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Abstract. We develop a two-relaxation-time (TRT) Lattice Boltzmann model for hy-
drodynamic equations with variable source terms based on equivalent equilibrium
functions. A special parametrization of the free relaxation parameter is derived. It
controls, in addition to the non-dimensional hydrodynamic numbers, any TRT macro-
scopic steady solution and governs the spatial discretization of transient flows. In
this framework, the multi-reflection approach [16, 18] is generalized and extended for
Dirichlet velocity, pressure and mixed (pressure/tangential velocity) boundary condi-
tions. We propose second and third-order accurate boundary schemes and adapt them
for corners. The boundary schemes are analyzed for exactness of the parametrization,
uniqueness of their steady solutions, support of staggered invariants and for the ef-
fective accuracy in case of time dependent boundary conditions and transient flow.
When the boundary scheme obeys the parametrization properly, the derived perme-
ability values become independent of the selected viscosity for any porous structure
and can be computed efficiently. The linear interpolations [5, 46] are improved with
respect to this property.
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1 Introduction

The two-relaxation-time (TRT) Lattice Boltzmann model [17–20] is suitable to model so-
lutions of the Navier-Stokes and hyperbolic non-linear advective-diffusion equations.
A very simple linear collision TRT operator is based on the decomposition of the pop-
ulation solution into its symmetric and anti-symmetric components. Two locally pre-
scribed eigenvalues (relaxation parameters) determine the evolution of the symmetric
and anti-symmetric collision components. When the eigenvalues are equal, the TRT re-
duces to the BGK operator [41] (called sometimes single-relaxation-time, SRT). The SRT
and TRT solutions can be obtained using the multiple-relaxation-times (MRT) collision
operator [15, 27–31, 36]. At second order, the incompressible macroscopic mass and mo-
mentum conservation equations are identical for TRT, SRT and MRT but these models
differ for higher-order approximations.

For TRT and SRT, both the kinematic and bulk viscosity are related to the selected
“symmetric” eigenvalue and the coefficients of the diffusion tensor are related to the pre-
scribed “anti-symmetric” eigenvalue. The effective values of the transport coefficients
depend also on the distribution of the equilibrium components between the different
velocities: the hydrodynamic equations are usually modeled with isotropic equilibrium
weights [41] whereas the anisotropic diffusion tensors need anisotropic ones (see [17,19]).
The TRT model enables a very simple analysis of its solutions based on parity argu-
ments. One example presents the multi-reflection (MR) boundary schemes, first devel-
oped in [16] for the Navier-Stokes equation and then adapted in [18] for the symmetric
equilibrium components, e.g., any scalar diffusion variable. Another example presents
the analysis of the interface conditions in [20], suitable for flat interface between two
immiscible fluids and for modeling Darcy flows in heterogeneous stratified soils.

There are strong numerical evidences (see [16]) that the permeability of an arbitrary
porous media is independent of the chosen viscosity value when a specific combina-
tion of symmetric/anti-symmetric eigenvalues (so-called “magic parameter”, here Λeo)
is fixed and no-slip conditions are modeled either with the bounce-back or with one par-
ticular multi-reflection (MR1) scheme [16]. In other words, the obtained momentum dis-
tribution for Stokes flow, multiplied with the modeled viscosity, depends on the selected
eigenvalues only via their combination Λeo. This property implies a very specific func-
tional dependency of the coefficients on the eigenvalues for all the terms in the popu-
lation expansion and boundary rules. The earlier exact solution [13] confirmed this for
parabolic flow. In this paper we give a rigorous explanation of these observations for ar-
bitrary flow, owing to the derivation in [32] of equivalent link-wise recurrence equations.
They allow to demonstrate that any steady non-dimensional velocity and pressure TRT
solution, obtained with the Stokes or Navier-Stokes equilibrium functions, is governed
by Λeo on a given grid, in addition to the Reynolds, Froude and Mach numbers. We will
show that bounce-back and MR1 share this property exactly.

In contrast with the SRT, the TRT can keep Λeo at any prescribed value for both hydro-
dynamic and convective-diffusion equations when their transport coefficients vary. This
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property is especially important when the kinematic viscosity takes large values, e.g., for
two phase flow with high viscosity ratio (see [20]), non-Newtonian fluids or simply for
accelerating the convergence to steady state [16, 40]. The SRT model will result in high
bulk and boundary discretization errors, related roughly to the square of viscosity coeffi-
cient. In contrast, the TRT model with a proper choice of its free relaxation parameter can
reduce, at least, the spatial errors, and avoid a redundant variation of the characteristic
parameters and collision eigenvalues. Besides that, the particular value Λeo = 1/4 has
remarkable properties for stability of mass-conservation equation (see [21]).

The multi-reflection boundary approach follows the principal idea of the early
works [12, 14, 15, 44]. They look for the incoming population in the form of its expan-
sion and insert the prescribed macroscopic boundary condition. Motivated by an exact
modeling of the parabolic distributions (e.g., Poiseuille flow in inclined channels), the
boundary techniques [12, 14, 16] are all based on a third-order expansion, but they differ
for the approximation of the unknown gradients: finite-differences are used in [12], local
equations are established in [14], appropriate linear link-wise combinations of the known
populations are found in [16]. The MR conditions are much simpler than the node based
schemes, e.g., in [12, 14, 33, 39, 44], or the diffusive “kinetic” schemes [3, 4, 43, 45], and
can prescribe more easily distinct conditions on adjacent walls, e.g., in corners. Mod-
eling the Stokes equation in porous media [16, 40] clearly demonstrated the superiority
of the MR1 over linear/quadratic interpolations [5], both in accuracy and convergence.
The MR1 scheme is extended to MGMR(C) family with exact parametrization and ad-
vanced stability properties. Modeling the solutions of the incompressible Navier-Stokes
equation [16,33] confirmed the accuracy of MR1 for velocity and pressure solutions with
static and moving boundaries, but also revealed some difficulties with its applications in
corners, a problem we address in this paper.

We formulate the linear interpolations presented in [5] but also those from [46] as
a particular MR schemes and show that there is an infinite number of three popula-
tion schemes of formally equivalent accuracy (LI−family below). Linear schemes do
not maintain automatically the parametrization properties of the bulk solutions and their
permeability values depend on the used viscosity value, as shown in [16, 40] for the lin-
ear schemes of [5]. One exception is presented in this paper (CLI scheme). We improve
the deficiency of the linear interpolations with the help of a simple local link-wise correc-
tion (MGLI sub-family) and present third-order accurate two-point schemes (MLI family)
which are exactly parameterized, then extend them for corners.

Known pressure boundary conditions are mostly restricted to solid walls located at
grid nodes, either by prescribing the equilibrium distribution for the incoming popula-
tion or by deriving their solution from a local system of mass/momentum constraints,
e.g., in [49]. So far a simple link-wise approach is the first-order accurate anti-bounce-back
rule. It defines the solution for the incoming populations on a free interface in [34] or for
the diffusion equation in [18]. The pressure schemes developed in this paper localize the
Dirichlet values at any prescribed distance along the link. The principal difference from
the boundary schemes [18] for the advection-diffusion equations is in the treatment of
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the first and second velocity gradients: we present second- and third-order accurate MR
pressure schemes with exact parametrization properties.

A Dirichlet pressure condition is not sufficient to set the solution of the Navier-Stokes
equations uniquely. As an example, we extend the MR approach to a mixed condition
which prescribes the pressure and the tangential velocity. This scheme is a linear com-
bination of the velocity and pressure multi-reflections, involving a whole set of cut links
into the local combination. The mixed scheme is formulated for any shape of the wall,
but we work out the details only for orientations of the boundary parallel to one of the
main axes, using d2Q9, d3Q15 and d3Q19 velocity sets as examples.

This paper is focused on the derivation and analysis of MR boundary schemes. A
complementary part [22] validates them for steady and time-harmonic flows with exact
solutions. Section 2 develops the TRT hydrodynamic model. In Section 3, we present
the TRT steady recurrence equations and obtain the parametrization properties of TRT
solutions. Section 4 describes the generic multi-reflection approach. Dirichlet velocity,
pressure and mixed schemes are worked out in Sections 5 to 7, respectively. Section 8
discusses an application of the developed schemes with MRT models. Section 9 con-
cludes the paper. The Chapman-Enskog analysis of the TRT model with the variable
mass and force terms is presented in Appendix A. Pressure schemes are constructed in
Appendices B. The correspondence of the present notations with those in [16] is given in
Appendix C.

2 The TRT-model

2.1 Definitions

The unknown variable of the scheme is the Q-dimensional population vector f (~r,t) =
{ fq, q = 0,··· ,Q−1}. The populations are initialized at time t = 0 on the nodes~r of an
equidistant d-dimensional computational mesh. Each component fq undergoes the col-
lision step and propagates to the site~r+~cq according to its velocity ~cq. The velocity set

contains Q vectors: one zero, ~C0 =~0, for the rest population, and Q−1 non-zero ones,
~cq = {cqα, α =1,.. . ,d}, q =1,··· ,Q−1, for the moving populations. We will assume d2Q9,
d3Q15 and d3Q19 cubic sets [41] where the velocity components cqα are either zero or ±1.

Since each moving velocity vector has an opposite one, any pair of populations with
opposite velocities (~cq,~cq̄), hereafter referred to as a link, can be decomposed into its sym-
metric (even) and anti-symmetric (odd) components:

fq = f +
q + f−q , f±q =

1

2
( fq± fq̄) ~cq =−~cq̄. (2.1)

For the rest population, f0 = f +
0 , f−0 = 0. Assuming that the equilibrium components

e±q (~r,t) and an external source term Sq(~r,t) = S−
q (~r,t)+S+

q (~r,t) are prescribed, the time
and space evolution of population solution is computed with the TRT linear collision
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operator:

fq(~r+~cq,t+1)= f̃q(~r,t), q=0,··· ,Q−1,

f̃q(~r,t)= fq(~r,t)+pq +mq+Sq, (2.2)

pq =λen
+
q , mq =λon−

q , n±
q = f±q −e±q .

The symmetric/antisymmetric components can be computed only once for each link:

f +
q = f +

q̄ , f−q =− f−q̄ , e+
q = e+

q̄ ,

e−q =−e−q̄ , pq = pq̄, mq =−mq̄.
(2.3)

They can be regarded as the population projections on the link-wise symmetric/anti-
symmetric orthogonal basis vectors of the Q−dimensional space. Two collision parame-
ters, “even” λe and “odd” λo, are the eigenvalues of the linear collision operator in such
a basis. The TRT collision operator can be regarded as a particular form of the multiple-
relaxation-times (MRT) models [17,19,29,31] when their eigenvalues, associated with the
even and odd order polynomial MRT-basis vectors, are equal to λe and λo, respectively.
The BGK model [41] is a TRT sub-class with a single relaxation parameter

τ =− 1

λe
=− 1

λo
.

The linear stability of the evolution equation restricts the eigenvalues to the interval
]−2,0[. Note that we have removed −2 and 0 from the stability interval. When one
eigenvalue is zero, it appears a set of additional conserved quantities, thus additional
macroscopic equations. In a similar way, the value −2 corresponds to staggered con-
served quantities not suitable for ordinary models. The following eigenvalue functions
are then positive:

Λe =−(
1

2
+

1

λe
), Λo =−(

1

2
+

1

λo
), Λeo =ΛeΛo. (2.4)

In order to prescribe macroscopic mass source M(~r,t) and body-force ~F(~r,t), the local
mass and momentum constraints are:

Q−1

∑
q=0

f̃q(~r,t)=
Q−1

∑
q=0

fq(~r,t)+M(~r,t), (2.5)

Q−1

∑
q=1

f̃q(~r,t)~cq =
Q−1

∑
q=1

fq(~r,t)~cq+~F(~r,t), (2.6)

where only the mass conservation constraints are considered for modeling advection-
diffusion equations. Let us define the following microscopic mass and momentum quan-
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tities from the local population f±q , equilibrium distributions e±q , and source terms S±
q :

ρ=
Q−1

∑
q=0

f +
q , ~J =

Q−1

∑
q=1

f−q ~cq,

ρeq =
Q−1

∑
q=0

e+
q , ~jeq =

Q−1

∑
q=1

e−q ~cq,

M=
Q−1

∑
q=0

S+
q , ~F =

Q−1

∑
q=1

S−
q ~cq,

(2.7)

where M and ~F represent the contributions coming from the selected local mass and
momentum sources S±

q . As shown below, the way M is split between ρeq and M, and

~F between ~jeq and ~F , is arbitrary. The solvability conditions of Eq. (2.2), derived from
relations (2.5), (2.6), and the two relations in the last line of (2.7), are:

Q−1

∑
q=0

pq(~r,t)= M−M,

Q−1

∑
q=1

mq(~r,t)~cq =~F− ~F .

(2.8)

Using then the definitions of pq and mq, the equilibrium variables are related to the mi-
croscopic mass and momentum by

Q−1

∑
q=0

pq(~r,t)=λe(ρ−ρeq), i.e., ρeq =ρ− M−M
λe

,

Q−1

∑
q=1

mq(~r,t)~cq =λo(~J−~jeq), i.e., ~jeq =~J−
~F− ~F

λo
.

(2.9)

The redefinition of the macroscopic momentum ~j with respect to the microscopic mo-
mentum~J in the presence of a forcing term has been discussed in [6, 13, 16, 24, 35]:

~j=~J+
~F

2
. (2.10)

We show in Appendix A that in the presence of mass source terms, the macroscopic
conserved mass variable ρm should also be redefined as:

ρm =ρ+
M

2
. (2.11)
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Therefore, the equilibrium variables are related to the macroscopic variables by:

ρeq =ρm+Λe M+
M
λe

, ρm =ρ+
M

2
, ρ=

Q−1

∑
q=0

fq =
Q−1

∑
q=0

f +
q ,

~jeq =~j+Λo~F+
~F
λo

, ~j=~J+
~F

2
, ~J =

Q−1

∑
q=1

fq~cq =
Q−1

∑
q=1

f−q ~cq.

(2.12)

We emphasize that M and ~F are defined with the last relations (2.7), via the choice of the

mass, {S+
q }, and momentum, {S−

q }, source distributions. When M and ~F are specified,
the equilibrium variables are uniquely defined from the microscopic solutions obtained

via relations (2.12). The converse is also true: the choice for ρeq and~jeq uniquely defines

M and ~F via relations (2.9).

2.2 Hydrodynamic equilibrium and forcing

Relations (2.12) define a class of equivalent models. We describe one sub-class based
on the isotropic equilibrium weights [41]. For the cubic velocity sets, these weights are
uniquely defined by the following (isotropic) conditions:

Q−1

∑
q=1

t⋆q cqαcqβ =δαβ, ∀α,β, 3
Q−1

∑
q=1

t⋆q c2
qαc2

qβ =1, α 6= β. (2.13)

Based on the ideas in [26, 41], let us define the equilibrium as:

e+
0 = e0 =ρeq−

Q−1

∑
q=1

e+
q , e+

q = t⋆q Πq(ρeq,~j,ρ̂), q=1,··· ,Q−1,

e−q = t⋆q(~j
eq ·~cq), S−

q = t⋆q(~F ·~cq),

Πq(ρ,~j,ρ̂)= c2
s ρ+gSE+

q (~j,ρ̂), E+
q (~j,ρ̂)=

3j2q−||~j||2
2ρ̂

,

S+
q = c2

s t⋆qM, S+
0 =M−

Q−1

∑
q=1

S+
q .

(2.14)

We assume
gS =1, ρ̂=ρm (or ρ̂=ρ0)

for modeling the compressible (incompressible, respectively) Navier-Stokes equations
and gS = 0 for the Stokes equations. The sound velocity is 0 < cs < 1 (further restric-
tions and optimal solutions come from the stability analysis, e.g., in [36]). Note that the
equilibrium functions given in (2.14) are by no mean “approximations”, but come from
a deliberate choice motivated, first, because they are so far the most widely used, sec-
ondly, because they lead to simpler algebra, and finally, because they allow one to find
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exact solutions. Indeed the derivations in the following sections can be applied to other
equilibrium functions, such as the “entropic” equilibrium of [2].

As an example of the use of relations (2.9) to (2.12), the three following definitions
result in equivalent TRT schemes once the external forcing ~F is given:

~jeq =~J =~j− 1
2
~F, ~F =~F,

Q−1

∑
q=1

mq~cq =0,

~jeq =~j, ~F =−λoΛo~F,
Q−1

∑
q=1

mq~cq =−λo

2
~F,

~jeq =~J− ~F
λo

=~j+Λo~F, ~F =0,
Q−1

∑
q=1

mq~cq =~F.

(2.15)

The solutions of the TRT evolution equation using the equilibrium (2.14) with rela-
tions (2.15) are identical for f±q and pq but not for mq. With the help of the last rela-

tions (2.12) and for two equivalent equilibrium functions e−q
I

and e−q
II

, one obtains:

mq
(I)−mq

(I I) =λo(e−q
(I I)−e−q

(I)
)= t⋆q λo(j

eq
q

(I I)− j
eq
q

(I)
)

= t⋆q((~F (I I)− ~F (I))·~cq)=S−
q

(I I)−S−
q

(I)
. (2.16)

For any pair {~jeq,S−
q } which obeys relations (2.12) the component m

(F)
q keeps the same

value:

m
(F)
q =mq+S−

q , q=1,··· ,Q−1. (2.17)

The first setup in (2.15) keeps the momentum conserving equilibrium function, following

the MRT convention [13, 16]. The second setup equates~jeq to the macroscopic variable~j,
as the BGK model in [6, 24]. This setup simplifies the analysis of the Dirichlet boundary

conditions which are prescribed for~j and not for~jeq. The third setup includes the source
terms into the equilibrium. This avoids an extra construction of the source gradients
when deriving the population solution. One can construct equivalent schemes based on
the different definitions for ρeq and the mass source M, e.g.:

ρeq =ρ=ρm− 1
2 M, M= M,

Q−1

∑
q=0

pq =0,

ρeq =ρm, M=−λeΛeM,
Q−1

∑
q=0

pq =−λe

2
M,

ρeq =ρ− M
λe

=ρm +ΛeM, M=0,
Q−1

∑
q=0

pq = M.

(2.18)
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The solutions are then identical for f±q , and therefore for~j and ρm. With the help of the
last relations (2.12), one obtains

pq
(I)−pq

(I I) = λe(e+
q

(I I)−e+
q

(I)
)= t⋆q c2

s λe(ρeq(I I)−ρeq(I))

= S+
q

(I I)−S+
q

(I)
, q=0,··· ,Q−1. (2.19)

Then for any equivalent choice of ρeq and S+
q , the component p

(M)
q keeps the same value:

p
(M)
q = pq+S+

q , q=0,··· ,Q−1. (2.20)

Inspired by the idea of the Chapman-Enskog expansion, relations (A.2) in Appendix A
express n±

q in terms of the gradients of the equilibrium components. The macroscopic

equations are identical for any choice of the source terms S±
q provided that relations (2.12)

are obeyed. Using the notations:

Π⋆
q = t⋆q Πq, M⋆

q = c2
s t⋆q M, F⋆

q = t⋆q Fq, Fq =(~F ·~cq),

j⋆q = t⋆q jq, jq =(~j·~cq), j
eq⋆
q = t⋆q j

eq
q , j

eq
q =(~jeq ·~cq),

(2.21)

the third-order accurate TRT solution (A.11) for incompressible flow becomes:

n+
q =

pq

λe
, n−

q =
mq

λo
,

pq = p
(1)
q +p

(2)
q +O(ε3)= p

(M)
q −S+

q ,

mq =m
(1)
q +m

(2)
q +O(ε3)=m

(F)
q −S−

q , (2.22)

p
(M)
q =∂q j⋆q +∂tΠ

⋆
q−∂qΛo(∂qΠ⋆

q−F⋆
q )−∂qΛeo∂q M⋆

q +Λe∂t M
⋆
q ,

m
(F)
q =∂qΠ⋆

q +∂t j
⋆
q −∂qΛe(∂q j⋆q −M⋆

q )−∂qΛeo∂qF⋆
q +Λo∂tF

⋆
q .

These relations can be viewed as a restriction of the Chapman-Enskog expansion (A.2)
to the “diffusive time scaling expansion” (see last relations in Appendix A), without any
additional assumption on the asymptotic behavior of the equilibrium and source compo-
nents. Hereafter we omit the mass source for simplicity.

When the population expansion (2.22) is matched exactly for O(∂
(n−1)
q j⋆q ),

O(∂
(k−1)
q Π⋆

q) and O(∂
(l−1)
q F⋆

q ) terms, we will say then that the accuracy of a given bound-
ary scheme is represented by the triplet

j(n)/Π(k)/F(l) . (2.23)

We will refer to schemes with the triplet j(2)/Π(1)/F(0) as “linear” or “second-order”
schemes and with the triplet j(3)/Π(2)/F(1) as “parabolic” or “third-order” schemes, re-
spectively. The linear schemes are exact, at least when gS=0, for linear flows and uniform
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pressure (typically, a Couette flow) and the parabolic schemes are exact for parabolic ve-
locity profiles and linear pressure distributions (and/or uniform force distribution), as
a Poiseuille Stokes flow in arbitrarily inclined channels. As a further example, we con-
struct j(3)/Π(3)/F(2) schemes which are exact for linear velocity/forcing and parabolic
pressure solutions for Navier-Stokes equation, see [33]. The focus is on the development
of pressure and velocity schemes of equivalent accuracy, their adaptation for corners, the
study of their parametrization properties for steady problems, their support of the stag-
gered solutions and the analysis of their effective accuracy for time dependent boundary
conditions.

3 TRT steady solutions

For the sake of simplicity, we follow the third set-up in relations (2.15) and (2.18) and set
here S±

q = 0. Including the source variables into the equilibrium allows us to get their
gradients in expansion as for the equilibrium variables.

3.1 Infinite steady expansion

Based on a parity argument only and the idea of the Chapman [8] and Enskog [10] to
represent a solution as its expansion around the local equilibrium, the steady solution to
TRT operator can be given as infinite series:

n+
q = ∑

k≥1

n+
q

(k)
, n−

q = ∑
k≥1

n−
q

(k)
,

n+
q

(k)
=

p
(k)
q

λe
, n−

q
(k)

=
m

(k)
q

λo
, k≥1,

n+
q

(0)
= e+

q , n−
q

(0)
= e−q ,

p
(k)
q = ∑

r=2s−1
1≤s≤ k+1

2

∂r
qn−

q
(k−r)

r!
+ ∑

r=2s
1≤s≤ k

2

∂r
qn+

q
(k−r)

r!
,

m
(k)
q = ∑

r=2s−1
1≤s≤ k+1

2

∂r
qn+

q
(k−r)

r!
+ ∑

r=2s
1≤s≤ k

2

∂r
qn−

q
(k−r)

r!
.

(3.1)

When k=2, the solution reduces to relations (2.22) where the time derivatives have been
dropped.
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3.2 Recurrence equations

Assuming that λo and λe are constant in space and time, an equivalent link-wise “finite-
difference” form of the TRT evolution equation is (the derivation is reported in [32]):

pq =λen
+
q = ∆̄qe−q −Λo∆2

qe+
q +(Λeo−

1

4
)∆2

q pq,

mq =λon−
q = ∆̄qe+

q −Λe∆
2
qe−q +(Λeo−

1

4
)∆2

qmq,

(3.2)

where

∆̄qφ(~r)=
1

2
(φ(~r+~cq)−φ(~r−~cq)),

∆2
qφ(~r)=φ(~r+~cq)−2φ(~r)+φ(~r−~cq), ∀φ.

(3.3)

Together with the solvability relations (2.8), the recurrence Eqs. (3.2) give a system of
equations for the variables {pq,mq} and the unknown equilibrium quantities (e.g., ρ and
~J for hydrodynamic models). Other linear combinations of the TRT equations relate the
pq and mq:

∆2
qe+

q −Λe∆
2
q pq−∆̄qmq =0,

∆2
qe−q −Λo∆2

qmq−∆̄q pq =0.
(3.4)

Based on the parity argument and the linearity of the recurrence equations with respect
to the equilibrium components, we look for solution in the form

pq(e+
q ,e−q )= pq(e−q )−2Λo pq(e+

q ),

mq(e+
q ,e−q )=mq(e+

q )−2Λemq(e−q ).
(3.5)

Expanding pq(e±q ) and mq(e±q ) around their equilibrium values, the exact explicit solution
for all their coefficients in the series is obtained in [32] from the recurrence equations (3.5).
It tells us that the coefficients of pq(e±q ) and mq(e±q ) depend on the eigenvalue functions
Λo and Λe only via their combination Λeo. Substituting the obtained series into rela-
tions (3.5) one can show, with the help of relations (3.4), that the infinite steady expan-
sion (3.1) and the solution of the recurrence equations coincide for both non-equilibrium
components.

3.3 Dimensional and parametrization properties of the bulk solutions

The hydrodynamic solutions are determined via the non-dimensional numbers: Mach
number Ma, Froude number Fr and Reynolds number Re:

Ma=
U

cs
, Fr=

U2

gL
, Re=

UL

ν
, (3.6)
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with some characteristic acceleration parameter, e.g., the gravitation constant g if ~F=ρ0g.
Let us introduce the dimensionless variables

~j′=
~j

ρ0U
, P′=

P−P0

ρ0U2
, ρ̂′ =

ρ̂

ρ0
, ~F′=

FrL

ρ0U2
~F,

where P= c2
s ρ, P0 = c2

s ρ0, ∀ρ0, then

ρ′ =
ρ

ρ0
=1+Ma2P′,

Π′
q(ρ′,~j′,ρ̂′)=

Πq(ρ,~j,ρ̂)

ρ0U2
= Ma−2+P′+E+

q (~j′,ρ̂′).

(3.7)

Using the notations: j′q
⋆=t⋆q(~j

′ ·~cq), Π′
q
⋆=t⋆qΠ′

q, F′
q
⋆=t⋆q(~F

′·~cq), we express the solution (3.5)
in terms of the dimensionless variables and present them in an equivalent form:

L

ρ0U
pq = Lpq(j′q

⋆
)−2ΛoULpq(Π′

q
⋆
)+

ΛoU

Fr
pq(F′

q
⋆
),

L

ρ0U2
m

(F)
q = Lmq(Π′

q
⋆
)− 2Λe L

U
mq(j′q

⋆
)− 2Λeo

Fr
mq(F′

q
⋆
).

(3.8)

Substituting relations (3.8) into the exact mass and momentum conservation rela-
tions (2.8), with

Q−1

∑
q=0

pq =0,
Q−1

∑
q=1

m
(F)
q ~cq =~F,

one obtains the exact steady state conservation relations as

3L
Q−1

∑
q=0

pq(j′q
⋆
)=2ΛeoRe

Q−1

∑
q=0

pq(Π′
q
⋆
)+

Λeo

L

Re

Fr

Q−1

∑
q=0

pq(F′
q
⋆
),

L
Q−1

∑
q=1

mq(Π′
q
⋆
)~cq =

~F′

Fr
+

6L2

Re

Q−1

∑
q=1

mq(j′q
⋆
)~cq+

2Λeo

Fr

Q−1

∑
q=1

mq(F′
q
⋆
)~cq.

(3.9)

It is noted that all the non-equilibrium components in relations (3.9) depend on Λe and

Λo only via their combination Λeo. When gS = 1, ρ̂ = ρ0, then the solutions for ~j′ and P′

are identical on a given grid (L fixed) for any Λe, Λo, ρ0, g and U provided that Re, Fr and
Λeo are fixed. In the compressible regime, ρ̂ = ρ and Ma should be fixed additionally.
These results, based on the truncated second-order expansion (2.22), mean that the hy-
drodynamic parts of the exact mass and momentum conservation equations (A.10) are
controlled by the hydrodynamic numbers in steady and transient regimes. However, the
higher-order corrections to these equations depend on Λeo only.
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~rb−2~cq ~rb−~cq ~rb ~rb+~cq

κ1
~rb+ 1

2~cq

~rb+δq~cq

�
κ̄−2

-
κ−1

�
κ̄−1

-
κ0

s s s�
??

c-

Figure 1: The velocity ~cq cuts the boundary surface at~rb+δq~cq, between the boundary node~rb and an outside
node ~rb+~cq. The figure is recalled from [16].

For the Stokes equilibrium (gS = 0), any steady solution ν~j(~r) does not depend then
on Λe and Λo separately but only on their combination Λeo. Assuming the Darcy law for

the mean value~j,

ν~j =K(~F−∇P) , (3.10)

and setting Λeo to some given value, the components of the permeability tensor K will
yield the same solution, independently from the selected viscosity and forcing values.
When the exact microscopic rules set by the boundary schemes are parameterized as
the steady bulk conservation relations, the numerical solutions carry the bulk properties
exactly for the Stokes and Navier-Stokes regimes.

Finally, we emphasize that for transient flows only the spatial part of the population
solution is controlled by Λeo and that the higher-order corrections to the macroscopic
equations depend on both Λe and Λo.

4 Multi-reflection (MR) type boundary condition

4.1 Generic Mq-scheme

We assume that~rb is an inside boundary node and that~rw,

~rw =~rb+δq~cq, 0≤δq ≤1,

is the point where ~cq intersects the wall (see Fig. 1). We refer to ~cq as a “cut link” and

Πc(~rb) is the set of all the cut links at~rb. It is split in Π(u)(~rb), for the velocities cutting
the boundary Γ(u) where Dirichlet velocity conditions are imposed, and Π(p)(~rw), for
the velocities cutting the boundary Γ(p) where the mixed (pressure/tangential velocity)
conditions are imposed:

Πc(~rb)=Π(u)(~rb)∪Π(p)(~rb).

Any link which bisects both boundaries is assigned to one of these two boundary condi-
tions in this paper (see sketch on Fig. 2). More complicated situations are possible but not
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Figure 2: An example of a “corner” node ~rb on d2Q9 grid. Second-type link is {~c6,~c8}. We assume that the

link going through the corner, ~c7, either belongs to Π(p)(~rb) or to Π(u)(~rb) but not to both at the same time.

considered here for simplicity. Multi-reflection [16,18] involves five post-collision neigh-
boring values for each unknown population fq̄(~rb,t+1). Here, we first write down their
combination Rq(~rb,t) with the free coefficients κ1, κ0, κ−1, κ̄−1, κ̄−2 and two additional

terms f
p.c.
q (~rb,t) and wq(~rw, t̂):

fq̄(~rb,t+1) = Mq(~rb,t),

Mq(~rb,t) = Rq(~rb,t)+ f
p.c.
q (~rb,t)+wq(~rw, t̂),

Rq(~rb,t) = κ1 f̃q(~rb,t)+κ0 f̃q(~rb−~cq,t)+κ−1 f̃q(~rb−2~cq,t)

+κ̄−1 f̃q̄(~rb,t)+κ̄−2 f̃q̄(~rb−~cq,t), q∈Πc(~rb). (4.1)

An equivalent two-point form for Rq(~rb,t) is:

Rq(~rb,t) = κ1 f̃q(~rb,t)+κ0 fq(~rb,t+1)+κ̄−1 f̃q̄(~rb,t)

+κ−1 fq(~rb−~cq,t+1)+κ̄−2 f̃q̄(~rb−~cq,t). (4.2)

In the next sections, we develop the M
(u)
q schemes (5.2) for Dirichlet velocity conditions

and the M
(p)
q schemes (6.2) for Dirichlet pressure conditions. Their coefficients and f

p.c.
q

corrections are defined in Tables 3 and 9, respectively. The mixed scheme M
(m)
q combines

velocity and pressure schemes in Section 7.

4.2 Special links with Mq

One can distinguish two types of links with potential difficulties to compute Rq in re-

lations (4.1). The first type of special links cannot define κ−1 f̃q(~rb−2~cq,t) when the
point (~rb−2~cq) lies outside the computational grid. Keeping in mind the equivalent
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Figure 3: Second-type link {~c6,~c8} cuts the wall at grid “corner” vertex~rb =~rw =~rw̄.

two-point form (4.2), we replace κ−1 fq(~rb−~cq,t+1) by the previous time step solution,
κ−1 fq(~rb−~cq,t). Such a substitution yields the same steady solution. Another technique
we use is to switch the three points scheme to a two-point one, equivalent (similar) in
accuracy but with κ−1 =0.

When both neighbors (~rb±~cq) lie outside the computational grid, {~cq,~cq̄}∈Πc(~rb), this

second type of special links cannot use κ0 f̃q(~rb−~cq,t+1) nor κ̄−2 f̃q̄(~rb−~cq,t). This situation
is typical when one link bisects two adjacent faces (see sketch on Fig. 2), hereafter re-
ferred to as a “corner” node. Link-wise conditions are then restricted to 1−3 population
schemes where κ−1 =0, κ̄−2 =0, and replacing κ0 f̃q(~rb−~cq,t+1) with κ0 fq(~rb,t):

Rq(~rb,t)=κ1 f̃q(~rb,t)+κ0 fq(~rb,t)+κ̄−1 f̃q̄(~rb,t)+ f
p.c.
q (~rb,t). (4.3)

We discuss below how local “corner” schemes (4.3) can maintain third-order accuracy
for the second-type links with the help of f

p.c.
q (~rb,t).

4.3 Exact MR closure relations

They are stated by relations (4.1). Dropping hereafter mass source variable, we substitute
there:

fq(~r,t)= [e+
q +e−q +

pq

λe
+

mq

λo
](~r,t), ~r={~rb,~rb−~cq,~rb−2~cq}, ∀ t,

fq̄(~r,t)= [e+
q −e−q +

pq

λe
−mq

λo
](~r,t+1),

f̃q(~r,t)= [e+
q +e−q +pq(1+

1

λe
)+mq(1+

1

λo
)+S−

q ](~r,t),

f̃q̄(~r,t)= [e+
q −e−q +pq(1+

1

λe
)−mq(1+

1

λo
)−S−

q ](~r,t).

(4.4)
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One gets then exact two-time (t and t+1) boundary constraint on the equilibrium and the
non-equilibrium components along a given link. The sufficient conditions on the coeffi-
cients, which enforce the exact microscopic rules to yield bulk parametrization properties
at steady state, are examined for these relations in the next section. In Section 4.4, the
coefficients κ1−κ̄−2 and the terms f

p.c.
q (~rb,t), wq(~rw, t̂) are defined such that the Taylor

approximation in space of the exact closure relation fits the prescribed pressure/velocity
Dirichlet values. We examine then the leading accuracy of the obtained schemes for time
dependent boundary conditions.

4.3.1 Parametrization properties of the exact closure relations

The dimensional analysis from Section 3.3 works exactly when the exact closure relations
keep the parametrization properties for all cut links. For steady solutions, it is simpler
to work with the two-point form (4.2). Substituting there the solution (4.4) and dropping
the time we get

∑
r={~rb,~rb−~cq}

[A(u)j⋆q +A(p)Π⋆
q +B(u)pq +B(p)m

(F)
q +B( f )F⋆

q ](~r)

=− f
p.c.
q (~rb)−wq(~rw), (4.5)

where

A(u)(~rb)=κ1−κ̄−1+κ0+1, A(u)(~rb−~cq)=κ−1−κ̄−2 ,

A(p)(~rb)=κ1+κ̄−1+κ0−1, A(p)(~rb−~cq)=κ−1+κ̄−2,

B(u)(~rb)=(κ1+κ̄−1)+
κ1+κ̄−1+κ0−1

λe
, B(u)(~rb−~cq)= κ̄−2+

κ−1+κ̄−2

λe
,

B(p)(~rb)=(κ1−κ̄−1)+
κ1−κ̄−1+κ0+1

λo
, B(p)(~rb−~cq)=−κ̄−2+

κ−1−κ̄−2

λo
,

B( f )(~rb)=Λo A(u)(~rb), B( f )(~rb−~cq)=Λo A(u)(~rb−~cq).

(4.6)

When f
p.c.
q (~rb) is a linear combination of pq(~rb), m

(F)
q (~rb) and F⋆

q (~rb), their coefficients

have to be added to B(u)(~rb), B(p)(~rb) and B( f )(~rb), respectively. We substitute then the

solution in the form (3.5) for m
(F)
q and pq into relation (4.5) and reorganize it with respect

to the non-dimensional solutions ~j′ and P′. Taking into account that steady solutions
pq(e±q ) and mq(e±q ) depend on the eigenvalues only via Λeo, we get the sufficient condi-
tions as:

A(u)(~r)= r1(Λeo,~r,q), B(u)(~r)= r2(Λeo,~r,q),

A(p)(~r)=Λor3(Λeo,~r,q), B(p)(~r)=Λor4(Λeo,~r,q).
(4.7)

Here, ri(Λeo,~r,q) abbreviates any function which depends on the eigenvalues only via
Λeo or does not depend on them. It is noted that ri may depend on δq and may differ
for any two coefficients, from one point to another one, or from link to link. When the
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Table 1: The LHS of the MR-closure relation is the linear combination of the elements on the first and third
lines, with the coefficients from the second and fourth lines, respectively. The first two lines come from the
Taylor expansion in space and time of the equilibrium components with respect to (~rb,t). The last two lines

come from the directional Taylor expansion of mq(~r), pq(~r), and S−
q (~r). The RHS=− f

p.c.
q (~rb,t)−wq(~rw, t̂).

e+
q ∂qe+

q ∂2
qe+

q ∂te
+
q e−q ∂qe−q ∂2

qe−q ∂te
−
q

α(p) B+ C+ -1 α(u) B− C− 1

pq mq ∂q pq ∂qmq S−
q ∂qS−

q ∂2
qS−

q

D+ D− E+ E− α(u)−1 B− C−

sufficient conditions are all satisfied, the steady solution on the given grid for ~j′ and P′

is fully determined by the choice of the hydrodynamic numbers and Λeo, for the Navier-

Stokes equilibrium. For the Stokes equilibrium, the solution for ν~j is then fixed by Λeo

and the forcing. Below, we will verify if the velocity/pressure schemes maintain the
parametrization properties (4.7) exactly or at least up to a specific order.

4.4 Approximated MR closure relations

With the goal of finding the coefficients of the multi-reflection, we replace the solu-
tion (4.4) in the exact closure relation with its Taylor approximation in space and time
with respect to (~rb,t). More precisely, third-order accurate, directional in space and
second-order accurate in time Taylor approximations are used for e±q (~r,t). Assuming
incompressible flow and in agreement with the diffusive scale expansion (2.22), the time
variation is neglected for pq(~rb,t) and mq(~rb,t) and their space approximation is restricted
to second-order. The obtained microscopic rule is referred to as the approximated MR clo-
sure relation. Its left-hand-side (LHS= Rq(~rb,t)− fq̄(~rb,t+1)) is equal to a linear combina-
tion of the elements presented in the first and third lines in Table 1. The RHS is equal
to − f

p.c.
q (~rb,t)−wq(~rw, t̂). The coefficients of the LHS are presented by the elements from

the second and fourth lines, respectively, with

A+ =κ1+κ0+κ̄−1+κ−1+κ̄−2, A−=−2(κ̄−1+κ̄−2),

α(p) = A+−1, α(u) = A++A−+1,
B+ =−(κ0+2κ−1+κ̄−2), B−=−(κ0+2κ−1−κ̄−2),

C+ = 1
2(κ0+4κ−1+κ̄−2), C−= 1

2(κ0+4κ−1−κ̄−2),

D+ =(α(p)+1)+
α(p)

λe
, D−=(α(u)−1)+

α(u)

λo
,

E+ = B+(1+
1

λe
), E−= B−(1+

1

λo
).

(4.8)

The closure relation is valid for any equilibrium function. We substitute then the hy-
drodynamic equilibrium (2.14) with (2.12) and the solution (2.22) for pq and mq, dropping
the mass term and the second-order force gradients there. The simplest equivalent tech-

nique is to put ~F equal to zero in relation (2.12). The LHS of the obtained closure relation
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Table 2: The LHS of the MR-closure relation is expressed in terms of the equilibrium gradients. It is given
by the linear combination of the elements in the first line with the coefficients from the second line. The
RHS=− f

p.c.
q (~rb,t)−wq(~rw, t̂).

Π⋆
q ∂qΠ⋆

q ∂2
qΠ⋆

q ∂tΠ
⋆
q j⋆q ∂q j⋆q ∂2

q j⋆q ∂t j
⋆
q F⋆

q ∂qF⋆
q ∂tF

⋆
q

α(p) β(p) γ(p) D+−1 α(u) β(u) γ(u) D−+1 β( f ) γ( f ) (D−+1)Λo

represents then a linear combination of the elements given in the first line of Table 2, with
the coefficients from the second line. The coefficients are given by relations (4.8) and their
combinations:

β(p) = B++D−, β(u) = B−+D+,

γ(p) =C+−ΛoD++E−, γ(u) =C−−ΛeD−+E+,

β( f ) =α(u)Λo, γ( f ) = β(u)Λo.

(4.9)

The approximated closure relation is adapted for velocity and pressure conditions in the
two next sections.

5 M
(u)
q −schemes for Dirichlet velocity condition

5.1 Principal schemes

We assume that the velocity distribution is prescribed on Γ(u) :

~u(~rb+δq~cq,t)=~ub(~rw,t), ~rw ∈Γ(u), q∈Π(u)(~rb). (5.1)

The M
(u)
q −scheme follows relations (4.1) with the notations:

fq̄(~rb,t+1)= M
(u)
q (~rb,t),

M
(u)
q (~rb,t)= R

(u)
q (~rb,t)+ f

p.c.(u)
q (~rb,t)+w

(u)
q (~rw, t̂), q∈Π(u),

w
(u)
q =−α(u) j⋆b

q (~rw, t̂),

j⋆b
q (~rw, t̂)= t⋆q ρ̂ub

q(~rw, t̂),

(5.2)

where ρ̂(~rw)= ρ0(~rb) for the incompressible flow. Otherwise, ρ̂(~rw) can be extrapolated
from the bulk or, when~rw lies at a grid node, one can keep

ρ̂(~rw)=ρ(~rb,t+1)

as one more unknown variable, equal to the sum of all (known and unknown) popu-
lations. This approach has the analogs in [39, 49] for grid boundary points, in [15] for
free interface points and in [16] for moving solid/fluid points. We limit ourself mainly
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Table 3: The coefficients κ0, κ−1, κ̄−1, κ̄−2, the corrections f
p.c.(u)
q and the valid range for δq for the Dirichlet

velocity M
(u)
q −schemes. The missing coefficient is κ1 =1−κ0−κ−1− κ̄−1− κ̄−2.

M
(u)
q κ0 κ−1 κ̄−1 κ̄−2 δq f

p.c.(u)
q

BB 0 0 0 0 δq=1/2 0

ULI 1−2δq 0 0 0 0≤δq≤1/2 0
MGULI Eq. (5.5)
MULI Eq. (5.6)

DLI 0 0
2δq−1

2δq
0 1/2≤δq 0

MGDLI Eq. (5.5)
MDLI Eq. (5.6)

YLI
1−δq

1+δq
0

δq

1+δq
0 0≤δq ≤1 0

MGYLI Eq. (5.5)
MYLI Eq. (5.6)

CLI
1−2δq

1+2δq
0 −κ0 0 0≤δq ≤1 0

MCLI Eq. (5.6)

MR(k)
( 3

2 −3δq−2δ2
q)+2k

1+k

(− 1
2 +δq+δ2

q )−k

1+k

( 1
2 −δq)+2k

1+k

(− 1
2 +δq)−k

1+k 0≤δq ≤1 Eq. (5.7)

MR1
1−2δq−2δ2

q

(1+δq)2

δ2
q

(1+δq)2 −κ0 −κ−1

MGMR(C)
1−2δq−2δ2

q−4CΛo

(1+δq)2−2CΛo

2CΛo+δ2
q

(1+δq)2−2CΛo

−1+2δq+2δ2
q−4CΛo

(1+δq)2−2CΛo

2CΛo−δ2
q

(1+δq)2−2CΛo

to incompressible flow below. Table 3 summarizes the principal M
(u)
q −schemes: the

bounce-back (BB), the linear interpolations: upwind/downwind ULI/DLI from [5] (called

also BFL-schemes) and YLI from [46] (which we consider here as a M
(u)
q scheme). We

present the central linear, three populations based, CLI scheme and show in sequel that
CLI, ULI/DLI and YLI belong to the LI(α(u)) family (5.9) which contains an infinite
number of second order accurate, “linear” schemes governed by a choice of the coef-
ficient α(u). Other new schemes, “linear” MGULI/MGDLI/MGYLI from MGLI(α(u))
sub-family and “parabolic” MULI/MDLI/MYLI and MCLI from MLI(α(u)) family have
equal coefficients as ULI/DLI/YLI and CLI, respectively, but differ from them in the

correction f
p.c.(u)
q . The MGLI(α(u)) sub-family gets exact parametrization properties for

LI(α(u)) family. The MLI(α(u)) family extends its formal accuracy to third-order. Then
follows the “parabolic” family MR(k) from [16], with k as a free parameter, and its new
sub-family MGMR(C), with MR1=MGMR(C=0).

We substitute first the coefficients κ1−κ̄−2 into relations (4.8) and (4.9), and specify the
coefficients from the Table 2. All schemes yield α(p)=0 (i.e., A+=1 and D+=1) such that
Πq, ∂tΠq and pq/λe vanish from the closure relation. The remaining coefficients from the

Table 2, divided by α(u), are given in Table 4. The coefficient α(t) is discussed in Section 5.6.
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Table 4: All M
(u)
q −schemes yield α(p)=0. The table shows the remaining coefficients from Table 2, divided by

α(u): β(u⋆) = β(u)/α(u), β(p⋆) = β(p)/α(u), etc. They define the error Err(u) in relations (5.3).

M
(u)
q /α(u) α(u) β(u⋆) β(p⋆) β( f ⋆) γ(u⋆) γ( f ⋆) γ(p⋆)

BB 2 1
2 −Λo Λo −β(p⋆)Λe =Λeo

1
2 Λo -1

2 Λo

ULI 2 δq −Λo+(δq− 1
2) Λo −β(p⋆)Λe δqΛo -δqΛo

DLI 1
δq

δq −Λo+( 1
2−δq) Λo −β(p⋆)Λe δqΛo -δqΛo

YLI 2
1+δq

δq −Λo− 1
2 Λo −β(p⋆)Λe δqΛo -δqΛo

CLI 4
1+2δq

δq −Λo Λo Λeo δqΛo -δqΛo

MR(k) 2
1+k δq −Λo Λo

δ2
q

2 +Λeo δqΛo −δqΛo

+
δ2

q−1

2 +δq−k

MR1 4
(1+δq)2 −δqΛo

MGMR(C) 4
(1+δq)2−2CΛo

(C−δq)Λo

MGMR2 4
(1+δq)2−2δqΛo

0

The MR closure relation takes the form:

α(u)[j⋆q +δq∂q j⋆q +
1

2
δ2

q∂2
q j⋆q +α(t)∂t j

⋆
q ](~rb,t)=α(u) j⋆q (~rw, t̂)+(Err(u)− f

p.c.(u)
q ),

Err(u) =Err
(u)
1 +Err

(u)
2 +Err

(u)
3 ,

Err
(u)
1 =α(u)(δq−β(u⋆))∂q j⋆q , (5.3)

Err
(u)
2 =−α(u)(β(p⋆)∂qΠ⋆

q +β( f ⋆)F⋆
q +(γ(u⋆)−

δ2
q

2
)∂2

q j⋆q ),

Err
(u)
3 =−α(u)(γ( f ⋆)∂qF⋆

q +γ(p⋆)∂2
qΠ⋆

q +α(t)Λo∂tF
⋆
q ).

All M
(u)
q schemes yield

β(u⋆) =δq, Err
(u)
1 =0,

then they are at least j(2)/Π(1)-accurate (with δq = 1
2 for bounce-back). Using the approx-

imation (2.22), one can perform a back substitution for velocity schemes:

∂qΠ⋆
q =m

(F)
q +Λe∂

2
q j⋆q −∂t j

⋆
q +O(ε3), m

(F)
q =mq+S−

q . (5.4)

The forcing term then vanishes in Err
(u)
2 (i.e., β(p⋆)m

(F)
q +β( f ⋆)F⋆

q =β(p⋆)mq) when S−
q =F⋆

q

(i.e., ~jeq =~J) and β(p⋆) = −β( f ⋆). The last condition is verified by BB, CLI/MCLI and
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Table 5: The left-hand-side of the approximated steady state MR closure relation. The right-hand-side is equal

to −w
(u)
q /α(u) = j⋆b

q (~rw, t̂).

M
(u)
q j⋆q ∂q j⋆q ∂2

q j⋆q F⋆
q ∂qΠ⋆

q ∂qF⋆
q −∂2

qΠ⋆
q

BB 1 1
2 Λeo Λo -Λo

1
2 Λo

ULI/DLI 1 δq Λeo+|δq− 1
2 |Λe Λo −Λo−|δq− 1

2 | δqΛo

YLI 1 δq Λeo+
Λe
2 Λo −Λo− 1

2 δqΛo

CLI , MGLI 1 δq Λeo Λo -Λo δqΛo

MR1, MCLI 1 δq
1
2 δ2

q 0 0 δqΛo

MGMR2 1 δq
1
2 δ2

q 0 0 0

MR(k), ∀k (see β( f ), β(p) in Table 4). We consider the following corrections:

f
p.c.(u)
q =−α(u)(β(p⋆)+β( f ⋆))m

(F)
q , β( f ⋆) =Λo, (5.5)

f
p.c.(u)
q =−α(u)[β(p⋆)m

(F)
q +β( f ⋆)F⋆

q +(γ(u⋆)+Λeβ(p⋆)−
δ2

q

2
)∂2

q j⋆q ], (5.6)

f
p.c.(u)
q =−α(u)(β(p⋆)m

(F)
q +β( f ⋆)F⋆

q ). (5.7)

The resulting closure relations are given in Table 5. The first correction (5.5) distin-
guishes the “magic” linear schemes MGLI(α(u)), e.g., MGULI/MGDLI and MGYLI from
ULI/DLI and YLI, respectively. We will show that the MGLI sub-family satisfies the
conditions (4.7) and therefore, these schemes support exactly the bulk properties of the
solutions with respect to Λeo. In particular, the permeability of any porous structure com-
puted with these schemes is absolutely viscosity independent when Λeo is fixed. This
property is shared by BB, CLI and MGMR(C) owing to their coefficients. Further details

are found in Section 5.2.1. The correction (5.6) removes the second-order error Err
(u)
2 :

it is used to construct MR(k) and MLI(α(u)) families. The terms mq and S−
q are locally

available but ∂2
q jq needs to be computed unless its coefficient in f

p.c.(u)
q vanishes. The

correction (5.6) reduces then to the local relation (5.7) for MR(k) family.

5.2 Space approximation

5.2.1 Bounce-back and two-three populations based “linear” schemes,

LI(α(u))={CLI,ULI/DLI,YLI,··· ,MGLI(α(u))}-family

Let the coefficients yield the following conditions (see relations (4.8) and (4.9)):

κ−1 = κ̄−2 =0, α(p) =κ1+κ0+κ̄−1−1=0, β(u) =1−κ0 =α(u)δq. (5.8)

There is then an infinite number of three coefficients {κ0,κ̄−1,κ1}, parameterized with free
parameter α(u) = κ1+κ0−κ̄−1+1, which satisfy relations (5.8). These three coefficients
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build the LI(α(u)) family:

κ0 =1−α(u)δq, κ̄−1 =1− α(u)

2
, κ1 =α(u)(δq+

1

2
)−1. (5.9)

The coefficients of the closure relation, divided by α(u), are:

β(p⋆) =−Λo+(
1

2
+δq−

2

α(u)
), β( f ⋆) =Λo, γ(u⋆) =−β(p⋆)Λe,

γ(p⋆)=−γ( f ⋆) =−δqΛo.

(5.10)

The heuristic stability condition 0≤κ1 ≤1 is satisfied when

2

1+2δq
≤α(u)≤ 4

1+2δq
.

Two populations schemes ULI (DLI) select the solution with α(u) =2 (α(u) =1/δq, respec-

tively) and their two coefficients lie inside [0,1]. They reduce to BB for δq=
1
2 . An example

of a three populations scheme is YLI. This scheme does not reduce to BB for δq = 1
2 but it

coincides with ULI for δq =0 and with DLI for δq =1.

Parametrization properties. The exact steady closure relation reduces to the local, one
point form (4.3) for the LI(α(u)) family:

[α(u)(j⋆q +δq pq+β(p⋆)m
(F)
q +β( f ⋆)F⋆

q )+ f
p.c.(u)
q ](~rb)=α(u) j⋆q (~rw). (5.11)

The microscopic rule (5.11) obeys the relations (4.7) if

β(p⋆) =Λori(Λeo,δq,q),

where ri is either some function of Λeo or does not depend on the eigenvalues. The
bounce-back rule satisfies these properties with β(p⋆)=−Λo. This explains why the com-
ponents of the permeability tensor K are viscosity independent for any porous media
when BB is applied and Λeo is fixed (see the results in [16]).

Neither ULI/DLI nor YLI shares this property, but CLI does: this scheme is fixed by
setting

β(p⋆) =−Λo =−β( f ⋆),

in addition to conditions (5.8). Similar to YLI, CLI does not need any switching at δq = 1
2

but it reduces to BB for δq =
1
2 ; its coefficients κ0 =−κ̄−1 are not restricted however to [0,1]

but they lie inside [−1,1].
We propose the local correction (5.5) for LI(α(u)) family and call the obtained schemes

“magic” linear schemes or MGLI(α(u)) sub-family. The f
p.c.(u)
q replaces the deficient com-

ponent, α(u)β(p⋆)m
(F)
q with the suitable one, −α(u)Λom

(F)
q . It is noted that the f

p.c.(u)
q van-

ishes for CLI. The exact steady closure relation (5.11) are equivalent for the all schemes
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from MGLI(α(u)) family and CLI, although their pre-factors α(u) differ. The obtained
steady solutions are therefore identical for MGULI/MGDLI/MGYLI and CLI, but the
transient solution, the staggered invariants, the convergence and stability differ. All
MGLI(α(u)) schemes are then controlled with Λeo for steady solutions and they allow
efficient and accurate computations in complex geometries.

Particular solutions. For steady or transient, one-dimensional flows invariant along the

boundary, the Err
(u)
2 can be removed from the closure relation with special solutions for

Λeo(δq). These solutions are presented in [22] and verified for steady Poiseuille flow and
the pulsatile flow [26, 47]. They extend the previous (bounce-back) solution [13, 16] for
linear interpolations and for an arbitrary distance, 0≤δq≤1. The CLI and all MGLI(α(u))
schemes yield an exact prescribed location of the solid walls in parabolic flow when

Λeo =
3δ2

q

4
, δq≥0. (5.12)

When δ2
q = 1

2 the solution reduces to Λeo =
3

16 , previously obtained in [13,16] for BB. When
δq =0, then Λo =0, a stability limit of the model.

Alternative solution [22] redefines δq for the coefficients of the linear schemes such
that Poiseuille flow in arbitrary inclined channel is modeled exactly. The coefficients
depend then, however, on Λeo and the assumed channel width.

5.2.2 Two-three populations based “parabolic” schemes,
MLI(α(u))={MCLI,MULI/MDLI,MYLI,···}-family

The LI(α(u)) family is robust but exact in general only for linear velocity and constant

pressure solutions. The idea of the (modified) MLI(α(u)) family is to remove Err
(u)
2 with

f
p.c.(u)
q (relation (5.6)), without altering the coefficients, but involving a finite-difference

(f.d) approximation for ∂2
q j⋆q . It is noted that γ(u⋆) =−Λeβ(p⋆) for LI(α(u)) family (cf. rela-

tions (5.10)), then f
p.c.(u)
q correction (5.6) becomes for MLI:

f
p.c.(u)
q =−α(u)

(

β(p⋆)m
(F)
q +β( f ⋆)F⋆

q −
δ2

q

2
∂2

q j⋆q

)

. (5.13)

One needs to approximate ∂2
q j⋆q when δq 6=0, e.g. with the help of a link-wise f.d. approx-

imation:

∂2
q

f .d
j⋆q ≈

2

δq+δq̄

(
j⋆q (~rw, t̂)− j⋆q (~rb, t̂)

δq
−

j⋆q (~rb, t̂)− j⋆q (~rw̄, t̂)

δq̄

)

+O(ε3), (5.14)

where

~rw =~rb+δq~cq, ~rw̄ =~rb+δq̄~cq̄, δq 6=0, δq̄ 6=0.
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Here, j⋆q (~rw, t̂) is computed with a prescribed Dirichlet value. The solution in the neigh-

boring grid point, jq(~rb−~cq, t̂), δq̄ =1, is either already updated, t̂= t+1, or taken from the

previous time step, t̂ = t, or combined. We discuss in section 5.2.4 how the MLI family
may maintain the third accuracy in corners. On the whole we find that the stability of MLI
and MGLI schemes is very similar. The solutions with MULI/MDLI and MCLI (which
are equal at steady state) are quite comparable with MGMR(C) solutions, although MR1
gains more often in accuracy for steady and temporal flow. We observe that in closed
rectangular boxes, the most robust is a combination of MLI and MR1 for two adjacent
boundaries.

Parametrization properties. The MLI family completely removes the term associated

with m
(F)
q and F⋆

q from the closure relation (5.11). It is understood that if the discretized
velocity distribution obeys some parametrization properties, so does any finite-difference
combination of velocity values. The MLI family satisfies therefore the conditions (4.7) and
its steady solutions are fully controlled by the non-dimensional hydrodynamic numbers
and Λeo.

5.2.3 Five populations based “parabolic” schemes: MR(k)-family

This family cancels the coefficients in front of ∂2
q j⋆q in the f

p.c.(u)
q correction (5.6) with the

help of the five coefficients κ1−κ̄−2. They satisfy the linear system of equations:

α(p) = A+−1=0, β(u) = A++B−=α(u)δq,

A++A−+1=α(u) =
2

k+1
,

γ(u)+Λeβ(p) =
α(u)

2
δ2

q , β(p) =−β( f ) =−α(u)Λo.

(5.15)

The free parameter α(u) is parameterized with k, following the original work [16]. The

f
p.c.(u)
q reduces to relation (5.7):

f
p.c.(u)
q =Err

(u)
2 =α(u)Λo(m

(F)
q −F⋆

q ). (5.16)

This term is equal to α(u)Λomq when ~jeq =~J, S−
q = F⋆

q (this set-up is used in [16]). The

MR(k) yields the triplet j(3)/Π(2)/F(1) for all k. The optimal solutions for k, based on
heuristic stability arguments, i.e.,

κ1 =
2δq+δ2

q−k

1+k
∈ [0;1], {κ0,κ̄−1,κ−1,κ̄−2}∈ [−1;1],

are given in [16]. The last condition (5.15), β(p) =−α(u)Λo, is not necessary to reach the
prescribed accuracy but appears to be very helpful for the parametrization properties.
Below we discuss the MR1 scheme and the MGMR(C) sub-family. Both yield an exact
parametrization owing to special solutions for k.
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Parametrization properties and MR1 scheme. It was discovered that a particular MR(k)
scheme

MR1: k= k(δq)=
1

2
(1+δq)

2−1, then κ1 =1, (5.17)

yields permeability values absolutely independent of the viscosity (see Table III in [16]).
The MR1 coefficients lie inside the interval [−1,1] but represent the limit of “optimal”
solutions for κ1. The following conditions are sufficient to satisfy relations (4.7):

κ1+κ0+κ̄−1−1=0, κ−1+κ̄−2 =0,

(κ1−κ̄−1)=
1

2
(κ1−κ̄−1+κ0+1), κ̄−2 =

κ̄−2−κ−1

2
.

(5.18)

The first condition guarantees that A(p)(~r) and A(p)(~rb−~cq) vanish from the closure rela-

tion for both points. The second condition guarantees that B(p) is proportional to Λo for
them. The solution to relations (5.18) is:

κ1 =1, κ0 =−κ̄−1, κ−1 =−κ̄−2. (5.19)

When κ1 = 1, then k = k(δq). This particular choice results in the MR1 scheme which

satisfies relations (5.19) and relations (4.7). If we set κ−1 = κ̄−2 =0, f
p.c.
q =0 and the solu-

tion (5.19) is the CLI scheme.

Parametrization properties and MGMR(C) sub-family. Let the local solution compo-
nents be labeled with “loc” and those in~rb−~cq with “nb”. The exact steady closure re-

lation (4.5) with (4.6), divided by α(u), becomes then for the MR(k)−family (including

correction f
p.c.(u)
q ):

j⋆q
loc+δq ploc

q +A(u)nb
(j⋆q

nb− j⋆q
loc+ploc

q )+B(u)nb
(pq

nb−pq
loc)

+A(p)nb
(Π⋆

q
nb−Π⋆

q
loc+m

(F)
q

loc
)+B(p)nb

(m
(F)
q

nb
−m

(F)
q

loc
)

+A(u)nb
Λo(F⋆

q
nb−Fq

loc)= j⋆q
b, (5.20)

where

A(p)nb
=

κ−1+κ̄−2

α(u)
=

(1+δq)2

2
−1−k, A(u)nb

=
δ2

q

2
,

B(u)nb
=−

δ2
q

4
−Λe A(p)nb

, B(p)nb
=−Λo

δ2
q

2
− A(p)nb

2
.

(5.21)

The MR1 solution yields A(p)nb
=0 and all coefficients (5.21) satisfy the sufficient con-

ditions (4.7), in agreement with the analysis above. Another possible solution is to set
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A(p)nb
= CΛo, then all coefficients in relation (5.20) satisfy the conditions (4.7). This re-

sults in sub-family MGMR(C),

MGMR(C) : k= k(C)= k(δq)−CΛo, Cmin≤CΛo ≤0. (5.22)

In principle, C may represent a constant or a function of δq and/or Λeo. The stability
bounds yield

κ1 =
(1+δq)2+2CΛo

(1+δq)2−2CΛo
∈ [0,1]

and all other coefficients inside [−1,1] when

Cmin =

{
−2δq− 3

2 δ2
q for 0≤δq ≤δ0 (κ0 =1),

δ2
q

2 −1 for δ0≤δq≤1 (κ̄−1 =1),

where δ0 =
√

3−1
2 . MGMR(C) may show superior stability properties in comparison with

MR1: MR1 presents the limit of MGMR(C) when C → 0, e.g. when δq → 0 or Λo → ∞.
The MGMR(C) sub-family guaranties equal steady solutions on a given grid when the
hydrodynamic numbers and Λeo are fixed provided that C takes the same value, e.g., if

0≤Λo =
Λeo

Λe
≤Λo

max,

then
Cmin

Λo
max ≤C≤0.

The MGMR(C) family cancels the γ(p)∂2
qΠ⋆

q term in the closure relation when C=δq:

MGMR2: k= k(C)= k(δq)−δqΛo. (5.23)

The MGMR2 yields then the triplet j(3)/Π(3)/F(1), i.e., it is exact for parabolic velocity
and pressure distributions. However, its coefficient κ1 exceeds 1 (C >0 when δq >0) and
it remains stable only when the free parameter Λo is very small (typically, Λo ≈ 10−2).
The MGMR2 is then too restrictive for general modeling, but allows to verify the third-
order expansion and boundary analysis. As an example, the MGMR2 is exact for the
parabolic pressure and linear velocity solutions [33] for the incompressible Navier-Stokes
equations, with and without forcing. We discuss these solutions in [22].

5.2.4 Special links with M
(u)
q

For the first-type links, we restrict the five population schemes to the two-point form (4.2).
One can also switch to the MLI(α(u)) family. For the second type of special links, the
schemes from MLI−family are applied in a “local” form (4.3). When

~rw̄ =~rb+δq̄~cq̄ ∈Γ(u),
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one can still apply them with the relations (5.14). For each of the two opposite velocities,
the exact steady closure relation is given by relation (5.11). When δq >0, δq̄ >0 and δq 6=δq̄,
the two conditions are independent and non-trivial. When two links have equal coeffi-

cients (e.g., δq = δq̄) and f
p.c.(u)
q =− f

p.c.(u)
q̄ , the sum and the difference of relation (5.11)

give two conditions:

β(u)pq(~rb)=α(u)t⋆q(jb
q(~rw)− jb

q(~rw̄)), (5.24)

[β( f )F⋆
q +β

(p)
q m

(F)
q + f

p.c.(u)
q ](~rb)=α(u)

δ2
q

2

j⋆b
q (~rw)−2j⋆q (~rb)+ j⋆b

q (~rw̄)

δ2
q

. (5.25)

The LI and MLI families yield β(u)=α(u)δq such that the first condition constrains pq(~rb) to
its directional central approximation. The second constraint vanishes for the MLI family

if f
p.c.(u)
q is computed with relation (5.6) using relations (5.14). Then the obtained solution

loses its uniqueness. We recommend to use (for second-type links only) a m
(F)
q -based

approximation instead of relations (5.14):

∂2
q j⋆q (~rb,t)≈−

m
(F)
q −∂q

f .dΠ⋆
q

Λe
, ∂q

f .d
Π⋆

q =−
d

∑
α=1

∂
f .d
α Π⋆

qcq̄α,

∂
f .d.
α Π⋆

qcq̄α =Π⋆
q(~rb+cq̄α)−Π⋆

q(~rb).

(5.26)

We assume here that the cq̄α are parallel to the principal coordinate axis. A sub-set of
the next grid neighbors {~rb +cq̄α} is available, except perhaps for some specific “sharp
corner” discretization.

5.3 Numerical example

Several Stokes and Navier-Stokes flows around cubic arrays of spheres, square array of
cylinders, reconstructed fiber materials and moving solids in [16], using the d3Q15 veloc-
ity set, and with body-centered cubic arrays of spheres and a random-size sphere-packed
porous medium in [40], using d3Q19 velocity set, have validated the multi-reflection ap-
proach for arbitrary shaped, relatively smooth boundaries. They have confirmed the high
accuracy of the MR(k) family in the context of moderate resolutions. Using the BB and
MR1, the permeability (3.10) of any porous structure is viscosity independent when the
free eigenvalue function Λo varies together with Λe such that Λeo = ΛeΛo keeps a con-
stant value. These numerical results have been formally obtained with MRT models but
in their reduced, TRT version (see also in Section 8).

Let us here give only one example. We consider again a Stokes flow around a cubic
array of spheres and use the d3Q15 velocity set. For the two most dense arrays the first-
type links appear. For them we switch MR1 to the two points form (4.2). The relative
error

E(r)(k)= k/kre f −1
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Table 6: Comparison of the relative permeability errors E(r)(k)[%] for a cubic array of spheres in a 253 box
using several link-wise boundary schemes. The error is controlled by Λeo for BB, CLI, MR1 and MCLI. The

steady solutions are identical for all MLI(α(u)) schemes (MCLI here) and for CLI and all MGLI(α(u)) schemes,
respectively.

χ Λeo = 3
16 Λeo = 1

4 Λeo = 3
4

BB CLI MR1 MCLI BB CLI MR1 MCLI BB CLI MR1 MCLI

0.5 −1.0 0.57 −0.42 −6.6×10−2 0.16 1.55 −0.14 0.29 7.2 8.0 1.8 2.7
0.6 −3.0 0.05 −0.46 −0.12 1.83 0.95 −0.22 0.20 4.9 6.9 1.5 2.4
0.7 −2.1 0.10 −0.44 −0.12 0.87 1.03 −0.23 0.17 6.4 7.2 1.3 2.1

0.85 −1.5 1.1 −0.35 −4×10−4 3.2 2.4 −0.23 0.22 13 11 0.6 1.6
0.90 −4.4 −0.05 −0.67 −0.16 2.59 1.4 −0.5 0.1 8.0 10.1 0.16 1.6
0.95 −4.3 0.28 −0.56 0.05 2.28 2.0 −0.46 0.34 9.7 13 0.22 2.2

is computed with respect to the reference permeability value kre f , based on the quasi-
analytical solution for the drag force on a sphere given in [1, 25, 42]. Exact formulas, the
tabulated values we are using and the numerical parameters can be found in [16].

We confirm that the macroscopic solutions and permeability values are identical and con-
trolled by Λeo for CLI and MGLI(α(u)), e.g. MGULI/MGDLI and MGYLI. The solutions
are also controlled by Λeo for MLI(α(u)) and MGMR(C) families (with MR1 as a partic-
ular element). We start from a uniform density and zero velocity equilibrium distribu-
tion. The convergence to steady state differs, because the coefficients are different, but
the number of steps has typically the same order of magnitude within one family when
the viscosity and Λeo are fixed. Higher Λeo values may accelerate the convergence at
fixed viscosity. At the same time, the errors generally increase with Λeo, owing to the
increase of the coefficients in front of the higher-order derivatives in the bulk and bound-
ary macroscopic relations. The relative errors in permeability in Table 6 are given for
Λeo = { 3

16 , 1
4 , 3

4}, versus relative solid concentration values χ = c/cmax, cmax = π/6. It is

noted that Λeo =
3

16 (3
4 ) yields for MGLI the exact parabolic flow in a straight channel with

a distance δq = 1
2 (respectively, δq =1) to boundaries. We keep then Λeo =

3
4 as a reasonable

upper accuracy limit. The results with BB and MR1 for Λeo = 3
16 are the same as in [16]

(Table IV therein).

The accuracy of the “magic” linear schemes (see CLI in Tables 6 and 7) clearly sur-
passes the bounce-back rule for Λeo = 3

16 but is similar to it for Λeo = 3
4 . This indicates

once more the role of Λeo on the actual second-order error. There is no solution for Λeo

which gives the best accuracy for the any geometry. It often happens that the error goes
through zero when Λeo varies inside the interval [0,1] (here, inside [ 3

16 , 1
4 ] for MCLI and

[ 1
4 , 3

4 ] for MR1), resulting in a very high precision for particular Λeo values. One should

keep Λeo, roughly speaking, below 3
4 for linear schemes and not much higher than 1 for

parabolic schemes. Related to truncated terms, e.g., γ(p)∂2
qΠ⋆

q , the difference between the
results obtained with MR1 and MGMR(C) depends on a selected value C, and converges
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Table 7: Comparison of the relative permeability errors E(r)(k)[%] for a cubic array of spheres in a 253 box
using linear schemes when Λeo = 3/16. The permeability is independent of the viscosity ν only for CLI when
Λeo is fixed.

χ ∀ν ν= 1
30 ν= 1

6 ν= 1
2 ν= 3

2

CLI ULI/DLI YLI ULI/DLI YLI ULI/DLI YLI ULI/DLI YLI

0.5 0.57 0.9 1.2 2 3.5 4.3 8.0 8.8 16
0.6 0.05 0.3 0.6 1.3 2.8 3.3 7.1 7.8 16
0.7 0.1 0.4 0.8 1.4 3.2 3.6 8.1 8.4 18
0.85 1.1 1.7 2.3 3.6 6.6 7.7 15.5 17 34
0.95 0.28 1.0 1.9 4.0 8.1 10.3 21.3 24.2 50.4

to zero when C→0. We detect usually that MR1 results are slightly more accurate.

In Stokes flow modeled with ULI/DLI and YLI, the second-order boundary error,

with respect to the viscosity independent solution ν~j, varies as |δq− 1
2 |Λ2

e and 1
2 Λ2

e , re-
spectively (see the coefficients in front of ∂2

q j⋆q in Table 5). One should expect then the
increase of errors in permeability measurements with Λe, even when Λeo is fixed. It is
noted that for YLI this error does not vanish when δq = 1

2 . The results in Table 7 are com-
puted with ULI/DLI and YLI (they coincide for ULI/DLI with those in Table V in [16]
when ν = 1

30 (τ = 0.6 there) and ν = 1
2 ). The results with CLI are those from the previ-

ous table. We observe that CLI overtakes ULI/DLI in accuracy even for relatively small
viscosity. In its turn, ULI/DLI surpasses YLI by a factor 2 for all tests. Although the sit-
uation may in principle become inverse, for other Λeo value and/or smaller viscosities,
we return to this conclusion systematically. Finally, the errors increase rapidly with the
viscosity and they reach, roughly, those of bounce-back (see in previous table) already for
ν= 1

6 . Although one could advocate the use of small viscosity values (λe <−1), we em-
phasize that the convergence time increases as the inverse of ν, even when Λeo is fixed. In
case of the BGK, Λeo behaves as ν2 and requires the use of even smaller viscosities. Also,
it is not possible to keep small values for two viscosities, e.g., for two phase simulations
with high viscosity ratio.

5.4 Staggered invariants

Spurious conserved quantities have already been known for Lattice Gas modeling and
have been discussed by Zanetti in [48].

5.4.1 One particular staggered solution

We will refer here to “staggered solution” as a one dimensional velocity component
uy(y,t) which oscillates between two time measurements in a periodic channel composed
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of Ny horizontal lines (numbered with superscript):

u
(2l)
y (t)=(−1)t+1us, l =1,2,··· ,Ny/2,

u
(2l−1)
y (t)=(−1)tus, l =1,2,··· ,(Ny+1)/2, t=0,1,2,··· .

(5.27)

Substituting the equilibrium distribution with the staggered solution (5.27) (and pq = 0,

m
(F)
q =0, F⋆

q =0) into the exact closure relation, one finds that M
(u)
q −scheme supports it if,

necessarily:

(κ1−κ0−κ̄−1+κ−1+κ̄−2)us =us. (5.28)

Since
A+ =κ1+κ0+κ̄−1+κ−1+κ̄−2 =1

for all M
(u)
q schemes, then the necessary conditions are:

κ0+κ̄−1 =0, κ1+κ−1+κ̄−2 =1. (5.29)

These conditions are met by BB, CLI/MCLI and MR1. The f
p.c.(u)
q correction (5.7) van-

ishes for MR1 on the solution (5.27), the BB, CLI and MR1 schemes support then the

staggered solution exactly. The f
p.c.(u)
q reduces to α(u) δ2

q

2 ∂2
q j⋆q for MCLI, and it differs from

zero for the solution (5.27) unless δq =0.
A simple initialization of the staggered solution (5.27) in an open channel with the

no-slip horizontal walls confirms that it is kept by the BB, CLI and MR1 but it is damped
for MCLI (except when δq =0). The oscillating vertical velocity can coexist with the phys-
ical solution of a problem, e.g. the channel flow invariant along its direction. A simple
method to kill it is to use the “delayed” value f̃q(~rb,t−1) of the outgoing population. The
“delayed” bounce-back is therefore:

fq̄(~rb,t+1)= f̃q(~rb,t−1). (5.30)

The use of the “delayed” values can worsen, however, the conservation and stability
properties of the scheme. We mention that the oscillations in time are not restricted to
one dimension in space in closed boxes. Their development is related to the existence of
staggered invariants supported by the boundary conditions.

5.4.2 Staggered invariants of the BB, CLI and MR1 schemes

The staggered invariant obeys the relation

S(t)=−S(t+1) then S(t)+S(t+1)=0, ∀t. (5.31)

In an open channel consisting of N⊥ lines parallel to the solid walls, the following com-
binations of the perpendicular momentum values ~Jn(~r,t) satisfy this relation for BB, CLI
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and MR1:

N⊥=2K+1 :

S(t)=

(
K

∑
l=1

~J
(2l)
n −

K+1

∑
l=1

~J
(2l−1)
n

)

−κ0

(
K

∑
l=1

~J
(2l)
n −

K

∑
l=2

~J
(2l−1)
n

)

+κ−1

(
K−1

∑
l=2

~J
(2l)
n −

K

∑
l=2

~J
(2l−1)
n

)

,

N⊥=2K :

S(t)=

(
K

∑
l=1

~J
(2l)
n −

K

∑
l=1

~J
(2l−1)
n

)
−κ0

(
K−1

∑
l=1

~J
(2l)
n −

K

∑
l=2

~J
(2l−1)
n

)

+κ−1

(
K−1

∑
l=2

~J
(2l)
n −

K−1

∑
l=2

~J
(2l−1)
n

)

.

(5.32)

Owing to the momentum conservation by the collision operator, the total normal mo-
mentum is exchanged (no forcing) for even and odd numbered lines, excepted at the
boundary lines. Relations (5.32) are derived by replacing the incoming populations with
their actual solutions. They combine the difference in total perpendicular momentum for
even and odd numbered lines in the initial column (first term in the RHS, for BB, CLI
and MR1), in the column reduced by two boundary lines (second term in the RHS, for
CLI and MR1), and finally, in a one reduced by two lines near each boundary (last term
in the RHS, for MR1). The following relations illustrate a derivation of this solution for
CLI scheme (κ1 =1, κ0 =−κ̄−1) when N⊥ =2K+1, then:

(
K

∑
l=1

~J
(2l)
n −

K+1

∑
l=1

~J
(2l−1)
n

)
(t+1)=

(
K+1

∑
l=1

~J
(2l−1)
n −

K

∑
l=1

~J
(2l)
n

)
(t)+κ0

~∆b(t),

(
K

∑
l=1

~J
(2l)
n −

K

∑
l=2

~J
(2l−1)
n

)
(t+1)=

(
K

∑
l=2

~J
(2l−1)
n −

K

∑
l=1

~J
(2l)
n

)
(t)+~∆b(t), (5.33)

~∆b(t)=



 ∑
q∈Π(u)

f̃q
(2K)

(t)~cqn+ ∑
q∈Π(u)

f̃
(2K+1)
q̄ (t)~cq̄n



+



 ∑
q∈Π(u)

f̃q
(2)

(t)~cqn+ ∑
q∈Π(u)

f̃
(1)
q̄ (t)~cq̄n



.

Combining these relations, one gets relation (5.31) with S(t) given by the first rela-
tion (5.32) when κ−1 = 0. For the bounce-back (κ0 = 0, κ−1 = 0), the staggered invariant
represents the difference of the total normal momentum for even and odd numbered
lines. One can trigger the staggered vertical velocity (5.29) initializing its uniformly,
uy(t = 0) = u0, in open channel when Ny = N⊥ is odd. Substituting Jn(t = 0) = u0 into
relation (5.32), one gets the solution for the staggered amplitude |us|:

N⊥=2K+1 : |us|= (1+κ0+κ−1)|u0|
N⊥−(N⊥−2)κ0+(N⊥−4)κ−1

. (5.34)
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For the bounce-back, the initial value is equally distributed over all nodes: |us|=|u0|/N⊥.
When δq =0, the coefficients coincide for CLI, MCLI and MR1 (κ1 = κ0 =−κ̄−1 =1, κ−1 =
κ̄−2 =0) and all of them converge to the solution (5.34) where the amplitude is equal to
its initial value, |us|≡ |u0|. When the number of the grid lines parallel to the solid wall is
even, N⊥=2K, the staggered invariant (5.32) vanishes on the uniform initial distribution
uy(t=0)=u0. One can provoke the solution (5.27) initializing uy =u0 for one row, say the
last one. Then

|us|= |u0|
N⊥−(N⊥−2)κ0+(N⊥−4)κ−1

,

and, again, |us|= |u0|/N⊥ for the bounce-back. In closed boxes the staggered invariants
exist but in a more complicated form.

5.5 About the uniqueness of the steady solutions

Starting from different (arbitrary) initial distributions, one could expect to obtain equal
steady macroscopic and population solutions. We distinguish three contrary situations.

The first one is when the obtained solution is not steady but oscillates for each two
(or more) time moments. The boundary schemes which do not maintain the simple stag-
gered solution (5.27), e.g., the LI schemes (excepted BB and CLI) and the parabolic ones
(excepted MR1 and MCLI (δq = 0)), usually do not show the appearance of oscillating
solutions in closed rectangular boxes. One can try to avoid their development with the
help of an accurate initialization, e.g. [38], or removing at t=0 the open channel staggered
invariants (5.32), at least.

The second situation happens when the solution for second-type link is decoupled
from the evolution of the whole system. Indeed, the case δq = δq̄ = 0 is degenerated for
the link-wise approach since two anti-parallel links cut the wall at the same point (see in
Fig. 3). One example gives then the ULI scheme. Applied in a local form (4.3) for such a
link, its solution is:

fq̄(~rb,t+1)= fq(~rb,t)−2j⋆b
q (t̂), fq(~rb,t+1)= fq̄(~rb,t)+2j⋆b

q (t̂).

These two anti-parallel populations are decoupled from the others (their initial values are
exchanged for no-slip condition). The local MGULI scheme,

fq̄(~rb,t+1)= fq(~rb,t)−2j⋆b
q (t̂)+m

(F)
q (t),

fq(~rb,t+1)= fq̄(~rb,t)+2j⋆b
q (t̂)−m

(F)
q (t),

couples the second-type link with the other corner populations via m
(F)
q (t) (note that the

sum of two solutions remains equal to its initial value). We recommend to use MGULI for
the second-type links in solid grid vertexes, bearing also in mind that it yields the correct
parametrization properties, or to avoid the solid vertexes on the discretization grid.
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The third situation is when the number of the non-trivial independent boundary con-
straints is less than a number of the unknown population components. Let us consider
the “parabolic” schemes in a standard node when δq = 0 (~rb =~rw). The MCLI and MR1
coincide then (MGMR(C) reduces to MR1) and κ0 =1, κ1 = κ̄−1 =0 for MULI=MYLI, two
other coefficients vanish for all schemes. Replacing fq̄(t+1) with its boundary solution,
e.g.,

fq̄(t+1)= fq(t+1)+ f
p.c.(u)
q −α(u)e−q (~jb)

for MULI, and substituting f
p.c.(u)
q , one gets the normal momentum values ∑

Q−1
q=1 fq(t+

1)cqn as:

MULI, MYLI : jn(t+1)= jb
n(t̂),

MCLI, MR1:
1

2
(jn(t+1)+ jn(t))= jb

n(t̂).
(5.35)

Computing the anti-symmetric component in a given boundary node,

n−
q (t+1)=

fq(t+1)− fq̄(t+1)

2
−e−q (t+1),

one gets for mq =λon−
q :

MULI, MYLI : mq(~rb,t+1)=mq(~rb,t)−λo(e−q (~rb,t+1)−e−q (~jb(t̂))),

MCLI, MR1: mq(~rb,t+1)=mq(~rb,t)−λo(e−q (~rb,t+1)+e−q (~rb,t)−2e−q (~jb(t̂)).
(5.36)

Substituting here the solution (5.35), mq(t) becomes fixed for the populations perpendicular
to the boundary:

MLI(α(u)), MR1: mq(~rb,t+1)=mq(~rb,t), |cqn|=1, |cqτ |=0. (5.37)

Numerical simulations with the parabolic schemes in open and closed rectangular boxes,
taking δq = 0 for the vertical and/or horizontal boundaries, confirm that mq(t)≡mq(0)
for the normal populations. Exact steady closure relation (5.11) becomes for all cut links
when δq =0:

MGLI(α(u)), CLI : (j⋆q +β( f ⋆)(F⋆
q −m

(F)
q ))(~rb)= j⋆q (~rw), ~rb =~rw, (5.38)

MLI(α(u)), MR1: j⋆q (~rb)= j⋆q (~rw), ~rb =~rw. (5.39)

The conditions imposed by relation (5.38) constrain not only j⋆q but also mq. This con-

straint is not exact unless β(p⋆)m
(F)
q +β( f ⋆)F⋆

q + f
p.c.(u)
q vanishes, e.g. for Couette flow. In

contrast, the closure relation (5.39) is exact but it does not restrict the non-equilibrium
components. The obtained steady velocity solution is then exact at boundary points for
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any solution obtained in the bulk. The population solution depends however on the ini-
tial values mq⊥(~rb,0) assigned for the normal links q⊥. For some (invariant) situations
discussed in [22] the associated accommodation layer has not any impact on the velocity
solution. In general, however, it is not so and the velocity solution loses the uniqueness,
depending on the initialization of mq⊥(~rb,0).

We recommend to avoid the use of the parabolic schemes (based currently on the

explicit in time f
p.c.(u)
q corrections) when δq =0. Finally, we emphasize that the situation

δq =0 can be avoided by replacing the grid solid vertex by the next neighbor node, then
δq =0 is replaced by δq =1, but this may increase the truncation errors.

5.6 Time approximation

The third-order accurate closure relation (5.3) is:

MLI(α(u)), MR(k) : (j⋆q +δq∂q j⋆q +
1

2
δ2

q ∂2
q j⋆q +α(t)∂t j

⋆
q )(~rb,t)= j⋆q (~rw, t̂)

LI(α(u)) : (α(u)(j⋆q +δq∂q j⋆q +β(p⋆)m
(F)
q +β( f ⋆)F⋆

q +α(t)∂t j
⋆
q )+ f

p.c.(u)
q )(~rb,t) (5.40)

=α(u) j⋆q (~rw, t̂).

We conjecture that for time dependent boundary values, α(t) indicates at what time value

t̂= t+α(t) it is better to set w
(u)
q (~rw, t̂).

When f
p.c.(u)
q =0 then

α(t) =
D−+1

α(u)
=

1

2
−Λo

(see α(t) in Table 2 with relations (4.8) for D−). It is noted that D− is the coefficient of mq

(since mq contains ∂t j
⋆
q via relations (2.22)) and +1 comes from the change of the momen-

tum in time:
(α(u)−1)j⋆q (~rb,t)+ j⋆q (~rb,t+1)=α(u) j⋆q (~rb,t)+∂t j

⋆
q .

Then, if f
p.c.(u)
q includes βα(u)m

(F)
q (for some β), α(t) is increased with β and becomes equal

to 1
2−Λo+β. When the second-order spatial error is canceled, as for the MLI(α(u)) and

MR(k) families, we suggest that this expression presents an effective estimate of α(t), e.g.
β = Λo for MR(k) and β = Λo+|δq− 1

2 | for MULI/MDLI. The resulting coefficient α(t) is

presented in Table 8. For the principal parabolic schemes, α(t) is found between 1
2 and 1.

The second-order space and times errors are difficult to separate for the LI(α(u)) fam-

ily. The formal estimate for α(t) is 1
2−Λo+β, with β again as the m

(F)
q coefficient in f

p.c.(u)
q .

However, when the component −Λo(∂t j
⋆
q +∂qΠ⋆

q−F⋆
q ) of the second-order error is ex-

pressed via Λe∂
2
q j⋆q , as in the special solution (5.12) for Λeo(δq), it contributes to space

error and we suggest that the effective coefficient reduces then to 1
2 +β. We summarize

this in Table 8.
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Table 8: Coefficient α(t) in closure relation (5.3). When the second-order time and space errors are coupled for
the linear schemes, e.g., via the effective solutions for Λeo, the solutions of the parabolic schemes (second line)
are valid for linear schemes and replace the fourth line.

M
(u)
q MULI MDLI MYLI MCLI, MR(k)

α(t) 1−δq δq 1 1
2

M
(u)
q MGULI MGDLI MGYLI CLI, BB

α(t) 1−δq−Λo δq−Λo 1−Λo
1
2−Λo

We verify this analysis in [22] modeling time-harmonic flow [26,47] with time depen-
dent boundary conditions at the inlet/outlet sections. This and other tests (e.g., transient
Couette flow and Taylor vortex flow) mainly indicate that MR1 behaves more accurately
when the boundary values are estimated in the middle of the time interval, t̂= t+ 1

2 ; CLI

and MCLI have a better accuracy with t̂ = t+ 1
2 but only when δq ≤ 1

2 , then the results are

close for α(t) = 1
2 and α(t) =1, and t̂ = t+1 gets better results when δq →1. The MYLI and

MGYLI behave more accurately with t̂= t+1 for all δq.

6 M
(p)
q -schemes for pressure boundary condition

We assume that the pressure distribution and the tangential velocities are prescribed at
the boundary Γ(p):

P|Γ(p) = Pb(~rw,t), ~uτ|Γ(p) =ub
τ(~rw,t), ~rw∈Γ(p), τ ={τ1,τ2}. (6.1)

The multi-reflection combination Mq is called M
(p)
q for the Dirichlet pressure condition.

The M
(p)
q −scheme follows relations (4.2) with:

fq̄(~rb,t+1)= M
(p)
q (~rb,t),

M
(p)
q = R

(p)
q (~rb,t)+ f

p.c.(p)
q (~rb,t)+w

(p)
q (~rw, t̂), q∈Π(p),

w
(p)
q =−α(p)e+

q (~rw, t̂)=−α(p)Π⋆
q(c−2

s Pb,~jb,ρ0),

f
p.c.(p)
q =−β(u)pq(~rb,t).

(6.2)

Table 9 summarizes the principal M
(p)
q schemes developed in this paper: (pressure anti-

bounce-back) PAB, (pressure linear interpolation) PLI and the five-populations based PMR(k)

family, where k is a free parameter. Table 10 presents the closure conditions of the M
(p)
q
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Table 9: The coefficients κ1, κ0, κ−1, κ̄−1, κ̄−2 for the M
(p)
q −schemes.

M
(p)
q PAB PLI PMR(k)

κ1 -1 1
2−δq 1+λe

κ0 0 δq−1 −1+
3λe(k−2)+δqk(2+3λe)

4

κ−1 0 0 − kδq

2 −λe
k−2+3δqk

4

κ̄−1 0 1
2 1+

δqk(λe−2)+λe(3k−2)
4

κ̄−2 0 0
−kδq(λe−2)−λe(k−2)

4

δq
1
2 0≤δq ≤1 0≤δq ≤1

schemes. We fit it to the link-wise Taylor expansion for Π⋆
q :

α(p)(Π⋆
q +δq∂qΠ⋆

q +
1

2
δ2

q ∂2
qΠ⋆

q +α(t)∂tΠ
⋆
q)(~rb,t)=α(p)Π⋆

q(~rw, t̂)+Err(p),

Err(p) =Err
(p)
1 +Err

(p)
2 +Err

(p)
3 , Err

(p)
1 =(α(p)δq−β(p))∂qΠ⋆

q ,

Err
(p)
2 =−γ(u)∂2

q j⋆q , Err
(p)
3 =−(γ(p)+β(u)Λo−

α(p)

2
δ2

q)∂2
qΠ⋆

q ,

α(t) =−1+B−

α(p)
.

(6.3)

All schemes yield α(u) =0 (i.e., D− =−1, β( f ) =0) such that the terms associated with jq,
∂t jq and the forcing vanish from the closure relation (see in Table 2). All schemes yield

β(p) =α(p)δq, 0≤δq ≤1,

then Err
(p)
1 vanishes (with δq = 1

2 for PAB). The first gradient β(u)∂q j⋆q is removed with the

help of the correction f
p.c.(p)
q (see (6.2)). Since pq(j⋆q ) includes Λo∂qF⋆

q , the force gradient

term γ( f )∂qF⋆
q , γ( f ) = β(u)Λo, also vanishes from the closure relation (see relations (4.9)).

The M
(u)
q needs ρ(~rw) to compute w

(u)
q (~rw, t̂) and, unless gS = 0, the M

(p)
q needs the

boundary velocity values, ~u(~rw, t̂), to compute the non-linear term in w
(p)
q (~rw, t̂), unless

gS =0. The simplest directional f.d. approximation can be used:

~u(~rw, t̂)≈~u(~rb,t)+δq(~u(~rb,t)−~u(~rb−~cq,t)), if ~cq̄ /∈Π(u)(~rb),

~u(~rw, t̂)≈~u(~rb,t)+
δq

δq̄
(~u(~rb,t)−~u(~rw̄,t)), if ~cq̄ ∈Π(u)(~rb), δq̄ 6=0.

(6.4)

The last relation applies for the second-type link when ~rw ∈ Γ(p), ~rw̄ ∈ Γ(u) and δq̄ 6= 0.

Otherwise, when δq̄ =0, then~rw lies on Γ(u) and one can compute the f.d approximation
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Table 10: Coefficients of the pressure closure relations with the f
p.c.(p)
q correction (6.2). The LHS is a linear

combination of the elements in the first line. The RHS is equal to −w
(p)
q /α(p) = Πq(~rw, t̂). PAB: α(p) =−2,

PLI: α(p) =−1, PMR(k): α(p) = kλe.

LHS Π⋆
q ∂qΠ⋆

q ∂2
qΠ⋆

q ∂2
q j⋆q ∂tΠ

⋆
q

M
(p)
q α(p)/α(p) β(p)/α(p) (γ(p)+β(u)Λo)/α(p) γ(u)/α(p) α(t)/α(p)

PAB 1 1
2 0 − 1

2 Λe
1
2

PLI 1 δq 0 −δqΛe 2−δq

PMR(k) 1 δq −( 1
2 +δq)+

1
k 0 1

2 +Λe(
2
k +δq)

PMR1

(k=1) 1 δq
1
2−δq 0 1

2 +Λe(2+δq)

PMR2

(k= 2
(1+δq)2 ) 1 δq

1
2 δ2

q 0 1
2 +Λe((1+δq)2+δq)

along the coordinate axis,

∂q~u=
d

∑
α=1

∂α~ucqα,

similar to relations (5.26). Linear velocity approximations, which we use for the non-
linear term only, are formally consistent with the O(ε3) overall accuracy. When the tan-
gential velocity uτ is prescribed, one must only approximate the normal velocity compo-
nent, un(~rw, t̂).

6.1 Five populations based, PMR(k)-family

This family sets γ(u) = 0 (Err
(p)
2 = 0) with the help of its coefficients, keeping κ−1 and

α(p) as two free parameters. The range of the coefficients improves if one sets: α(p) =
kλe and specifies κ−1 as a linear function of λe (see in Appendix B). The coefficients
κ1−κ̄−2 are found inside the heuristic stability interval [−1,1] when 2

3 ≤ k ≤ 6
5 and k is

independent of δq and λe. The PMR(k) is considered as a principal pressure family with

j(3)/Π(2)/F(2) accuracy, i.e. exact for linear pressure and parabolic velocity distribution.
We apply mostly PMR1=PMR(k=1). The particular choice, PMR2=PMR(k=2(1+δq)−2)

yields a triplet j(3)/Π(3)/F(2): it cancels Err
(p)
3 owing to k and becomes exact for parabolic

pressure and velocity solutions. The PMR2 yields all its coefficients inside [−1;1] for all
λe. The coefficient α(t) in Table 10 indicates that the pressure boundary value should be
prescribed in the middle of the time interval when Λe → 0 (i.e. Λeo → 0 and truncation
errors vanish). We emphasize that the estimations for α(t) are only indicative, its actual
values, e.g. for compressible flow, will depend on the coupling with the second-order
spatial pressure gradients governed by the coefficients γ(p).
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Parametrization properties. Again, the local solution components are labeled with “loc”
and those in ~rb−~cq with “nb”. Then the exact steady closure relation (4.5) with (4.6)
becomes for the PMR(k)−family:

(A(p)Π⋆
q)

loc
+(A(p)Π⋆

q)
nb

+(B(p)m
(F)
q )

loc
+(B(p)m

(F)
q )

nb

+A(u)nb
(j⋆q

nb− j⋆q
loc)+B(u)nb

(pq
nb−pq

loc)

+A(u)nb
Λo(F⋆

q
nb−Fq

loc)=α(p)Π⋆
q

b, (6.5)

where

A(p)loc

λe
=−1+k(

3

2
+δq),

A(p)nb

λe
=1−k(

1

2
+δq),

B(p)loc

λe
=−3

4
(k−2)+δqk(Λeo−

1

2
),

B(p)nb

λe
=

1

4
(k−2)−δqk(Λeo−

1

2
),

A(u)nb

λe
=δqkΛe,

B(u)nb

λe
=(

k

2
(1+δq)−1)Λe.

(6.6)

Multiplying the closure relation (6.5) by Λo/λe and provided that k is independent of
the eigenvalues (or depends on them via Λeo), the coefficients satisfy the sufficient con-
ditions (4.7). The PMR(k) family supports then exactly the parametrization of the steady
bulk solutions.

It is noted that for the PMR2 scheme k=2 when δq=0, then all coefficients (6.6) vanish

with the exception A(p)loc
=α(p) and the exact closure relation becomes:

Π⋆
q(~rb)≡Πb

q(~rw), δq =0, ~rb =~rw, q∈Π(p). (6.7)

Like the parabolic velocity schemes, PMR2 yields the exact closure condition for δq=0 and
may cause a loss of uniqueness, because of the lack of restriction on the non-equilibrium
part. We recommend then to use PMR1 when δq =0.

6.2 One-three populations based, PAB and PLI schemes

The coefficients of PAB and PLI are equal, respectively, to those of the anti-bounce-back
and three populations based Dirichlet schemes [18] for diffusion equations. The anti-
bounce-back is also used to prescribe the pressure at a free interface, e.g., in [34]. The

removal of ∂q j⋆q with f
p.c.(p)
q distinguishes the PAB and PLI from their diffusion analogs

and improves their accuracy. The exact steady closure relation for PAB (with δq = 1
2 ) and

PLI is:

α(p)(Π⋆
q +δqm

(F)
q )(~rb)=α(p)Π⋆

q
b. (6.8)
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These relations, and therefore the steady solutions, are equivalent for PAB and PLI for δq=
1
2 . They satisfy sufficient parametrization conditions (4.7) (multiplying the relation (6.8)

by Λo). These schemes do not remove however Err
(p)
2 with their coefficients, with the

exception of δq = 0 with PLI, where its closure relation reduces to exact condition (6.7).

We usually restrict the application of PLI and PAB to second-type links, where Err
(p)
2 can

be canceled with a help of the approximation (5.26):

f
p.c.(p)
q → f

p.c.(p)
q +F

p.c.−
q , F

p.c.−
q =−γ(u)∂2

q
f .d

j⋆q . (6.9)

Since γ(u)=Λe for PAB and δqΛe for PLI (see in Table 10), this correction does not modify

the parametrization properties for ν~j (Stokes) and~j′ (Navier-Stokes). Finally, α(t) = 1
2 for

PAB. For PLI, α(t)∈ [2,1] and α(t)→1 when δq →1 (we suggest then to use α(t) =1).

6.3 Special links with M
(p)
q

For the first-type links, we again replace f̃q(~rb−2~cq,t+1) with fq(~rb−~cq,t) (see in Sec-
tion 4.2). For the second-type links, we switch five-population schemes to PAB/PLI.

7 M
(m)
q -schemes for the mixed (pressure/tangential velocity)

boundary condition

Let {~n,~τ1,~τ2} be a local coordinate system built on the normal vector ~n, perpendicular to
the solid wall at~rw, with tangential vectors~τ={~τ1,~τ2}. The mixed scheme is constructed
to prescribe the pressure Pb = P(~rw, t̂) (as a normal condition) and the tangential velocity
~ub

τ(~rw, t̂) (as a tangential condition) at a smooth part Γ(p) of the solid boundary. Mixed
condition can be regarded as a particular form of the third kind condition [23]:

−P+2µ∂nun|Γ(p) =−Pb(~rw,t), ~rw ∈Γ(p),

~uτ−βν∂n~uτ |Γ(p) =~ub
τ(~rw,t), ~uτ ={uτ1

,uτ2},
(7.1)

when free parameter β is set equal to zero and the viscous stress component µ∂nun is
neglected, e.g., when the normal velocity components are nearly invariant along the nor-
mal at the inlet/outlet, as in straight long channels. A local node based approach [15]
prescribes the stress components for arbitrary shaped free interface. We believe that it
can be adapted for third kind boundary conditions. In this paper, we aim only to show
how the MR approach can be extended to mixed, pressure/tangential velocity Dirich-

let conditions. The main point is that the closure relations of M
(u)
q and M

(p)
q schemes

represent the Taylor directional expansion for e−q (~rw) and e+
q (~rw), respectively. They can-

not prescribe both equilibrium components for each link separately. The idea of the M
(m)
q
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scheme is to equate the total tangential projections to those of M
(u)
q schemes and the total

normal projection to one of M
(p)
q scheme.

Let {cqn,cqτ1
,cqτ2} be projections of~cq on the local coordinate vectors. Assuming that

both M
(p)
q (~rb) and M

(u)
q (~rb) are built for all links which cut the solid boundary Γ(p) at~rb,

we look for a local set of corrections {δ fq̄(~rb)}:

fq̄(~rb,t+1)= M
(m)
q , M

(m)
q = M

(p)
q +δ fq̄, q∈Π(p). (7.2)

Let us introduce δMq as:

δMq = M
(u)
q −M

(p)
q . (7.3)

The corrections {δ fq̄(~rb)} must satisfy the following (equivalent) conditions (the summa-

tion goes over all q∈Π(p))

∑ fq̄cqn =∑ M
(p)
q cqn ⇔ ∑δ fq̄cqn =0,

∑ fq̄c2
qτ1

cqn =∑M
(p)
q c2

qτ1
cqn ⇔ ∑δ fq̄c2

qτ1
cqn =0,

∑ fq̄c2
qτ2

cqn =∑M
(p)
q c2

qτ2
cqn ⇔ ∑δ fq̄c2

qτ2
cqn =0,

∑ fq̄cqτ1
cqτ2cqn =∑M

(p)
q cqτ1

cqτ2 cqn ⇔ ∑δ fq̄cqτ1
cqτ2 cqn =0,

∑ fq̄cqτ1
=∑M

(u)
q cqτ1

⇔ ∑δ fq̄cqτ1
=∑δMqcqτ1

,

∑ fq̄cqτ2 =∑M
(u)
q cqτ2 ⇔ ∑δ fq̄cqτ2 =∑δMqcqτ2 .

(7.4)

The third, fourth and last equations concern the three-dimensional models only. The two
last equations restraint the tangential velocity. The other conditions represent the normal
(pressure) constraints. Let us elaborate these relations for the simplest case when Γ(p) is
parallel to one coordinate axis.

7.1 d2Q9 velocity set

For the d2Q9 velocity set three equations are retained:

∑
q∈Π(p)

δ fq̄cqn =0, ∑
q∈Π(p)

δ fq̄c2
qτ1

cqn =0, ∑
q∈Π(p)

δ fq̄cqτ1
= ∑

q∈Π(p)

δMqcqτ1
. (7.5)

For a standard node with two incoming diagonal populations and one normal, the solu-
tion is:

d2Q9: δ fq̄ =− cq̄τ1

2 ∑
q∈Π(p)

δMqcqτ1
. (7.6)

As one could expect, the normal link sets the pressure condition:

δ fq̄ =0, M
(m)
q = M

(p)
q
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when cq̄τ1
=0. Replacing δMq with its definition, the solution, e.g., at inlet, becomes:

d2Q9: f1 = M
(p)
3 ,

f5 =
1

2
(M

(p)
6 +M

(p)
7 )− 1

2
(M

(u)
6 −M

(u)
7 ),

f8 =
1

2
(M

(p)
6 +M

(p)
7 )+

1

2
(M

(u)
6 −M

(u)
7 ). (7.7)

7.2 d3Q15 velocity set

The second and the third relation (7.4) are identical for a non-inclined wall. The solution
for the 5 incoming populations in a standard boundary node is:

d3Q15: δ fq̄ =− cq̄τ1

4 ∑
q∈Π(p)

δMqcqτ1
− cq̄τ2

4 ∑
q∈Π(p)

δMqcqτ2 . (7.8)

Again, the normal population (cqτ1
= cq̄τ2 =0) performs a pressure condition, δ fq̄ =0.

7.3 d3Q19 velocity set

For a non-inclined wall, the linear system (7.4) reduces to two sub-systems: one for
cqncqτ1

6= 0 and another one for cqncqτ2 6= 0 (e.g., when the inlet is perpendicular to the
x−axis, cqτ1

= cqy and cqτ2 = cqz). The first equation in (7.4) couples the two sub-systems.
The solution for each sub-system has a form (7.6):

d3Q19 : δ fq̄ =− cq̄τ1

2 ∑
q∈Π(p)

δMqcqτ1
, cqncqτ1

6=0,

δ fq̄ =− cq̄τ2

2 ∑
q∈Π(p)

δMqcqτ2 , cqncqτ2 6=0,

δ fq̄ =0, cqn 6=0, cqτ1
=0, cqτ2 =0. (7.9)

7.4 Special links with M
(m)
q

Computing M
(u)
q and M

(p)
q , one treats the special links along the rules specified for each

of these schemes. Their M
(m)
q combination is determined however only when the sys-

tem (7.4) is of full rank. This condition is naturally fulfilled in any “standard” boundary
node where all populations which bisect Γ(p) are put into Π(p)(~rb).

Let us illustrate now the situation in corners for the d2Q9 velocity set (Fig. 2). The
population f7(~rb) goes through the corner and cuts two boundaries, the vertical one Γ(p)

and the horizontal one Γ(u). When q = {3,6,7} are put into Π(p)(~rb), the solution (7.7) is
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used for { f1, f5, f8} and { f2 , f6} are defined with M
(u)
q . When q = 7 is put into Π(u)(~rb),

i.e., f5 = M
(u)
7 , then f3 and f6 perform the pressure condition:

f1 = M
(p)
3 , δ f1 =0, f8 = M

(p)
6 , δ f8 =0.

A more complicated combination of two (or more) conditions is possible but is not con-
sidered for the sake of simplicity.

7.5 Further simplifications

One needs to approximate uq(~rw) for two terms, w
(u)
q (~rw, t̂) and w

(p)
q (~rw, t̂) (the last one

when gS = 1). Assuming that the tangential velocity is prescribed, one can approximate
the normal velocity component with relations (6.4). Linear interpolations are sufficient

here for w
(u)
q (~rw, t̂), at least when ∂2

τnun=O(ε3) as typically happens for the straight chan-
nel flow at inlet/outlet. Indeed, the contribution from other second derivatives vanish
from the resulting closure relations owing to their projection on cqτ. In this way, when
the tangential velocity is approximately constant at the inlet/outlet or equal to zero, the lower

order M
(u)
q components (e.g. LI(α(u)) schemes) are sufficient for the mixed conditions.

The parabolic velocity components in mixed schemes gain usually in accuracy for non-
channel flows (see in [22]).

8 MR schemes with MRT

The boundary schemes are derived and analyzed above in the context of the TRT model.
The same solutions can be obtained using the multiple-relaxation-times (MRT) collision
operator, taking all the “symmetric” eigenvalues (associated with the even order poly-
nomial basis vectors) equal to λe and all the “antisymmetric” eigenvalues equal to λo.
However, with the help of distinct symmetric eigenvalues one can assign different val-
ues to the bulk and kinematic viscosities (for any c2

s ) and improve the stability and acous-
tic properties (see [36, 37]). In particular a high bulk viscosity can be used to damp the
acoustic waves generated by a time-dependent pressure field.

Let us denote the kinematic viscosity eigenvalue as λe. We suggest, based on the
form of the first order expansion for MRT models (see, e.g., [15, 29]), that under the
incompressibility assumption all the derived boundary schemes will keep their accuracy.
Indeed, a projection on the second and fourth order polynomial basis vectors (which

may have eigenvalues distinct from λe) is proportional to ∇·~j. For incompressible flows,

∇·~j=O(ε3), then

n+
q

(1)
=

pq

λe
+O(ε3)

and the subsequent space approximation keeps its TRT form. For transient flows, ∂tΠ
⋆
q

(also projected on the symmetric basis vectors) vanishes from the velocity closure rela-



I. Ginzburg, F. Verhaeghe and D. d’Humières / Commun. Comput. Phys., 3 (2008), pp. 427-478 469

tions owing to the selection of the coefficients. Let us consider now the antisymmetric
solution component in more detail.

Working with the mass/momentum conserving equilibrium (first setup in rela-
tions (2.15) and (2.18)), the values assigned to the relaxation parameters of the conserved
basis vectors are irrelevant for MRT. We assume therefore

~F =~F, S−
q = t⋆q(~F ·~cq)

for MRT. For cubic velocity sets, it is natural to prescribe equal antisymmetric eigenval-
ues, because of the symmetry. The MRT retains then, like TRT, only one anti-symmetric
eigenvalue function Λo. It follows that if the coefficients of the selected scheme and their
f

p.c.
q correction do not depend of the “symmetric” eigenvalues, one can apply them di-

rectly with MRT. This is the case of all the principal velocity schemes developed here.
Their explicit corrections are related to mq, equal to the sum of post-collision projections
on the antisymmetric MRT basis vectors (see also in [16]). However, the approxima-
tion (5.26) which we suggest for third-order accuracy in corners keeps its form for incom-
pressible flows only.

The principal f
p.c.(p)
q correction of the pressure schemes in relations (6.2) equals to

−β(u)pq(~rb,t). The coefficient β(u) = B−+D+ (see relations (4.9)) depends formally on
λe via D+. However, this correction can be computed in its original form, also valid for
MRT:

f
p.c.(p)
q =−(B−+(α(p)+1))pq(~rb,t)−α(p)n+

q (~rb,t). (8.1)

All other coefficients of PAB and PLI are independent of λe. It is not the case for the PMR
family and we suggest to compute its coefficients with the kinematic viscosity eigen-
value, under the incompressibility assumption. We emphasize that the estimation of the
coefficient α(t) for time dependent pressure conditions will change its form when the
symmetric eigenvalues are distinct, but, most likely, the limit for small viscosity values
will not be altered.

One should keep in mind that unlike the TRT where the Λeo combination is unique,
the degrees of freedom of the MRT operator are formed with all the possible Λeo combina-
tions of the symmetric/antisymmetric eigenvalues. In general, all of them may come as
higher-order coefficients in the expansion and influence the solution. Although at steady
state this contribution is shifted to the second-order, it spoils the exact parametrization
via Λeo. One should fix all “symmetric/antisymmetric” combinations, via “free” sym-
metric eigenvalues, when λe and λo vary with the viscosity and their combination Λeo is
fixed. The interplay between the values assigned to distinct magic combinations is not
yet fully understood for stability, higher-order accuracy and parametrization.

9 Conclusion

We presented the steady state recurrence equations for the TRT evolution operator and
derived the parametrization properties of their solutions in the bulk. One of our objec-
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tives was to show that there is a proper parametrization of the free “kinetic” collision
component which yields equal non-dimensional macroscopic solutions on a fixed grid.
This property is not available for the BGK model, where the second-order boundary er-
rors and all higher order bulk errors are related to powers of the kinematic viscosity.
Equivalent equilibrium functions enable the TRT model to operate easily with different
formulations for external source terms. In this context, an infinite expansion of the pop-
ulation solution is extended for variable mass and force sources.

When the coefficients of the link-wise boundary scheme satisfy some specific but
quite natural conditions, steady numerical solutions are parameterized exactly on a fixed
grid and depend, in addition to the hydrodynamic non-dimensional numbers, only on
the value assigned to the free collision parameter Λeo. This property conditions the nu-
merical efficiency of the method. Already known and new, velocity and pressure multi-
reflection type boundary schemes are analyzed with respect to this property. Bounce-
back, CLI from the LI(α(u)) family, MR1 and the sub-family MGMR(C) from the MR(k)
family are parameterized exactly as the bulk solution owing to a special form of their co-
efficients. New “parabolic” schemes: the velocity family MLI(α(u)) and the pressure fam-
ily PMR(k), also obey the parametrization conditions. We propose a special local correc-
tion which gets the parametrization property for “linear” velocity schemes based on two
or three populations. They form the MGLI(α(u)) sub-family and include MGULI/MGDLI
and MGYLI schemes which are based on the coefficients of references [5, 46].

The selection of the multi-reflection schemes among the infinite number of three-
or five-population combinations is currently based on the parametrization properties
and/or a heuristic stability argument which assumes that the coefficients of the MR
schemes stay inside the interval [−1,1] (see also [14, 16]). We find that MGULI/MGDLI
do not support staggered solutions and are robust. Their “parabolic” counter-parts
MDLI/MULI, as well as MCLI and the sub-family MGMR(C), are often more stable than
the MR1 scheme, but the latter is in general more accurate. In the future, we hope to
deepen our understanding of the relation between the selection of the boundary scheme
and the stability/convergence of the whole algorithm.

Once a generic closure relation for a given family of boundary schemes (e.g., linear,
parabolic or diffusive) has been chosen, a Taylor expansion, either along a link or the
normal to a wall, allows one to express the difference between the actual boundary con-
dition and the prescribed one. This difference can be interpreted along different lines.
Since Λeo is proportional to the square of the kinematic viscosity for the BGK operator,
one possibility is to express the difference in terms of powers of the Knudsen number,
e.g., in [4, 43, 45], and hope this can be suitable to model rarefied gas flows. As one ex-
ample, the Taylor-type closure relation [43] for a mixture of bounce-back and specular
reflection is fitted to boundary layer analytical solution [7], with the help of specific force
weights distribution (assuming a Poiseuille flow). However Λeo is a free parameter of
the TRT/MRT models, making questionable the “kinetic” interpretation of Lattice Boltz-
mann closure relations. Whatever, we emphasize that the generic closure relation (5.3)
allows to match the coefficients of the first and second gradients in boundary layer so-
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lutions via the coefficients of the multi-reflections, with or without the help of Λeo. The
developed methodology is not restricted to link-wise boundary schemes and can be eas-
ily extended for node based approaches or diffusive type schemes, some examples being
found in [9, 12, 14].

The multi-reflection approach guarantees neither local nor global mass conservations.
It only tries to minimize the discrepancy with the bulk solution, and mass fluctuations
for transient flow, with the help of advanced accuracy for incoming populations. The
question of the sufficiency of the effective closure conditions, realized via the micro-
scopic rules, should probably be asked for any kinetic boundary scheme but it is not
yet raised in the LB literature, to the best of our knowledge. We have first met the loss
of uniqueness of steady solutions in sharp corner geometries for local (node based) exact
schemes [14]. For multi-reflections the system may degenerate in closed geometries, e.g.,
because of the location of flat walls on grid nodes. We find that the parabolic schemes en-
force then the exact equilibrium boundary values but do not have a sufficient number of
the non-equilibrium constraints. Linear schemes may meet this difficulty in grid corners.
Third-order accurate pressure and velocity boundary conditions have been extended for
corners but there they compromise link-wise implementation for particular links with no
neighbors.

Further numerical tests are presented in a separate paper [22]. They validate the pre-
sented analysis with respect to the form of the expansion, the parametrization properties
and accuracy of the boundary schemes, their extension to corners as well as for an accu-
rate fitting of time dependent boundary conditions.

A Macroscopic equations via the Chapman-Enskog expansion

Keeping in mind relation (2.7) and enclosing first the source terms into the equilibrium

(M=0, ~F =0), the two times Chapman-Enskog expansion [11, 29]

∂q = ε∂q′ , ∂2
q = ε2∂2

q′ , ∂t = ε∂t1
+ε2∂t2 , (A.1)

is involved to express the non-equilibrium in terms of the gradients of the equilibrium
components:

fq(~r+~cq,t+1)− fq(~r,t)=n+
q

(1)
+n+

q
(2)

+n−
q

(1)
+n−

q
(2)

+O(ε3),

p
(1)
q = ε(∂t1

e+
q +∂q′e

−
q ),

m
(1)
q = ε(∂t1

e−q +∂q′e
+
q ),

p
(2)
q = ε2∂t2 e+

q −ε2[∂q′Λo∂t1
e−q +∂q′Λo∂q′e

+
q ]−ε2[∂t1

Λe∂t1
e+

q +∂t1
Λe∂q′e

−
q ]

= ε2∂t2 e+
q −∂qΛom

(1)
q −∂t1

Λe p
(1)
q ,

m
(2)
q = ε2∂t2 e−q −ε2[ε∂q′Λe∂t1

e+
q +∂q′Λe∂q′e

−
q )]−ε2[∂t1

Λo∂t1
e−q +ε∂t1

Λo∂q′e
+
q ]

= ε2∂t2 e−q −∂qΛe p
(1)
q −∂t1

Λom
(1)
q ,

n+
q

(k) =
p

(k)
q

λe
, n−

q
(k) =

m
(k)
q

λo
, ∀ k=1,2,··· .

(A.2)
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The leading order of relations (2.8) with M=0, ~F =0 are

Q−1

∑
q=0

p
(1)
q = M,

Q−1

∑
q=1

m
(1)
q ~cq =~F,

then

ε∂t1
ρeq+∇·~jeq = M+O(ε2), (A.3)

ε∂t1
~jeq+∇·Π−~F =O(ε2), Π={Pαβ}=

Q−1

∑
q=1

e+
q cqαcqβ, (A.4)

where

ρeq =ρm+Λe M, ρm =
Q−1

∑
q=0

fq +
M

2
, ~jeq =~j+Λo~F, ~j=

Q−1

∑
q=1

fq~cq. (A.5)

At second order:

ε2∂t2 ρeq =∇·Λo(ε∂t1
~jeq+∇·Π)+ε∂t1

Λe(ε∂t1
ρeq+∇·~jeq), (A.6)

ε2∂t2
~jeq =∇·(Λe

3
∇~jeq)+∇(

2Λe

3
∇·~jeq)+εΛe∂t1

∇·Π

+ε∂t1
Λo(ε∂t1

~jeq+∇·Π). (A.7)

Owing to relations (A.4) and (A.5), the RHS of Eq. (A.6) is equal to ∇·Λo~F+ε∂t1
ΛeM. Tak-

ing the sum of the first- and second-order relations, and writing the obtained equations

with respect to the macroscopic variables ρm and~j, one gets:

∂tρ
m+∇·~j =−ε2∂t2 Λe M+O(ε3), (A.8)

∂t
~j+∇·Π−~F =∇·(Λe

3
∇~j)+∇(∇· 2Λe

3
~j)+ε∂t1

Λe∇·Π

+err(~F)−ε2∂t2 Λo~F+O(ε3),

err(~F)=∇·Λe

3
∇Λo~F+∇2Λe

3
∇·Λo~F. (A.9)

We omit now the terms ε2∂t2 Λo~F and ε2∂t2 Λe M, assuming that they will be canceled with
the help of the next-order terms,

ε2∂t2 Λo(ε∂t1
~jeq+∇·Π), ε2∂t2 Λe(ε∂t1

ρeq+∇·~jeq).

Substituting the equilibrium distribution (2.14) for the momentum flux tensor Π, using
then the approximation [11] in the form

Λeε∂t1
∇·Π≈Λe∇ε∂t1

P≈ c2
s∇Λe(M−∇·~j),
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and replacing c2
s∇(ρeq−Λe M) with c2

s∇ρm, one gets the compressible Navier-Stokes
equations with the variable source terms:

∂tρ
m+∇·~j = M+O(ε3),

∂t
~j+gS∇·(

~j⊗~j

ρ̂
)=−∇P+~F+∇·(ν∇~j)+∇(∇·νξ

~j)

+err(~F)+O(ε3)+O(u3),

P= c2
s ρm, ν=

Λe

3
, νξ =Λe(

2

3
−c2

s ).

(A.10)

Unlike for the MRT, both bulk and kinematic viscosities are defined via one eigenvalue.
The sound velocity c2

s is restricted then to the interval [0, 2
3 ], both viscosities coincide when

c2
s = 1

3 . Further third-order corrections may appear from the neglected term εΛe∂t1
∇·

E+
q (~u), giving rise to even order corrections in the definition of ~F (e.g., see Eq. (6) in [24]

with τ=−1/λe). This and others O(u3) order corrections are omitted in the current work.
When using the “diffusive time scaling” (see review in [33]), then t = ε2t2, and drop-

ping ∂t1
the expansion (A.2) becomes:

p
(1)
q =∂qe−q , p

(2)
q =∂te

+
q −∂qΛom

(1)
q =∂te

+
q −∂qΛo∂qe+

q ,

m
(1)
q =∂qe+

q , m
(2)
q =∂te

−
q −∂qΛe p

(1)
q =∂te

−
q −∂qΛe∂qe−q .

(A.11)

The macroscopic equations are first given by relations (A.4) to (A.7) where all the ∂t1

terms are dropped and ε2∂t2 is replaced by ∂t. The Navier-Stokes equations take then
the form (A.9) but the expansion of the next order is needed to match the bulk viscosity
(otherwise, one gets νξ = 2

3 Λe) and the correction due to the mass source:

ρm =
Q−1

∑
q=0

fq +
M

2
.

B Details of the PMR(k) family

The five coefficients κ1 to κ̄−2 in (4.1) are linear function of A±, B± and C−:

κ1 = A+−(κ0+κ̄−1+κ−1+κ̄−2), A+ =1+α(p), (B.1)

κ̄−2 =
1

2
(B−−B+), (B.2)

κ̄−1 =−1

2
A−−κ̄−2, (B.3)

κ0 =−1

2
(B−+B+)−2κ−1, (B.4)

2κ−1 =C−− 1

2
(κ0−κ̄−2). (B.5)
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Assuming that

f
p.c.(p)
q =−β(u)pq

removes β(u)∂q jq (see relation (6.2)), and keeping κ−1 as a free parameter, we solve

α(u) =0, β(p) =α(p)δq, γ(u) =0. (B.6)

The solution is

κ1 =1+2κ−1+
α(p)+3α(p)δq+

2α(p)δq

λe

2
,

κ0 =−1−3κ−1−
(α(p)δq)(2+3λe)

2λe
,

κ̄−1 =1−κ−1+
α(p)(1− δq(2+λe)

λe
)

2
,

κ̄−2 =κ−1+
α(p)δq(2+λe)

2λe
.

(B.7)

This solution becomes linear with respect to λe if

α(p) = kλe, κ−1 = c1+c2λe,

where k, c1, and c2 do not depend on λe:

κ1 =1+
1

2

(
4c1+(4c2+k)λe +kδq(2+3λe)

)
,

κ0 =−1+
1

2

(
−6c1−2δqk−3λe(2c2+kδq)

)
,

κ̄−1 =1+
1

2

(
k(λe−δq(2+λe)−2(c1+c2λe)

)
,

κ̄−2 = c1+c2λe+
1

2
kδq(2+λe),

κ−1 = c1+c2λe.

(B.8)

When λe →0, then

κ1 =1+2c1+kδq, κ0 =−1−3c1−kδq,

κ̄−1 =1−kδq−c1, κ̄−2 = c1+kδq, κ−1 = c1.
(B.9)

When λe →−2, then

κ1 =1+2c1−4c2−k−2kδq,

κ0 =−1−3c1+6c2+2kδq,

κ̄−1 =1−k−(c1−2c2),

κ̄−2 = c1−2c2 =κ−1.

(B.10)
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From (B.9), condition κ1 =1 implies

c1 =− kδq

2
. (B.11)

Then the solution (B.9) becomes

{κ1,κ0,κ̄−1,κ̄−2,κ−1}=

{
1,−1+

kδq

2
,1− kδq

2
,
kδq

2
,− kδq

2

}
. (B.12)

The coefficients (B.12) are found inside the interval [−1,1] when 0 ≤ k ≤ 2, 0 ≤ δq ≤ 1.
Substituting relation (B.11) into (B.10), the coefficients become:

κ1 =1−4c2−k−3δqk,

κ0 =1+6c2+
7δqk

2
,

κ̄−1 =1+2c2+
k

2
(δq−2),

κ̄−2 =κ−1 =−2c2−
kδq

2
.

(B.13)

From (B.13), the condition κ1 =−1 implies

c2 =
2−k−3δqk

4
. (B.14)

Finally, the PMR(k)−family is given by rel. (B.8) with rel. (B.11), (B.14):

κ1 =1+λe,

κ0 =−1+
3λe(k−2)+δqk(2+3λe)

4
,

κ̄−1 =1+
δqk(λe−2)+λe(3k−2)

4
,

κ̄−2 =
−kδq(λe−2)−λe(k−2)

4
,

κ−1 =− kδq

2
−λe

k−2+3δqk

4
,

wq =−α(p)e+
q , α(p) = A+−1= kλe ,

f
p.c.(u)
q =−β(u)pq(~rb,t).

(B.15)

When k does not depend on λe and δq, then the condition 2
3≤k≤ 6

5 keeps all the coefficients

inside [−1,1] when λe →−2. When k=1, δq = 1
2 , the solution (B.15) becomes

{κ1,κ0,κ̄−1,κ̄−2,κ−1}

=

{
1+λe,−

3

8
(2+λe),

3

8
(2+λe),

1

8
(2+λe),−1

8
(2+λe)

}
. (B.16)

When λe →−2, the coefficients reduce to the (pressure anti-bounce back) PAB scheme.
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C Connections to [16]

The notations used in this paper (on the left-hand side) are related to those used in [16]
as follows:

λo =−λ2, λe =−λν,

α(u) = A0, β(u) = A1,

α(p) =(Ap−1), B+ = A′
p,

B−= Aj, C−= A′
j,

α(u)

2
−1= AF, f

p.c.(u)
q = t⋆q F

p.c
q̄ ,

α(u)(1+ 1
λo

)−1= Aν, mq = f̂
(2)
q ,

A+ = Ap, w
(u)
q =−wqt⋆q .

(C.1)

In this paper, the forcing factor in the momentum definition (I f in [16]) is set equal to

− 1
2 (see first relation (2.15)). It is noted that the expansion in the form (2.22) corresponds

to relations (27) and (28) in [16] if one replaces ∂tΠq by −c2
s∇·~j, in agreement with first

order continuity relation, and ∂t jq+∂qP with

Λe

3
(∆jq+2∂q∇·~j)−∂α

jq jα

ρ̂
,

using the projection of the momentum conservation on the velocity~cq.
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