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Abstract. The conventional vector addition theorem is written in a compact notation.
Then a new and succinct derivation of the vector addition theorem is presented that
is as close to the derivation of the scalar addition theorem. Newly derived expres-
sions in this new derivation are used to diagonalize the vector addition theorem. The
diagonal form of the vector addition theorem is important in the design of fast algo-
rithms for computational wave physics such as computational electromagnetics and
computational acoustics.
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1 Introduction

The development of fast algorithms for integral equation solvers opens up new realms for
the applications of integral equation solvers [1–5]. One of these is their use in the arena
of circuits, micro-circuits and nanotechnologies [6]. Often time, the use of fast solvers
in this arena calls for the combined use of fast algorithms where both wave physics and
circuit physics are captured well by the solvers [7].

In the mid-frequency regime, where the wavelength is on the order of the object,
or not extremely small compared to the size of the object, the vector nature of electro-
magnetic waves and their phases cannot be ignored. Hence, full vector wave physics is
needed to describe the wave interaction with objects in this regime. This is the regime
often encountered in microwave engineering [4].
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In the low-frequency regime, where the size of the object is much smaller than the
wavelength, electromagnetic wave physics morphs into circuit physics, often not in a
seamless fashion. Circuit physics is captured by quasistatic electromagnetics, but in
modern circuit design, vast lengthscales ranging from sub-micrometers to centimeters
are encountered concurrently. Hence, there often is a strong mixture of wave physics to-
gether with circuit physics in modern circuit design. Therefore the design of fast solvers
in this regime, which has been nicknamed the “twilight zone”, remains a challenge [6,8].
Moreover, in order to capture the “inductance” physics and the “capacitance” physics
correctly, the vector nature of electromagnetic physics cannot be ignored [5]. This regime
is encountered in micro-circuits in chip design, as well as nanotechnologies.

In this paper, the vector addition theorem for solenoidal vector wave functions is dis-
cussed, and a succinct derivation of the vector addition theorem is also presented. The
new forms of the vector addition theorem facilitate their diagonalization, which is essen-
tial for developing fast algorithms in computational electromagnetics [9, 10]. Previously,
only the diagonalization of the scalar addition theorem has been presented [9, 10]. The
vector addition theorem can also be used to factorize the dyadic Green’s function, which
preserves the vector nature of electromagnetic field down to very long wavelength. It
can be used for the development of a mixed-form fast multipole algorithm for vector
electromagnetics which is valid from very low frequency to mid frequency [7]. It can also
potentially result in memory savings.

2 Some fun with the vector addition theorem

Before the diagonalization of the vector addition theorem can be described, one needs
to present the vector addition theorem and its expressions in compact notation. Their
expressions in compact notation facilitate insight into their further diagonalization.

The vector addition theorem has been of great interest to the mathematical physics
community [11–22]. The vector addition theorem for r = r′′+r′, for which |r′|< |r′′ |, can
be written as [11, 17, 20, Appendix D of [20]]

ML(r)=∑
L′

[ℜgML′(r′)AL′,L(r′′)+ℜgNL′(r′)BL′,L(r′′)], (2.1)

NL(r)=∑
L′

[ℜgML′(r′)BL′,L(r′′)+ℜgNL′(r′)AL′,L(r′′)]. (2.2)

In the above, M and N are vector spherical harmonics expressed in terms of spherical
Hankel functions [23] and spherical harmonics [24]. The subscript L = (l,m) represents
an ordered pair of integers where −l≤m≤ l, and l =1,··· ,∞ (no monopole or l =0 term).
Similar definition holds for L′. If the summation is truncated at l = lmax, then the number
of terms involved is P = (lmax+1)2−1. The ℜg operator implies taking the regular part
of the function where a spherical Hankel function (which is singular) is replaced by a
spherical Bessel function (which is regular).
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Only the solenoidal vector wave functions are discussed here and the irrotational
vector wave functions, which are for longitudinal waves, can be discussed separately, as
they are similar to the scalar wave functions [24].

More compactly, the above can be written as

Ψ
t
L(r)3×2 =∑

L′

ℜgΨ
t
L′(r′)3×2 ·αL′,L(r′′)2×2, ∀L, |r′|< |r′′|, (2.3)

where ∀L means for l>0 such that L=(l,m) with the rule for the ordered pair prescribed
above. The above is the analogue of Equation (1) of [10], but the elemental components
are matrices whose dimensions are indicated by the subscripts. In particular,

Ψ
t
L(r)3×2 =[ML(r),NL(r)], (2.4)

αL′,L(r′′)2×2 =

[
AL′,L(r′′) BL′,L(r′′)
BL′,L(r′′) AL′,L(r′′)

]

. (2.5)

The details of AL′,L and BL′,L can be found in [20, Appendix D]. It is to be noted that here,
we define

ML(r)=
1

√

l(l+1)

1

i
r×∇ΨL(r), NL(r)=

1

k
∇×ML(r), ΨL(r)=hl(kr)Yl,m(θ,φ).

This is in contrast to [20] where ML(r) =∇×rΨL(r); hence the equations for AL′,L and
BL′,L have to be properly modified. � �����

����� 	
���
�

Figure 1: The addition theorem changes the coordinates of the vector wave functions defined with origin at O
to origin at O′.

Another derivation of them is shown in the next section. Notice that the addition
theorem changes the coordinates of the vector wave functions defined with origin at O
to be expressed in terms of vector wave functions defined with origin at O′ (see Fig. 1).
This coordinate translation is achieved with the translator (or translation operator) αL,L′ .

Similar forms of the theorem can be derived such that

Ψ
t
L(r)3×2 =∑

L′

Ψ
t
L′(r′)3×2 ·βL′,L(r′′)

2×2
, ∀L, |r′|> |r′′|, (2.6)

ℜgΨ
t
L(r)3×2 =∑

L′

ℜgΨ
t
L′(r′)3×2 ·βL′,L(r′′)

2×2
, ∀L, ∀|r′|, |r′′|, (2.7)
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Figure 2: The translation of position vectors in the definition of the vector addition theorem.

where the translator βL′,L(r′′)=ℜgαL′,L(r′′) and again ℜg means replacing Hankel func-
tions with Bessel functions.

The above addition theorem can be expressed more compactly using a more compact
notation: One can truncate the summation above with l′≤lmax so that the number of terms
involved is P=(lmax+1)2−1. The matrices can then be stacked into larger matrices, and
an expanded matrix notation is used to express them. Eqs. (2.3), (2.6), and (2.7) can hence
be compactly expressed as

Ψ
t
(r)3×2P =ℜgΨ

t
(r′)3×2P ·α(r′′)2P×2P, |r′|< |r′′ |, (2.8)

Ψ
t
(r)3×2P =Ψ

t
(r′)3×2P ·β(r′′)2P×2P, |r′|> |r′′ |, (2.9)

ℜgΨ
t
(r)3×2P =ℜgΨ

t
(r′)3×2P ·β(r′′)2P×2P, ∀|r′|, |r′′|, (2.10)

where P→∞ in the above. To ease the burden with notations, the dimensional subscripts
in the following will be dropped.

Using the above addition theorem three times, then

Ψ
t
(rhl) = Ψ

t
(rhk)·β(rkl)

= ℜgΨ
t
(rhj)·α(rjk)·β(rkl)

= ℜgΨ
t
(rhi)·β(rij)·α(rjk)·β(rkl), (2.11)

where rab = ra−rb. One can use (2.3) to write

Ψ
t
(rhl)=ℜgΨ

t
(rhi)·α(ril). (2.12)

Comparing (2.11) and (2.12), it implies that

α(ril)= β(rij)·α(rjk)·β(rkl) (2.13)

or more explicitly,

αL,L′(ril)=∑
L1

∑
L2

βL,L1
(rij)·αL1,L2

(rjk)·βL2,L′(rkl). (2.14)
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One can trace through the translations in the above according to Fig. 2.
A dyadic Green’s function in electromagnetics can be expressed as [20]

G(rh−rl) =

(

I+
∇h∇h

k2

)

·
eik|rh−rl|

4π|rh−rl |

= ik∑
nm

[Mnm(rhk)ℜgMn,−m(rkl)+Nnm(rhk)ℜgNn,−m(rkl)](−)m+1

= ikΨ
t
(rhk)·ℜgΨ̂(rkl), |rhk|> |rkl |, (2.15)

where Ψ̂ implies the conjugation of only the azimuthal angular part of Ψ or m is replaced

by −m. Applying the vector addition theorem once to Ψ
t
(rhk), it implies that

G(rh−rl)3×3 = ikℜgΨ
t
(rhj)3×2P ·α(rjk)2P×2P ·ℜgΨ̂(rkl)2P×3, P→∞. (2.16)

An interesting note about the vector addition theorem is that (2.16) is not a special case
of (2.13) as in the scalar addition theorem. In the scalar addition case, the monopole to
monopole translator is just the scalar Green’s function, while the α translator cannot be
simpler related to the dyadic Green’s function. The important note is that the dyadic
Green’s function, the key function to the interaction between two point sources in elec-
tromagnetics, can be factorized in terms of the translator α. It can be shown that

ℜgMn,−m(r)=(−)m+1ℜgM∗
n,m(r), (2.17)

ℜgNn,−m(r)=(−)m+1ℜgN∗
n,m(r). (2.18)

3 A succinct derivation of the vector addition theorem

The vector addition theorem has been derived by various means. The derivation here
sets the stage for the diagonalization of the vector addition theorem in the next section.
It parallels the derivation of scalar addition theorem using plane wave expansions [20,
Appendix D]. But here, one needs the vector plane wave expansions. Special cases of the
expansions of vector plane waves in terms of vector wave functions have been reported
by Stratton [24] and Jackson [25]. More generally, one can show that a vector transverse
plane wave (such as a transverse electromagnetic wave) can be expanded as [16, p. 442],
[26, 27, private communication with Wittmann]

κeik·r =∑
L

4πil
[

ℜgML(r)X†
L(k̂)+ℜgNL(r)Y†

L(k̂)
]

·κ, (3.1)

where κ·k=0, YL = ik̂×XL, and X†
L is defined in Jackson [25] as well as in Wittmann [26].

For coordinate space,

XL(r̂)=LYlm(r̂)/
√

l(l+1), L=
1

i
r×∇. (3.2)
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It is clear that r̂ ·XL(r̂) = 0, and hence, k̂·XL(k̂) = 0. Hence, both XL(k̂) and YL(k̂) are
orthogonal to k̂.

The above can be written more generally as

Ise
ik·r =∑

L

4πil




ℜgML(r)

︸ ︷︷ ︸

3×1

X†
L(k̂)

︸ ︷︷ ︸

1×3

+ℜgNL(r)
︸ ︷︷ ︸

3×1

Y†
L(k̂)

︸ ︷︷ ︸

1×3






=∑
L

4πilℜgΨ
t
L(r)

︸ ︷︷ ︸

3×2

·W
∗
L(k̂)

︸ ︷︷ ︸

2×3

, (3.3)

where

Ψ
t
L(r)= [ML(r),NL(r)]∈C3×2, (3.4)

W
t
L(k̂)=

[

XL(k̂),YL(k̂)
]

∈C3×2, (3.5)

and Is is a symmetric 3×3 tensor with the property that Is ·k=0.
Converse to (3.1), the M and N functions can be expanded in terms of transverse

vector plane waves [26]. Using these expansions, the following compact notation for

plane-wave expansions of ℜgΨ
t
L(r) can be obtained

ℜgΨ
t
L(r)=

1

4πil

∫

©
dk̂Is ·W

t
L(k̂)eik·r, (3.6)

where © indicates that the above integral is over a unit sphere. Since both XL and YL are
orthogonal to k, the presence of Is is immaterial, but it is inserted here to facilitate the
proof of an identity later on.

One lets
Ise

ik·r = Ise
ik·r1 eik·r2 , (3.7)

where r= r1+r2. Then using (3.3) for Ise
ik·r1 and that [20, 24]

eik·r2 =∑
L′′

4πil′′ℜgΨL′′ (k,r2)Y∗
L′′(k̂), (3.8)

where
ΨL(kr)=h

(1)
l (kr)Ylm(θ,φ), (3.9)

h
(1)
l (kr) is a spherical Hankel function of the first kind [23], and Ylm is a spherical har-

monic function, Eq. (3.6) becomes

ℜgΨ
t
L(r)

︸ ︷︷ ︸

3×2

=
1

4πil ∑
L′

4πil′ℜgΨ
t
L′(r1)·∑

L′′

4πil′′ℜgΨL′′(k,r2)
∫

©
dk̂

2×2
︷ ︸︸ ︷

W
∗
L′(k̂)·W

t
L(k̂)Y∗

L′′(k̂)

=∑
L′

ℜgΨL′(r1)
︸ ︷︷ ︸

3×2

·βL′,L(r2)
︸ ︷︷ ︸

2×2

, (3.10)
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where

βL′,L(r2)=∑
L′′

4πil′+l′′−lℜgΨL′′(k,r2)AL,L′,L′′ (3.11)

and

AL,L′,L′′ =
∫

©
dk̂W

∗
L′(k̂)·W

t
L(k̂)Y∗

L′′(k̂) ∈C2×2. (3.12)

It can be seen that

W
∗
L′(k̂)·W

t
L(k̂)=

[
X†

L′(k̂)

Y†
L′(k̂)

]

·
[

XL(k̂)YL(k̂)
]

. (3.13)

Also, using the fact that both YL and XL are orthogonal to k̂, then

Y†
L′(k̂)·YL(k̂)=

(

k̂×X†
L′

)

·
(

k̂×XL

)

=X†
L′(k̂)·XL(k̂). (3.14)

Consequently, (3.13) becomes

W
∗
L′(k̂)·W

t
L(k̂)=

[
X†

L′(k̂)·XL(k̂) −ik̂×X†
L′(k̂)·XL(k̂)

−ik̂×X†
L′(k̂)·XL(k̂) X†

L′(k̂)·XL(k̂)

]

. (3.15)

Eq. (3.12) is a generalization of the integral for Gaunt coefficients [20, Appendix D, Eq.
(D9)]. It is a matrix that depends only on L, L′, and L′′ and is independent of k.

The factorized compact forms in (3.11) and (3.12) will facilitate the diagonalization of
the vector addition theorem. Eqs. (3.11) and (3.12) combined is the vector analogue of
Equation (4) of [10] for scalar addition theorem.

The vector addition theorem derived in Eq. (3.10) is valid for all r1 and r2, and all k.
One can use the method of ref. [20, Appendix D] to derive different forms of the addition
theorem in the following:

Ψ
t
L(r)=∑

L′

ℜgΨL′(r1)·αL′L(r2), |r1|< |r2|, (3.16)

Ψ
t
L(r)=∑

L′

ΨL′(r1)·βL′L(r2), |r1|> |r2|, (3.17)

where

αL′,L(r2) = ∑
L′′

4πil′+l′′−lΨL′′(k,r2)AL,L′,L′′. (3.18)

Eq. (3.10) together with the above constitute the full set of addition theorem in different
forms for the translation of the solenoidal vector wave functions.

The results above are similar to those derive in Wittmann [26] but the results here
separate the AL,L′,L′′ coefficients explicitly in the definition of the translators α and β.
Moreover, the compact manner with which AL,L′,L′′ are expressed is new. They are similar
to those presented in [20]. Also, the above is in agreement with Eq. (2.5) which shows that
the diagonal elements are the same, and the off-diagonal elements are equal to each other.
The explicit expressions for AL,L′,L′′ have been related to the Gaunt coefficients [11,12,18].
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4 An important orthogonality identity

From (3.3),

Ise
ik·r =∑

L

4πilℜgΨ
t
L(r)·W

∗
L(k̂), (4.1)

and from (3.6),

ℜgΨ
t
L(r)=

1

4πil

∫

©
dk̂′Is ·W

t
L(k̂′)eik′·r. (4.2)

Using (4.2) in (4.1), one arrives at

Ise
ik·r =

∫

©
dk̂′Ise

ik′·r∑
L

W
t
L(k̂′)·W

∗
L(k̂). (4.3)

From the above, one concludes that

∑
L

W
t
L(k̂′)·W

∗
L(k̂)=δ(k̂′− k̂)Is. (4.4)

The above is an important identity necessary for the diagonalization of the vector addi-
tion theorem in the next section. To the author’s best knowledge, this is the first exposi-
tion of this identity.

5 Diagonalization of the vector addition theorem

The factorization of the translator and the Green’s function is important for the develop-
ment of fast multipole algorithms and its variants [28] in computational electromagnetics.
The diagonal form of the factorized form greatly expedites the efficiency and reduces the
computational complexity of the fast algorithms for wave physics problems [1–3]. Also,
since the translators have a reducible representation in the plane-wave basis according to
group theory, they have a diagonal form in this basis [29].

As shown in the previous section, the translators for vector wave functions can be
factorized by the repeated use of the vector addition theorem. Namely,

α(rij)= β(riλ)·α(rλλ′)·β(rλ′ j), (5.1)

or more explicitly,

αL,L′(rij)= ∑
L1,L2

βL,L1
(riλ)·αL1,L2

(rλλ′)·βL2,L′(rλ′ j). (5.2)

From the previous section, one can find an alternative way of writing the translators.
Consequently,

βL′,L(r)=∑
L′′

4πil′+l′′−lℜgΨL′′(k,r)AL,L′,L′′ , (5.3)

AL,L′L′′ =
∫

©
dk̂W

∗
L′(k̂)·W

t
L(k̂)Y∗

L′′(k̂). (5.4)
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By using

eik·r =∑
L′′

4πil
′′

ℜgΨ
L′′ (k,r)Y∗

L′′ (k̂), (5.5)

Eq. (5.3) can be re-expressed as

βL′,L(r)= il′−l
∫

©
dk̂W

∗
L′(k̂)·W

t
L (k̂)eik·r. (5.6)

The above is a similarity transform that diagonalizes the translator β with plane wave
representation. Using (5.6) in (5.2), then

αL,L′(rij)= ∑
L1,L2

il−l1

∫

©
dk̂W

∗
L(k̂)·W

t
L1

(k̂)eik·riλ ·αL1,L2
(rλλ′)

·il2−l′
∫

©
dk̂′W

∗
L2

(k̂′)·W
t
L′(k̂′)eik′·rλ′ j , (5.7)

or after exchanging the order of integrations and summations, then

αL,L′(rij)=
∫∫

©
dk̂dk̂′ ilW

∗
L(k̂)eik·riλ · ∑

L1,L2

il2−l1W
t
L1

(k̂)

·αL1,L2
(rλλ′)·W

∗
L2

(k̂′)·il′W
t

L′(k̂′)eik′·rλ′ j. (5.8)

One can simplify the above by defining a new function to replace the inner summations.
Namely, one defines

α̂(rλ,λ′ , k̂, k̂′)= ∑
L1,L2

il2−l1W
t
L1

(k̂)·αL1,L2
(rλλ′)·W

∗
L2

(k̂′). (5.9)

The expression for the above function can be simplified. Since

αL1,L2
(rλλ′)=∑

L′′

4πil1+l′′−l2 ΨL′′(k,rλλ′)AL2,L1,L′′

=∑
L′′

4πil1+l′′−l2 ΨL′′(k,rλλ′)
∫

©
dk̂′′W

∗
L1

(k̂′′)·W
t
L2

(k̂′′)Y∗
L′′(k̂′′), (5.10)

using (5.10) in (5.9),

α̂(rλλ′ , k̂, k̂′) = ∑
L′′

ΨL′′(k,rλλ′)
∫

©
dk̂′′Y∗

L′′(k̂′′)4πil′′

· ∑
L1,L2

W
t
L1

(k̂)·W
∗
L1

(k̂′′)·W
t
L2

(k̂′′)·W
∗
L2

(k̂′). (5.11)

Using the results from the previous section that

∑
L

W
t
L(k̂′)W

∗
L(k̂)=δ(k̂′− k̂)Is, (5.12)
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Eq. (5.11) becomes

α̂(rλλ′ , k̂, k̂′)= Is∑
L′′

ΨL′′(k,rλλ′)4πil′′δ(k̂′− k̂)Y∗
L′′(k̂′). (5.13)

Using (5.13) in (5.8), one arrives at the diagonalized equivalence of the factorized trans-
lator in (5.1), that is

αL,L′(rij)=
∫

©
dk̂ilW

∗
L(k̂)·eik·riλ α̃(rλλ′ ,k)i−l′ ·eik·rλ′ j W

t
L′(k̂), (5.14)

α̃(rλλ′ ,k)= Is∑
L′′

Ψ∗
L′′(k,rλλ′)4πil′′YL′′(k̂). (5.15)

Reading the physical meaning of (5.14) from right to left, the first term W
t
L′(k̂) transforms

multipoles to plane waves. The exponential function eik·rλ′ j is the representation of the
β translator in the plane wave basis. The middle term is the representation of the α

translator in the plane-wave basis, and the rest of the terms to the left mirror-image the
operations to the right.

Since L′′=(l′′,m′′), the above involves a double summation, which can be removed by
choosing the z axis to be in the rλ,λ′ direction [30]. Alternatively, one observes that since
the integral in Eq. (5.14) is single fold, it is equivalent to having factorized the translator
into diagonal forms [2].

The summation in (5.15) is a divergent series because the spherical Hankel function is
increasingly large for large l′′. The root of the reason can be traced to the invalid exchange
of the order of integrations and summations in (5.8) [31]. This is also noted in the diag-
onalization of the scalar addition theorem [30]. This exchange is valid if our functional
space includes distributions. Hence, the above should be thought of as a distribution
which is undefined until it is integrated with other functions.

The exchanging of the order of integrations and summations is made valid in the
classical sense by truncating the series in (5.10) beforehand. For practical computation
however, a finite summation is used in the above, and various ways to truncate the sum-
mation have been discussed [4, Chapter 2 and references therein] .

6 Conclusion

Compact notations are introduced to simplify the expression of the vector addition the-
orem and the translation operators (translators). An alternative way to derive the vector
addition theorem and the translation operators (translators) is illustrated so that it is as
parallel as possible to the derivation of the scalar addition theorem. The new formu-
las and identity derived are used for the diagonalization of the translators in the vector
addition theorem.

These factorized and diagonalized translators have applications in the development
of fast algorithms where the vector nature of electromagnetic field cannot be ignored.
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They can also be used to develop fast algorithms for mixed-form fast multipole algo-
rithm [7] for vector electromagnetic fields all the way from static to electrodynamics.
This is increasingly important in micro-circuits and nano-structures where the vector na-
ture of electromagnetic field cannot be ignored, but meanwhile, the structures can be
subwavelength or order of wavelength in size [6].

The above results can also be used to expedite other computational waves involving
transverse waves such as shear waves in elastic solids [32]. The compressional waves
in elastic solid, which propagate with a different phase velocity, can be treated as an
additional scalar wave term [24].
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