in the
form of (2.3) is crucial for the effectiveness of the implicit methods.

To see this, let us first consider modification of the previous system by adding a noise
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Figure 4: Implicit Euler scheme applied to Eqs. (2.5)-(2.6) with fixed δt/ε=10 (dashdots) and 103 (circles) when

ε=10−6,10−7 and 10−8. Two nontrivial limits are obtained numerically. The solid line is the correct effective
dynamics.

term:

ẋ=−y2+5sin(2πt), (2.5)

ẏ=
1

ε
(x−y)+

√

2

ε
ẇ, (2.6)

where ẇ is the temporal Gaussian white noise which satisfies

〈ẇ(t)〉=0, 〈ẇ(t)ẇ(s)〉=δ(t−s).

Here 〈·〉 means the mathematical expectation for random variables.
The noise is scaled in such a way that in the limit as ε→0, it has a finite contribution

to the effective dynamics [11,12]. The effective dynamic equations for the slow variable x
in the limit as ε→0 can be easily obtained using classical averaging methods and is given
by

˙̄x=−
∫

R

y2dµx̄(y)+5sin(2πt). (2.7)

The equilibrium distribution µx̄(y) is the distribution of the y variable obtained by fixing
the slow variable x in (2.6) a as ε→0 and is given by

dµx̄(y)=
1

Z
exp(−V(y; x̄))dy, (2.8)

where V(y; x̄) = 1
2(y− x̄)2 and Z is a normalization constant. This distribution for y is a

Gaussian N(x̄,1). This gives the following effective equation for the slow variable

˙̄x=−x̄2−1+5sin(2πt). (2.9)
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Next we apply the implicit Euler scheme to this problem. We use the same set of
numerical parameters as before except for the time stepsize. Numerical results for this
example are shown in Fig. 3. We find that when δt = 10−7 which is much smaller than
ε, the correct effective behavior is captured. But when δt is larger than ε, the numerical
solution deviates from the exact solution by a finite amount. In fact, in this case, the
numerical solution gives almost the same result as the case without noise, which is incor-
rect. To further confirm this result, we consider the case when the ratio between δt and ε

is fixed as 10 and 103, and take ε=10−6,10−7 and 10−8. The results are shown in Fig. 4. It
is observed that there is a nontrivial limit as ε→0 with fixed δt/ε and the limit is not the
same as the correct effective dynamics for x.

3 Computing the equilibrium distributions

The origin of the behavior observed in the last section lies in the fact that the quasi-
equilibrium distributions for the fast variables are not computed correctly. The quasi-
equilibrium distributions are the invariant distributions of the fast variables when the
slow variables are held fixed. They play the role of slow manifolds for SDEs. For this
reason, we will conduct a careful study for the computation of the invariant distributions
(for the fast variables).

3.1 Linear case

First consider a linear stochastic ODEs obtained by rescaling the harmonic oscillator in a
random field:

ẏ=−1

ε
y+

√

2

ε
ẇ, y(0)=y0, 0< ε≪1. (3.1)

y is an Ornstein-Uhlenbeck process with exact solution

y(t)=exp
(

− t

ε

)

y0+
∫ t

0

√

2

ε
exp

(

− t−s

ε

)

dws. (3.2)

From the explicit solution (3.2), one sees that the y is a Gaussian stochastic process (if
y0 is normally distributed or constant) and converges to the Gaussian invariant measure
N(0,1) as t→∞.

Consider now the stochastic θ−method

yn+1 =yn+(1−θ)δt f (yn)+θδt f (yn+1)+(δt)
1
2 g(yn)δwn, (3.3)

where δwn are independently and identically distributed (i.i.d.) Gaussian random vari-
able N(0,1) and where f (y(t))=−y/ε and g(y(t))=

√
2/ε for the SDE (3.2). The process

(3.3) defines a family of numerical methods and for θ =0 we obtain the well-known Eu-
ler Maruyama method, for θ = 1/2 the trapezoidal rule and for θ = 1 the Euler implicit
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method. For the problem (3.2), the method (3.3) can be rewritten as

yn+1 =
1

1+(δt/ε)θ

(

(1−(δt/ε))(1−θ)yn +
√

2(δt/ε)δwn

)

= rθ(δt/ε)yn +sθ(δt/ε)δwn. (3.4)

The invariant distribution of the discrete system is also Gaussian. Computing the mean

E(yn+1)= rθ(δt/ε)E(yn), (3.5)

one easily finds that for

y0 6=0, lim
n→∞

E(yn)=0

if and only if

|rθ(δt/ε)|≤1,

which holds for any time step δt if an only if 1/2≤ θ ≤ 1. This is well known from the
theory for deterministic ODEs and is related to the so-called A−stability of the θ−method
for 1/2≤ θ ≤ 1 ( [7, 9]). For the second moment, assuming 1/2≤ θ ≤ 1 one finds for any
time step δt that

lim
n→∞

E(|yn|2)=E(|y∞|2)=
1

1−(1−2θ) δt
2ε

. (3.6)

Thus

lim
δt→0

lim
ε→0

E(|y∞ |2)= lim
ε→0

lim
δt→0

E(|y∞|2) (3.7)

if and only if θ=1/2. We see that for the Euler implicit method (θ=1) when δt/ε is large,
the computed variance is much smaller than the correct value. Moreover, as δt/ε→∞,
the variance tends to zero! Similar behavior can be observed for 1/2 < θ ≤ 1. This is a
consequence of the fact that for a fixed ratio δt/ε= c,

lim
c→∞

|rθ(δt/ε)|=0.

This property, known as L−stability in the theory for deterministic ODEs, is suitable
for stiff ODEs, since it damps the oscillations of the iteration (3.4). This damping in the
stochastic case prevents the correct computation of the numerical variance. This is the
case observed in Fig. 3, i.e., the effect of the fluctuations is not captured.

These results can be used to explain the phenomena observed in the previous section.
Given δt/ε=c and x= x̄c, denote by µc

x̄c(y) the computed numerical invariant distribution
for the fast variable y as ε→0, then for small values of δt, the effective dynamics for the
numerical solution of the slow variable, denoted by x̄c, is given approximately by

˙̄xc =−
∫

R
y2dµc

x̄c(y)+5sin(2πt). (3.8)
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Figure 5: Trapezoidal rule applied to Eqs. (2.1)-(2.2). The ratio δt/ε is chosen from 102,10 to 1. The small
parameter ε is chosen as 10−6 or 10−7. The solid line is the correct effective dynamics.

Since µc is in general different from the correct quasi-equilibrium distribution µ and in
particular the variances of y are not the same for these distributions, we expect to get
incorrect numerical results for the slow dynamics.

However, if one uses the trapezoidal rule θ = 1/2 we see from (3.6) that its invari-
ant distribution is also Gaussian with mean 0 and variance 1, which is the desired re-
sult. These phenomena are the same as the ones observed in [1] for tau-leaping methods
for jump processes. From this we expect that when the trapezoidal rule is applied to
the example discussed earlier, accurate numerical solution will be obtained even if the
fast dynamics is not well-resolved. Fig. 5 confirms this. However, this property of the
trapezoidal rule is not generic — it is the consequence of the linearity of the system as
illustrated in the next section.

3.2 Nonlinear case

Let us consider a nonlinear example

ẏ=−1

ε
V ′(y)+

√

2

ε
ẇ, y(0)=y0, 0< ε≪1. (3.9)

It is well-known that the equilibrium distribution of y is the Gibbs measure

1

Z
exp(−V(y)), (3.10)

where Z=
∫

exp(−V(y))dy is a normalization constant. We will investigate two cases.
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Figure 6: Invariant distribution computed using the implicit Euler scheme (left) and trapezoidal rule (right) for

the case of symmetric double-well potential. ε=10−3. The time stepsize δt=10−2,10−3,10−4,10−5 and 10−6.
Sample size is 20000.
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Figure 7: Same as Fig. 6 except for the case of asymmetric double-well potential.

• Symmetric potential

V(y)=(y2−1)2, (3.11)

• Asymmetric potential

V(y)=(y2−1)2−0.5y. (3.12)

Let us first consider the implicit Euler scheme and trapezoidal scheme applied to the
symmetric potential case. We fix ε = 10−3, and choose δt from 10−2,10−3,10−4,10−5 to
10−6. It is straightforward to see that the numerical results depend on the ratio δt/ε; we
actually obtain results for the case when δt/ε takes the values 10−3,10−2,10−1,10. We
obtain the limit distribution with 20000 samples from a deterministic initial condition



304 T. Li, A. Abdulle and W. E / Commun. Comput. Phys., 3 (2008), pp. 295-307

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Time

x

δ t=10−3

δ t=10−4

δ t=10−5

δ t=10−6

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

δ t=10−3

δ t=10−4

δ t=10−5

δ t=10−6

Figure 8: The trapezoidal rule applied to system (3.14)-(3.15). ε = 10−4. The time stepsize δt = 10−3 (plus),

10−4 (circles), 10−5 (triangle down), and 10−6 (dots). The top figure shows the time history of x. The solid
curve in the bottom figure is the slow manifold without noise. It can be observed that when δt is smaller, more
points fall between the upper and lower solid lines instead of concentrating around these two lines. This can be
explained from the results obtained in Fig. 7.

y0 =−2. To plot the probability density function (pdf), we make statistics for the sample
data in an equi-subdivided interval. In the i-th bin the number of the points, say ni, is
counted, then the pdf value in the center of this bin will be ni/(Nh), where N is the
total number of samples, and h is the bin size. Fig. 6 summarizes our findings. We see
that for both the implicit Euler scheme and the trapezoidal rule, the numerical invariant
distribution is accurate only when the ratio δt/ε is small, and large discrepancies are
found otherwise.
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Figure 9: Trapezoidal rule applied to system (3.14)-(3.15). The ratio δt/ε is kept as 102 in the top figure, and 10
in the bottom figure. ε=10−5,10−6 and 10−7. The solid curve in both figures corresponds to ε=10−6,δt=10−7.

From Fig. 6 we also see that when δt/ε is large, the distribution becomes more and
more atomic. An asymptotic analysis shows that in the limit when µ= ε/δt→0, we have

yn ≈y∗+

√

2µ

V ′′(y∗)
δwn+··· , (3.13)

where y∗ is one of the local minima for the potential V(y).
Similar results are obtained for the case when the potential is asymmetric. The results

are summarized in Fig. 7. Same numerical parameters are used.
This result suggests that for nonlinear systems, the behavior of implicit Euler and

the trapezoidal rule is similar, when applied to SDEs with multiple time scales and the
fast dynamics are not well-resolved. In other words, in general one should not expect
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the trapezoidal rule to capture the slow dynamics correctly if the fast dynamics is not
resolved. To see that this is actually the case, let us consider the SDE

ẋ=−2ey+5sin(2πt), (3.14)

ẏ=
1

ε
(x−V ′(y))+

√

2

ε
Ẇ, (3.15)

where V(y)=(y2−1)2−0.5y, and ε=10−4. We apply the trapezoidal rule to this system.
The initial state is (x0,y0)=(0,1). The time stepsizes are taken as δt=10−3,10−4,10−5 and
10−6. The numerical results are shown in Fig. 8. We see clearly that the under-resolved
results are quite different from the resolved ones. The right figure in Fig. 8 shows that the
orbits of (xn,yn) cluster around the slow manifold in the case without noise.

To further clarify the situation, we study the case by keeping δt/ε constant but letting
ε go to zero. The results are shown in Fig. 9. We see also that the limits seem to exist, but
they are different from the correct value.

4 Conclusion

Implicit stiff ODE solvers are well-accepted schemes for solving stiff ODEs such as the
ones that arise from modeling chemical kinetics. Their effectiveness, however, seems to
rely on the existence of slow manifolds in a traditional sense, as in (2.3) for the system
(2.1)-(2.2). In the stochastic setting they can also be efficient for asymptotically mean
square stable problems [10]. For the examples considered in this paper, we may think of
slow manifolds in a generalized sense. For example, for the SDEs considered in Sections
2 and 3, there are indeed slow manifolds for the fast variable in the space of probability
distributions, which are the quasi-equilibrium distributions µx̄(y). However, we have
demonstrated that from a numerical viewpoint, there is an essential difference between
these two cases, and traditional implicit stiff ODE solvers are not effective if the slow
manifolds only exist in the generalized sense. For these reasons, explicit methods of the
type discussed in [2–6, 13] are of particular interest for such systems.
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