
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 3, No. 3, pp. 679-703

Commun. Comput. Phys.
March 2008

An Adaptive Moving Mesh Method for Two-Dimensional

Incompressible Viscous Flows

Zhijun Tan1, K. M. Lim2 and B. C. Khoo1,2,∗

1 Singapore-MIT Alliance, 4 Engineering Drive 3, National University of Singapore,
Singapore 117576, Singapore.
2 Department of Mechanical Engineering, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260, Singapore.

Received 26 January 2007; Accepted (in revised version) 22 July 2007

Available online 30 October 2007

Abstract. In this paper, we present an adaptive moving mesh technique for solving
the incompressible viscous flows using the vorticity stream-function formulation. The
moving mesh strategy is based on the approach proposed by Li et al. [J. Comput. Phys.,
170 (2001), pp. 562–588] to separate the mesh-moving and evolving PDE at each time
step. The Navier-Stokes equations are solved in the vorticity stream-function form by
a finite-volume method in space, and the mesh-moving part is realized by solving the
Euler-Lagrange equations to minimize a certain variation in conjunction with a more
sophisticated monitor function. A conservative interpolation is used to redistribute
the numerical solutions on the new meshes. This paper discusses the implementation
of the periodic boundary conditions, where the physical domain is allowed to deform
with time while the computational domain remains fixed and regular throughout. Nu-
merical results demonstrate the accuracy and effectiveness of the proposed algorithm.

AMS subject classifications: 65M06, 65M50, 76D05

Key words: Moving mesh method, finite volume method, Navier-Stokes equations, vorticity
stream-function, incompressible flow.

1 Introduction

Adaptive moving mesh methods have many important applications in various physi-
cal and engineering fields such as solid and fluid dynamics, combustion, heat transfer,
material science etc. The physical phenomena in these mentioned areas may develop dy-
namically singular or nearly singular solutions in fairly localized region. A high fidelity
numerical investigation of these physical problems may require extremely fine meshes

∗Corresponding author. Email addresses: smatz@nus.edu.sg (Z. Tan), limkm@nus.edu.sg (K. M. Lim),
mpekbc@nus.edu.sg (B. C. Khoo)

http://www.global-sci.com/ 679 c©2008 Global-Science Press

680 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

over a small portion of the physical domain to resolve the large solution variations. The
use of globally refined uniform meshes becomes computationally wasteful when dealing
with systems in two or higher dimensions. In multi-dimensional problems, developing
an effective and robust adaptive mesh method becomes almost absolutely necessary. Suc-
cessful implementation of the adaptive approaches not only produces a high mesh den-
sity in regions of large gradient to improve the accuracy of numerical solution, but also
decreases the cost of numerical calculation in comparison with the uniform mesh. Cur-
rently, there has been much important progress made in adaptive moving mesh methods
for partial differential equations, including the grid distribution approach based on the
variational principle of Winslow [36], Brackbill et al. [5, 7], Ren and Wang [26], and Tang
and Tang [33]; the finite element methods of Miller and Miller [24], and Davis and Fla-
herty [10]; the moving mesh PDEs of Russell et al. [8], Li and Petzold [19], and Ceniceros
and Hou [9]; and the moving mesh methods based on harmonic mapping of Dvinsky [14]
and Li et al. [11, 21]; and others. Computational costs of moving mesh methods can be
further reduced with locally varying time steps [31].

There are two main ways to generate an adaptive mesh, namely, local mesh refine-
ments and moving mesh method. In local mesh refinement methods, the adaptive mesh
is generated by adding or removing grid points based on the posteriori error of the nu-
merical solution. Local refinement approach requires complicated data structures and
technically complex methods to communicate information among different levels of re-
finement. In the moving mesh methods, the total number of the grid points is kept fixed.
The grids are moved continuously in the whole solution domain to cluster grid points
in regions where the solution has the larger variations. In the past two decades this nu-
merical technique has been proven very successful for solving time-dependent problems
whose solution has large gradient or discontinuities, see, e.g., [2–4, 7, 11, 12, 20, 28, 30, 31].
In particular, Almgren et al. [1] introduced a adaptive projection method for the vari-
able density incompressible Navier-Stokes equations on nested grids, while Di et al. [11]
developed a moving mesh finite element methods for solving the incompressible Navier-
Stokes equations in the primitive variables formulation and devised a divergence-free in-
terpolation which is very essential for incompressible problems. Still, Ding and Shu [13]
proposed a stencil adaptive algorithm for finite difference solution of incompressible vis-
cous flows, and Min and Gibou [25] presented an unconditionally stable second-order ac-
curate projection method for the incompressible Navier-Stokes equations on non-graded
adaptive Cartesian grids. The latter employed quadtree and octree data structures as an
efficient means to represent the grid.

One main difficulty in solving the incompressible viscous flows is the divergence-
free constraint of the velocity field. There are two popular approaches to handle the
divergence-free constraint in the incompressible Navier-Stokes equations. One is to use
projection technique. This technique is commonly used in many incompressible Navier-
Stokes solvers [1, 25, 29]. However, in general, the pressure Poisson solver of projection
step will be time consuming on unstructured grids or adaptive grids. The other is to
introduce the stream function, see [15,22]. One possible disadvantage of this approach is

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 681

that the order of spatial derivatives increases by one, which reduces the order of accuracy
by one, but its implementation is very convenient and robust on an adaptive moving
mesh. In this paper, we will employ this approach.

The main objective of this work is to develop an efficient adaptive moving mesh
method to solve incompressible viscous flows in the vorticity stream-function formu-
lation. Our moving mesh approach is based on the strategy proposed in [20] by decou-
pling the mesh motion and the PDE evolution. The solution-adaptive mesh is obtained
by solving a set of nonlinear elliptic PDEs for the mesh map. A conservative interpola-
tion is used to obtain the approximate solution on the resulting new meshes. The given
PDEs are next advanced one time step based on a second-order finite volume approach.
In our adaptive algorithm, both the mesh generation and the PDE evolution are solved
in the computational domain. We first transform the governing equations into the com-
putational domain by a local (time-independent) mapping. The mapping is obtained via
the moving mesh approach, namely by solving the Euler-Lagrange equation to minimize
a certain variation involving monitor functions.

This paper is organized as follows. In the next section we introduce the vorticity
stream-function formulation for incompressible viscous flows. The corresponding mov-
ing mesh methods are described in Section 3. In Section 4, numerical results for 2D prob-
lems will be presented and discussed. Some concluding remarks will be made in the final
section.

2 Vorticity stream-function formulation

We consider the two-dimensional incompressible Navier-Stokes equations in the tradi-
tional primitive variable (velocity-pressure) formulation:

ut+(u·∇)u=−∇p+µ∆u, (2.1)

∇·u=0, (2.2)

where u = (u,v)T = u(x,y,t) is the fluid velocity vector with components u and v in the
horizontal and vertical directions, respectively; p = p (x,y,t) is the fluid pressure; and µ
is the (assumed constant) kinematic viscosity. Partly in order to avoid handling directly
the pressure variable, an alternative formulation using stream-function and vorticity has
been used by researches. In 2D, we write this system of equations in the vorticity stream-
function formulation by taking the curl on both sides of (2.1). Thus we have the following
system of scalar equations:

ωt+(u·∇)ω =µ∆ω, (2.3)

−∆ψ=ω, (2.4)

where ω = vx−uy is the vorticity. The velocity u = (u,v) is determined by the stream
function ψ as follows:

u=ψy, v=−ψx. (2.5)

682 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

Due to the incompressibility of the flow, Eq. (2.3) can be written in an equivalent form,

ωt+∇·(uω)=µ∆ω. (2.6)

This formulation has been used successfully by a large number of researchers over the
past years to test new methods for the numerical solutions of a variety of fluid flow
problems.

3 2D moving mesh technique

The basic idea of the moving mesh method is to relocate grid points in a mesh having a
fixed number of nodes in such a way that the nodes remain concentrated in regions of
rapid variation of the solution. The principal ingredient of the moving mesh methods
is the so-called equidistribution principle. In 1D, it involves selecting mesh points such
that some measure of the solution such as arclength or computed error is equalized over
each subinterval. This measure is often connected to an indicator function called monitor
function.

With a given numerical scheme like that provided in Section 3.3 , we can advance the
numerical solution one time step to t= tn+1. The following strategy is employed to carry
out the grid restructuring as detailed in [30] and produce (briefly) below:

Algorithm 1

a. Solve the mesh redistributing equation (a generalized Laplacian equation) by one
Gauss-Seidel iteration, to get x(k),n;

b. Interpolate the approximate solutions on the new grid x(k),n;

c. Obtain a weighted average of the locally calculated monitor at each computational
cell and the surrounding monitor values;

d. The iteration procedure (a)-(c) on grid-motion and solution-interpolation is con-
tinued until there is no significant change in calculating the new grid from one
iteration to the next.

Further discourse are divided into four subsections, namely mesh generation based
on the variational approach, monitor functions, 2D PDE evolution and solution proce-
dure.

3.1 Mesh generation

The mesh is generated using variational approach. Let x=(x,y) and ξ=(ξ,η) denote the
physical and computational coordinates. A coordinate mapping from the computational
domain Ωc to the physical domain Ωp is given by

x= x(ξ,η), y=y(ξ,η), (3.1)

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 683

and the inverse map is
ξ = ξ(x,y), η =η(x,y). (3.2)

The specific map is obtained by minimizing of a mesh adaptation functional of the form

E[ξ,η]=
1

2

∫

Ωp

(∇ξTG−1
1 ∇ξ+∇ηT G−1

2 ∇η)dxdy, (3.3)

where G1 and G2 are given symmetric positive definite matrices called monitor functions.
In general, monitor functions depend on the underlying solution to be adapted and its
derivatives. More terms can be added to the functional (3.3) to control other aspects of the
adaptive mesh such as orthogonality and mesh alignment with a given vector field [5,7].

In this work, the adaptive mesh is determined by the corresponding Euler-Lagrange
equations :

∇·(G−1
1 ∇ξ)=0, ∇·(G−1

2 ∇η)=0. (3.4)

One of the simplest choices of monitor functions is G1 =G2 = MI , where I is the identity
matrix and M is a positive weight function. One typical choice of the weight function is
M=

√

1+|∇u|2, where u is a solution of the underlying PDEs. This choice of the monitor
function corresponds to Winslows variable diffusion method [36]:

∇·

(

1

M
∇ξ

)

=0, ∇·

(

1

M
∇η

)

=0. (3.5)

(3.4) gives the coordinate transformation for the mesh generation and adaptation. Grid
generation is basically to obtain the curvilinear coordinate system (3.1) from the above
elliptic system (3.4). Usually, after solving the system (3.4) for ξ(x), we find the inverse
map to obtain x(ξ), which is rather expensive. Certainly, we can directly solve the cor-
responding equations on the computational domain Ωc by interchanging the dependent
and independent variables in (3.4). However, the obtained equations are usually compli-
cated and massive computations are required. An alternative approach, as suggested by
Ceniceros and Hou [9], is to consider a functional defined in the computational domain
directly:

Ẽ[x,y]=
1

2

∫

Ωc

(∇̃TxG1∇̃x+∇̃TyG2∇̃y)dξdη , (3.6)

to replace the convectional (3.3), where G1 and G2 are again the monitor functions and
∇̃=(∂ξ ,∂η)T. The corresponding Euler-Lagrange equations are then of the form

∇̃·(G1∇̃x)=0, ∇̃·(G2∇̃y)=0. (3.7)

If we take the monitor function with the simplest form G1 =G2 = MI, then the Eq. (3.7) is
reduced to

∇̃·(M∇̃x)=0, ∇̃·(M∇̃y)=0. (3.8)

Therefore, the mesh distribution in the physical space can be directly obtained by solving
(3.7), which is much simpler than the conventional variational approach (3.3). However,

684 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

the system (3.7) can lead to degenerating grids in some concave regions [14]. The original
system (3.4) is more accurate and reliable than the simple one (3.7) even though it is
more complicated. In the current paper, all numerical examples have simple geometry,
so Eq. (3.7) will be used for the mesh generation.

Next, we specially discuss an implementation of the periodic boundary conditions
for the Euler-Lagrange equations, since periodic boundary conditions are perhaps the
most commonly used in incompressible flow simulations. Suppose the computational
domain is a unit square. Though periodic boundary conditions can be understood in
a straightforward way on the unit square, it is not immediately clear how the resulting
adaptive mesh assumes the periodic properties. In fact, it is the displacement of the
moving grid point from its inverse image on the regular grid, i.e. x(ξ)-ξ, that satisfies the
periodic boundary conditions on the unit square, i.e.,

x(ξ+(k,l))=x(ξ)+(k,l), integer pair(k,l). (3.9)

Interestingly, this condition does not require that the mapping x(ξ) maps a unit square
onto a unit square. In other words, with periodic boundary conditions, the physical do-
main may not turn out to be a square even though the computational domain is. This
can be seen in numerical examples later on. The condition (3.9) guarantees that the peri-
odic copies of Ωp (non-square) cover the whole two-dimensional space as effectively as
periodic copies of the unit square. In particular, it is easy to verify that (3.9) implies that
the area of the physical domain Ωp is the same as that of Ωc. With periodic boundary
conditions on X=x(ξ)-ξ, Eq. (3.8) becomes

∇̃·(M∇̃X)+Mξ =0, ∇̃·(M∇̃Y)+Mη =0. (3.10)

In our computation, we use Gauss-Seidel (GS) iteration to approximate the solution
of the above system (3.8) or (3.10). The iteration is continued until there is no significant
change in calculating new grids from one iteration to the next. In practice, a few iterations
are required at each time level, so the cost for generating new mesh is not expensive.

After generating the new mesh at each iterative step according to the monitor func-
tion, we need to remap the approximate solutions onto the newly resulting mesh {xj,k}
from the old mesh {x̃j,k}. Many remapping schemes have been suggested, such as the
non-conservative one for the nonlinear Hamilton-Jacobi equation [34] and the conserva-
tive remapping scheme for the hyperbolic conservation laws [33]. Recently Zhang [37]
presented a new conservative remapping, which may be more accurate and robust than
the Tang and Tang’s interpolation scheme [33]. However, it remains to be seen the imple-
mentation for higher-dimensions. In our computations, the remapping procedure of the
vorticity ω can be realized by using the conservative interpolation technique proposed
by Tang and Tang [33], which is

∣

∣

∣
Ãj+ 1

2 ,k+ 1
2

∣

∣

∣
ω̃j+ 1

2 ,k+ 1
2
=

∣

∣

∣
Aj+ 1

2 ,k+ 1
2

∣

∣

∣
ωj+ 1

2 ,k+ 1
2
−

[

(c2
~nω)j+1,k+ 1

2
+(c4

~nω)j,k+ 1
2

]

−
[

(c3
~nω)j+ 1

2 ,k+1+(c1
~nω)j+ 1

2 ,k

]

, (3.11)

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 685

where cl
~n := cxnl

x+cynl
y with mesh velocity (cx,cy) = (x− x̃,y− ỹ) and the unit outward

normal direction~nl=(nl
x,nl

y) on the corresponding surface of the control volume Aj+ 1
2 ,k+ 1

2

for l = 1, 2, 3, 4. More detailed explanation can be found in [32]. The above formula is
obtained using the classical perturbation theory. It is obvious that the discretization form
(3.11) satisfies the mass-conservation in the following discrete sense:

∑
j,k

|Ãj+ 1
2 ,k+ 1

2
|ω̃j+ 1

2 ,k+ 1
2
=∑

j,k

|Aj+ 1
2 ,k+ 1

2
|ωj+ 1

2 ,k+ 1
2
,

where |Aj+ 1
2 ,k+ 1

2
| and |Ãj+ 1

2 ,k+ 1
2
|mean the areas of the corresponding control cells. Some

discussions of the properties of this conservative interpolation can be found in [33].
In order to obtain smoother transitions in the mesh, rather than merely using equa-

tions (3.8), an additional filter is applied to the monitor functions. Instead of working
with Mij, the smoothed values

M̄i,j←
4

16
Mi,j+

2

16
(Mi+1,j+Mi−1,j+Mi,j+1+Mi,j−1)

+
1

16
(Mi−1,j−1+Mi−1,j+1+Mi+1,j−1+Mi+1,j+1)

are being used in the mesh equations.

3.2 Monitor functions

The monitor function is one of the most important elements in the adaptive moving mesh
algorithms. It is very important to choose a suitable monitor function; otherwise satis-
factory adaptations can not be obtained no matter how good a moving mesh algorithm
is. For problems with free interfaces, the singularity often occurs around the interface
where more grid points are required. Away from the interface, it is suggested that the
grids should be as uniform as possible. Appropriate choice of the monitor will generate
grids with good quality in terms of smoothness, skewness, and aspect ratio. There are
several possible choices of the monitor function for our problems.

An often seen, and probably the most basic choice (see [33]) to detect regions with
high spatial activity is conventionally the arclength-type monitor function:

M=
√

1+α|∇ω|2. (3.12)

Here the parameter α is an ‘adaptivity’-parameter which controls the amount of adap-
tivity. For α = 0, we have M = 1, representing a uniform mesh. Higher values of α > 0
allow for more adaptivity. However, α is problem-dependent: in general, there is no
straightforward rule on how to choose this parameter. In many cases the monitor func-
tions involve some user-defined parameters which have to be obtained by doing several
initial experiments.

686 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

A more sophisticated monitor function dealing with this issue involves a time-dependent
parameter that is chosen automatically. Huang and Russell [17] and Huang and Sun [18]
generalize this monitor function with a parameter β that controls the ratio of points in
critical parts, and it reads

M=(1−β)α(t)+β‖∇ω ‖2 , with α(t)=
∫∫

Ωc

‖∇ω ‖2 dξdη. (3.13)

Here β is still a user-defined parameter, but the user does not strictly have to set this
parameter. Following the approach of Huang and Russell [17], it can be shown that for
the monitor (3.13), β is indeed the ratio of points in critical parts:

β=

∫

Ωp
β‖∇ω ‖2 dx

∫

Ωp
(1−β)α(t)+β‖∇ω ‖2 dx

. (3.14)

In this work, we will use the above monitor function. In our computations, for simplicity,
we take the fixed choice of β=0.5; hence, approximately half of the mesh points is located
in critical parts of the domain.

3.3 2D PDE evolution

3.3.1 The vorticity-transport equation

To demonstrate the principal ideas for the PDE evolution, we consider the following 2D
convection-diffusion PDE system:

ωt+ f (ω)x+g(ω)y =µ∆ω, (x,y)∈Ωp , (3.15)

where Ωp is the physical domain, and ω denotes the vorticity. For our problems, f (ω)=
uω, g(ω) = vω. To allow flexibility in the handling complex geometry and use of fast
solution solvers, we first transform the underlying PDEs using the coordinate transform

x= x(ξ,η), y=y(ξ,η) and ξ = ξ(x,y), η =η(x,y), (3.16)

where (x,y) and (ξ,η) are the physical and computational coordinates, respectively. Next,
we solve the resulting equations in the computational domain with a (fixed) uniform
mesh. The cell-centered finite volume method will be employed to solve the transformed
PDEs. Note that

ωx =
1

J

[

(yηω)ξ−(yξ ω)η

]

,

ωy =
1

J

[

−(xηω)ξ +(xξω)η

]

,

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 687

where J = xξyη−xηyξ is the Jacobian of the coordinate transformation. With the above
formulas, the underlying equation (3.15) becomes:

ωt+
1

J
F(ω)ξ +

1

J
G(ω)η =R, (ξ,η)∈Ωc , (3.17)

where

F(ω)=yη f (ω)−xη g(ω), G(ω)= xξ g(ω)−yξ f (ω), R=µ∆ω.

It is noted that the transformation (3.16) is time-independent and therefore the time
derivative in (3.15) is not transformed to a moving frame. However, the meshes in the
physical domain are indeed time-dependent, which is realized by using the solution-
dependent monitor functions.

Given a partition of the physical domain Ωp, {Aj+ 1
2 ,k+ 1

2
|j,k∈Z}, and a uniform par-

tition of the computational or logical domain Ωc with unit step sizes (i.e., ∆ξ = ∆η =1),
together with a partition of the time interval [0,T], {tn = tn−1+∆tn|∆tn >0,n∈Z}. Here
Aj+ 1

2 ,k+ 1
2

is a quadrangle with four corners xj,k, xj+1,k, xj+1,k+1, and xj,k+1. The ξ- and η-

derivatives of x and y are approximated at the midpoints of the cell edges and the cell
center points as follows:

(Zξ)j+ 1
2 ,k =Zj+1,k−Zj,k,

(Zξ)j,k+ 1
2
=

1

4
(Zj+1,k+Zj+1,k+1−Zj−1,k−Zj−1,k+1),

(Zη)j,k+ 1
2
=Zj,k+1−Zj,k,

(Zη)j+ 1
2 ,k =

1

4
(Zj,k+1+Zj+1,k+1−Zj,k−1−Zj+1,k−1),

(Zξ)j+ 1
2 ,k+ 1

2
=

1

2
(Zj+1,k+Zj+1,k+1−Zj,k−Zj,k+1),

(Zη)j+ 1
2 ,k+ 1

2
=

1

2
(Zj,k+1+Zj+1,k+1−Zj,k−Zj+1,k), Z= x or y.

In order to obtain the transformed PDEs, the key point here is to obtain the transforma-
tions for ∆ω. Note that

ωxx =
1

J

[

(J−1y2
ηωξ)ξ−(J−1yξyηωη)ξ−(J−1yξyηωξ)η +(J−1y2

ξωη)η

]

, (3.18)

ωyy =
1

J

[

(J−1x2
ηωξ)ξ−(J−1xξ xηωη)ξ−(J−1xξ xηωξ)η +(J−1x2

ξωη)η

]

, (3.19)

where J = xξyη−xηyξ is the Jacobian of the coordinate transformation. In our computa-
tions, the vorticity ω is defined at cell centers. The following symmetric discretizations

688 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

at (ξ j+ 1
2
,ηk+ 1

2
) will be used to approximate terms on the right-hand side of (3.18):

[

(J−1y2
ηωξ)ξ

]

j+ 1
2 ,k+ 1

2

=(J−1y2
η)j+1,k+ 1

2
(ωj+ 3

2 ,k+ 1
2
−ωj+ 1

2 ,k+ 1
2
)

−(J−1y2
η)j,k+ 1

2
(ωj+ 1

2 ,k+ 1
2
−ωj− 1

2 ,k+ 1
2
), (3.20a)

[

(J−1y2
ξ ωη)η

]

j+ 1
2 ,k+ 1

2

=(J−1y2
ξ)j+ 1

2 ,k+1(ωj+ 1
2 ,k+ 3

2
−ωj+ 1

2 ,k+ 1
2
)

−(J−1y2
ξ)j+ 1

2 ,k(ωj+ 1
2 ,k+ 1

2
−ωj+ 1

2 ,k− 1
2
), (3.20b)

[

−(J−1yξ yηωη)ξ

]

j+ 1
2 ,k+ 1

2

=
−1

4
(J−1yξ yη)j+ 3

2 ,k+ 1
2
(ωj+ 3

2 ,k+ 3
2
−ωj+ 3

2 ,k− 1
2
)

+
1

4
(J−1yξ yη)j− 1

2 ,k+ 1
2
(ωj− 1

2 ,k+ 3
2
−ωj− 1

2 ,k− 1
2
), (3.20c)

[

−(J−1yξ yηωξ)η

]

j+ 1
2 ,k+ 1

2

=
−1

4
(J−1yξ yη)j+ 1

2 ,k+ 3
2
(ωj+ 3

2 ,k+ 3
2
−ωj− 1

2 ,k+ 3
2
)

+
1

4
(J−1yξ yη)j+ 1

2 ,k− 1
2
(ωj+ 3

2 ,k− 1
2
−ωj− 1

2 ,k− 1
2
). (3.20d)

The terms on the right-hand side of (3.19) can be approximated similarly. Having the
above approximations, we are able to approximate the Laplacian ∆ω by

(∆ω)j+ 1
2 ,k+ 1

2
=

1

Jj+ 1
2 ,k+ 1

2

1

∑
l=−1

1

∑
m=−1

Clm
j+ 1

2 ,k+ 1
2
ωj+ 1

2 +l,k+ 1
2 +m , (3.21)

where

C±1,−1

j+ 1
2 ,k+ 1

2

=±
1

4

[

(J−1yξyη)j+ 1
2±1,k+ 1

2
+(J−1yξyη)j+ 1

2 ,k− 1
2

+(J−1xξ xη)j+ 1
2±1,k+ 1

2
+(J−1xξ xη)j+ 1

2 ,k− 1
2

]

, (3.22a)

C0,±1

j+ 1
2 ,k+ 1

2

=(J−1y2
ξ)j+ 1

2 ,k+ 1
2±

1
2
+(J−1x2

ξ)j+ 1
2 ,k+ 1

2±
1
2
, (3.22b)

C±1,0

j+ 1
2 ,k+ 1

2

=(J−1y2
η)j+ 1

2±
1
2 ,k+ 1

2
+(J−1x2

η)j+ 1
2±

1
2 ,k+ 1

2
, (3.22c)

C0,0

j+ 1
2 ,k+ 1

2

=−(J−1y2
η)j+1,k+ 1

2
−(J−1y2

η)j,k+ 1
2
−(J−1y2

ξ)j+ 1
2 ,k+1−(J−1y2

ξ)j+ 1
2 ,k

−(J−1x2
η)j+1,k+ 1

2
−(J−1x2

η)j,k+ 1
2
−(J−1x2

ξ)j+ 1
2 ,k+1−(J−1x2

ξ)j+ 1
2 ,k , (3.22d)

C−1,1

j+ 1
2 ,k+ 1

2

=
1

4
(J−1yξ yη)j− 1

2 ,k+ 1
2
+

1

4
(J−1yξyη)j+ 1

2 ,k+ 3
2

+
1

4
(J−1xξ xη)j− 1

2 ,k+ 1
2
+

1

4
(J−1xξ xη)j+ 1

2 ,k+ 3
2
, (3.22e)

C1,1

j+ 1
2 ,k+ 1

2

=−
1

4
(J−1yξ yη)j+ 1

2 ,k+ 3
2
−

1

4
(J−1yξyη)j+ 3

2 ,k+ 1
2

−
1

4
(J−1xξ xη)j+ 3

2 ,k+ 1
2
−

1

4
(J−1xξ xη)j+ 1

2 ,k+ 3
2
. (3.22f)

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 689

Next we solve (3.17) by a finite volume approach. Denote the control cell [ξ j ,ξ j+1]×
[ηk ,ηk+1] by Bj+ 1

2 ,k+ 1
2

and the cell average values by

ω̄n
j+ 1

2 ,k+ 1
2
=

1

∆ξ∆η

∫

B
j+ 1

2 ,k+ 1
2

ω(ξ,η,tn)dξdη .

For ease of notation, below we will drop the top bar for ω̄. This gives rise to

ωn+1
j+ 1

2 ,k+ 1
2

=ωn
j+ 1

2 ,k+ 1
2
−γj,k

(

F̄n
j+1,k+ 1

2
− F̄n

j,k+ 1
2

)

−τj,k

(

Ḡn
j+ 1

2 ,k+1
−Ḡn

j+ 1
2 ,k

)

+ℜj+ 1
2 ,k+ 1

2
, (3.23)

where

γj,k =
∆tn

Jj+ 1
2 ,k+ 1

2

, τj,k =
∆tn

Jj+ 1
2 ,k+ 1

2

, ℜj+ 1
2 ,k+ 1

2
=∆tnµ(∆ωn)j+ 1

2 ,k+ 1
2
.

The one-dimensional Lax-Friedrichs numerical flux will be applied to F̄ and Ḡ in the ξ-,
η-direction, respectively. That is

F̄j,k+ 1
2
=

1

2

[

F(ω−
j,k+ 1

2

)+F(ω+
j,k+ 1

2

)−max
ω
{|Fω |}·(ω+

j,k+ 1
2

−ω−
j,k+ 1

2

)
]

, (3.24)

Ḡj+ 1
2 ,k =

1

2

[

G(ω−
j+ 1

2 ,k
)+G(ω+

j+ 1
2 ,k

)−max
ω
{|Gω |}·(ω+

j+ 1
2 ,k
−ω−

j+ 1
2 ,k

)
]

, (3.25)

where the maximum is taken between ω−
j,k+ 1

2

and ω+
j,k+ 1

2

in (3.24), and the maximum

is taken between ω−
j+ 1

2 ,k
and ω+

j+ 1
2 ,k

in (3.25). In order to compute (3.24) and (3.25), a

piecewise linear approximation will be used:

ω±
j,k+ 1

2

=ωj± 1
2 ,k+ 1

2
∓

1

2
sj± 1

2 ,k+ 1
2
, ω±

j+ 1
2 ,k

=ωj+ 1
2 ,k± 1

2
∓

1

2
sj+ 1

2 ,k± 1
2
,

sj+ 1
2 ,k+ 1

2
=

(

sign(s−
j+ 1

2 ,k+ 1
2

)+sign(s+
j+ 1

2 ,k+ 1
2

)
) |s+

j+ 1
2 ,k+ 1

2

s−
j+ 1

2 ,k+ 1
2

|

|s+
j+ 1

2 ,k+ 1
2

|+|s−
j+ 1

2 ,k+ 1
2

|
,

s−
j+ 1

2 ,k+ 1
2

=ωj+ 1
2 ,k+ 1

2
−ωj− 1

2 ,k+ 1
2
, s+

j+ 1
2 ,k+ 1

2

=ωj+ 3
2 ,k+ 1

2
−ωj+ 1

2 ,k+ 1
2
.

A system of semi-discretized equations can be obtained from (3.23), which will be solved
by a 3-stage Runge-Kutta method proposed by Shu and Osher [27]. More precisely, for
the ODE system ω′(t)= L(ω) we use

ω
(1)
jk =ωn

jk+∆tn L(ωn
jk),

ω
(2)
jk =

3

4
ωn

jk+
1

4

[

ω
(1)
jk +∆tn L(ω

(1)
jk)

]

,

ωn+1
jk =

1

3
ωn

jk+
2

3

[

ω
(2)
jk +∆tn L(ω

(2)
jk)

]

.

690 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

ψj+1/2,k+1/2

x

x

xx

j, k

ωj+1/2,k+1/2

j+1,k

j+1,k+1 j,k+1

Aj+1/2,k+1/2

vj, k
uj, k

uj+1/2, k

uj, k+1/2

vj+1/2, k

vj, k+1/2

I

I

m

o

n

I

Figure 1: A control volume.

The above ODE solver satisfies the total variation non-increasing property.

The size of the time step used to advance the solution is restricted by two conditions
necessary to guarantee stability of the method. The convective time step restriction is
given by

∆tCFL =λCFL min
j,k

Jj+ 1
2 ,k+ 1

2

|Uj+ 1
2 ,k+ 1

2
|+|Vj+ 1

2 ,k+ 1
2
|
.

Here Uj+ 1
2 ,k+ 1

2
=(yηu−xηv)j+ 1

2 ,k+ 1
2

and Vj+ 1
2 ,k+ 1

2
=(xξ v−yξu)j+ 1

2 ,k+ 1
2
, where Jj+ 1

2 ,k+ 1
2

is the

Jacobian of the coordinate transformation at (ξ j+ 1
2
,ηk+ 1

2
) and λCFL is the standard CFL

constant associated with the convection term. The viscous time step restriction is given
by

∆tvis =Cvis
h2

2µ
.

Here h = minj,k(xj+1,k−xj,k,yj,k+1−yj,k), where Cvis is the constant associated with the
viscous term and taken as 0.5 here. The eventual restriction on the time step is then
∆t=min{∆tCFL,∆tvis}.

3.3.2 Computing the velocity

To compute the cell face values of the flow velocity (u,v) in (3.24) we need to solve first
for the stream function ψ. In our computation, the vorticity ω and stream-function ψ
are defined at the cell center, while the velocity u is defined at the cell corner, see Fig. 1,
where Io denotes the cell center points, In denotes the cell corner points, and Im denotes
the midpoints of the cell edges. Using the same approximation to the Laplacian operator
provided in (3.21), the spatial discretization of ∆ψ in the stream-function Eq. (2.4) leads
to a large sparse symmetric and positive definite linear system, which is solved by using
the PCG method. After solving for ψ, we can compute the flow velocity from (2.5) by

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 691

using a second-order accurate central finite difference scheme as follows:

u=ψy =
1

Ĵ
(−x̂ηψ̂ξ + x̂ξ ψ̂η), v=−ψx =

1

Ĵ
(−ŷηψ̂ξ + ŷξ ψ̂η) on In , (3.26)

where

(ψ̂ξ)j,k :=
1

2
(ψj+ 1

2 ,k+ 1
2
−ψj− 1

2 ,k+ 1
2
+ψj+ 1

2 ,k− 1
2
−ψj− 1

2 ,k− 1
2
),

(ψ̂η)j,k :=
1

2
(ψj+ 1

2 ,k+ 1
2
−ψj+ 1

2 ,k− 1
2
+ψj− 1

2 ,k+ 1
2
−ψj− 1

2 ,k− 1
2
),

(Ẑξ)j,k :=(Zj+1,k−Zj−1,k)/2, (Ẑη)j,k :=(Zj,k+1−Zj,k−1)/2,

Ĵj,k =(x̂ξ ŷη− x̂η ŷξ)j,k , Z= x or y.

It is not difficult to find that the above discrete velocity field is divergence-free in the
sense of

0=(∇·u)=
1

Ĵ

(

(yηu−xηv)ξ +(xξv−yξ u)η

)

on Io , (3.27)

where

(

(yηu−xηv)ξ

)

j+ 1
2 ,k+ 1

2

:=
1

2

(

(ŷηu− x̂ηv)j+1,k+1−(ŷηu− x̂ηv)j,k+1

+(ŷηu− x̂ηv)j+1,k−(ŷηu− x̂ηv)j,k

)

,

(

(xξv−yξ u)η

)

j+ 1
2 ,k+ 1

2

:=
1

2

(

(x̂ξv− ŷξ u)j+1,k+1−(x̂ξv− ŷξ u)j,k+1

+(x̂ξv− ŷξ u)j+1,k−(x̂ξv− ŷξ u)j,k

)

,

and

Ĵj+ 1
2 ,k+ 1

2
= |Aj+ 1

2 ,k+ 1
2
|.

We then evaluate the normal velocities on the cells, edges (Im) by simple second order
averaging:

uj,k+ 1
2
=

1

2
(uj,k+uj,k+1), uj+ 1

2 ,k =
1

2
(uj,k+uj+1,k).

Remark 3.1. Note that there are some variants to computing the velocity field u. For
example, the velocity u is defined at the cell edges and then approximated directly on Im

with a central difference approach, i.e.

u=ψy =
1

J
(−xηψξ +xξψη), v=−ψx =

1

J
(−yηψξ +yξψη) on Im , (3.28)

692 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

where J = xξyη−xηyξ , and the geometric quantities xξ , xη , yξ , yη and physical quantities
ψξ , ψη on Im are approximated by centered finite differences. However the computed
velocity from (3.28) is not divergence-free in the discrete sense of (3.27) or

0 6=(∇·u)=
1

J

(

(yηuξ−yξuηv)+(−xηuξ +xξuη)
)

on Io . (3.29)

The reason is that the identity ψxy = ψyx is not always satisfied in the discrete sense on a
non-uniform mesh, which depends on the specific implementation of the discretization
scheme.

3.4 Solution procedure

Our solution procedure consists of two independent parts: evolution of the governing
equations and an iterative mesh redistribution. The first part is a finite volume method,
see Section 3.3. In each iteration of the second part, mesh points are first redistributed by
the Gauss-Seidel method based on a more sophisticated monitor function, and then vor-
ticity ω is updated on the resulting new meshes by the conservative interpolation formula
(3.11), see Section 3.1. The algorithm ensures that the velocity field is divergence-free in
each control volume Aj+ 1

2 ,k+ 1
2
. The overall solution procedure can be illustrated by the

following flowchart:

Algorithm 2

Step 1 Provide an initial adaptive mesh xn
j,k based on the initial function, n≥0.

Step 2 Advance the solution one time step ∆tn based on a appropriate numerical scheme.

a. Compute ψn using the PCG iterative method via solving the stream function
equation, Eq. (2.4), then compute un from (3.26) using the central finite differ-
ence method.

b. Compute vorticity ωn+1 from (3.23) for solving the vorticity transport equa-
tion, Eq. (2.3).

Step 3 Carry out the grid restructuring as provided by Algorithm 1 to move the mesh
and then update the vorticity on the new mesh.

Step 4 If t≥T, then save the result and stop. Otherwise, go to Step 2 for the next cycle.

The third step above is in fact an iteration step and in general requires a few iterations at
each time step. However, in our numerical computations, 1∼4 iterations are sufficient to
obtain a satisfactory mesh at each time level except at the initial stage where the number
of iterations depends on the degree of singularity of the initial data. The conservative
interpolation (3.11) is carried out after each GS iteration step.

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 693

X

Y

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

27.152
24.293
21.434
18.576
15.717
12.859
10.000

7.141
4.283
1.424

-1.434
-4.293
-7.152

-10.010
-12.869
-15.727
-18.586
-21.445
-24.303
-27.162

Figure 2: Example 4.1: Initial vorticity distribution for the shear layer problem.

4 Numerical examples

In this section, two numerical experiments are presented to demonstrate the efficiency
of the proposed adaptive moving mesh method procedure. All the computations are
carried out on a personal computer with Pentium 4 (3.0GHz) and Fortran compiler.

Example 4.1. Double shear flow

Consider a double shear layer governed by the Navier-Stokes equations (2.1)-(2.2), in
a one unit periodic domain, subject to the initial conditions

u0(x,y) =

{

tanh(ρs(y−0.25)) for y≤0.5,
tanh(ρs(0.75−y)) for y>0.5,

(4.1)

v0(x,y) = δssin(2πx), (4.2)

with ρs = 30 and δs = 0.05. The velocity u, the stream function ψ and the vorticity ω are
subjected to periodic boundary conditions. The above parameter ρs determines the slope
of the shear layer, and δs represents the size of the perturbation. This is the same problem
studied by Brown and Minion [6], and represents a shear layer which is their “thick”
case (Fig. 2). In our computations, the viscosity is set to µ = 10−4. When the mesh is
not fine enough, there are spurious vorticity appearing in the numerical result [6]. The
calculations are run to t = 1.2 with a constant CFL of 0.6. In Figs. 3 and 4, we show the
contour plots of the vorticity and the corresponding adaptive meshes at times t=0.8 and
1.2, obtained using a 802 moving grid. From these figures, it can be seen that the initial
layer rolls up in time into strong vortical structures. The contour plots for the vorticity
of the moving mesh solutions are of very good quality. These results compare very well

694 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

X

Y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3: Example 4.1: The adaptive mesh and the contour of vorticity for the shear layer problem at t=0.8,
obtained using a 802 moving grid.

X

Y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4: Same as Fig. 3, except with t=1.2.

with those obtained via the Godunov-projection method in [6] and those obtained using
the moving finite element method in [11].

Note also that the choice of the parameter β=1 leads (as expected) to a mesh that ap-
proximately places half of the mesh points to be clustered inside the shear layer and the
roll-ups where the solutions have large solution variations. The layout of the mesh plots
is quite interesting, see Figs. 3 and 4. It should be pointed out that the spatial domain is
allowed to deform for this problem with time as in [11], though the physical domain in
the experiments is very simple. Due to the periodic nature of the solutions, it is natural to
deform the physical domain as discussed in Section 3.1. For comparison, adaptive mesh
without deformation of the domain is presented in Fig. 5. We can see clearly from Figs. 3
and 4 how the resulting adaptive meshes assumes the periodic properties. In this prob-
lem, large gradient solutions are developed close to the boundaries. As a consequence,
the motion of the boundary points is of great importance to improve the quality of the

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 695

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5: Adaptive mesh for the shear layer problem at t=0.8 without deformation of the domain.

adaptive mesh. The implementation of the periodic boundary condition for the mesh
moving can also avoid using the 1D boundary grid redistribution method of [28,31]. The
moving meshes are generated in the periodic setting as discussed in Section 3.1. Using
the periodic characteristics, both the mesh and the corresponding solutions can be eas-
ily mapped back to the unit domain. It is noted that with periodic boundary conditions
Brackbill and Saltzman [7] also obtained an “irregular” mesh layout very similar to those
in Figs. 3 and 4.

Next, we make some comments on two possible monitor functions discussed in Sec-
tion 3.2. As we mentioned in Section 3.2, the adaptivity parameter α in the monitor
function (3.12) is problem-dependent, and there is no straightforward rule on how to
choose this parameter. On the other hand, α is a constant, and the solution profile might
change significantly through time. For this problem, we found α = 10 a suitable value
from several experiments carried out. In our computations, the choice of the monitor
function (3.13) overcomes the above disadvantages, and this type of the monitor func-
tion involves a time-dependent parameter that is chosen automatically. For comparison, in
Fig. 6, we show adaptive meshes, magnified around the point (0.5,0.25), with the moni-
tor function (3.12) and the monitor function (3.13), respectively. We observe from Fig. 6
(right) that too many mesh grids have been clustered inside the roll-ups with using the
monitor function (3.12), and the monitor function (3.13) seems more appropriate.

In Fig. 7, we plot the time history of the total energy (square of the L2 norm of the
velocity u) and total enstrophy (square of the L2 norm of the vorticity ω). We can see
from Fig. 7 that the total energy decays rather than stays at a constant due to numerical
dissipation, and the total enstrophy decreases with time. The dissipation of the energy is
relatively smaller.

There is no exact analytical solution for this example. To test the accuracy, the problem
is computed with the same method on much finer 3202 uniform grid. It is observed that
the moving mesh results on the coarse grid agree very well with the finer uniform mesh

696 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

X

Y

0.4 0.6

0

0.2

0.4

X

Y

0.4 0.6

0

0.2

0.4

Figure 6: Adaptive meshes, magnified around the point (0.5,0.25), for the shear layer problem at t = 0.8 with
the monitor function (3.12) (left) and the monitor function (3.13) (right), respectively.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

E
ne

rg
y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Time

E
ns

tro
ph

y

Figure 7: The time history of energy (square of the L2 norm of the velocity u) and total enstrophy (square of
the L2 norm of the vorticity ω).

results. For quantitative comparison, Figs. 8 (a) and 8 (b) show the computed vorticity
profile and the velocity component u along the line x=0.5 at t=0.8, respectively, obtained
using a 802 moving grid and a 3202 uniform grid. In this plot, the solid line represents
the numerical results obtained on the uniform mesh for reference. We can see their good
agreement. It demonstrates the accuracy and efficiency of our moving mesh method.

In Table 1, the computing CPU times at different time level (t) using moving mesh
method on a 802 moving grid and uniform mesh method on a 3202 uniform grid are
listed. The results show that both methods produce almost the same numerical results,
but our proposed algorithm takes much less CPU time than the uniform mesh method. It
demonstrates that our moving mesh method has great advantage in conserving computa-
tional resource and/or CPU time, compared to the corresponding uniform mesh method.
Finally, we also show the velocity field at t=1.2 in Fig. 9.

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 697

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

30

y

ω

uniform 320 × 320

adaptive 80 × 80

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

y

u

uniform 320 × 320
adaptive 80 × 80

(a) (b)

Figure 8: Example 4.1: Vorticity profile (a) and velocity component u profile (b) at t=0.8 with Nx = Ny =80

along vertical centerline. The solid line is obtained on a uniform mesh with 3202 grid points.

Table 1: Example 4.1: Comparison of the CPU time in Seconds for the different mesh methods.

Schemes t=0.2 t=0.5 t=0.8

Moving mesh method 93.43 293.42 567.49
Uniform mesh method 1581.06 4510.82 8444.63

X

Y

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 9: Velocity field at t=1.2 for Example 4.1.

698 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

vorticity

0.94
0.88
0.82
0.77
0.71
0.65
0.59
0.53
0.47
0.41
0.35
0.29
0.24
0.18
0.12
0.06

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 10: Initial vorticity distribution (left) and adaptive mesh redistribution (right) with a 642 moving grid.

Example 4.2. Co-rotating vortex merging

This example is to study a vortex merger problem and has been considered in [16,
23, 35]. The initial conditions consist of a pair of rotating circular vortices with the same
radius r0 = 0.1 and strength 1.0 placed in the unit square at (0.35,0.5) and (0.65,0.5).
Denoting x1 = 0.35, x2 = 0.65, and y1 = y2 = 0.5, the profile for each vortex, centered at
(xi,yi), is

1

2
(1+tanh(1000(0.1−ri))),

where ri =
√

(x−xi)2+(y−yi)2, i =1, 2. In Fig. 10, we show the initial vorticity contour
and the corresponding adaptive mesh. We can see from Fig. 10 (right) that more grid
points are move to the initial vorticity region at the initial time. We also observe from
this figure that there are still some mesh points which have been clustered between two
circular vortexes. The possible reason is that the highly concentrated mesh is generated
there due to the large singularity of the initial data. The initial velocity field is then
obtained by solving the stream function associated with the given vorticity field. The
boundary condition is subjected to the period boundary conditions. It is shown in [23,
35] that merger will occur when vortices are initially close enough (i.e., their distance
of separation is smaller than some critical value). Due to the velocity field induced by
each vortex, the vortex pair start to rotate around each other and then merge. In our
computations, it is easily known from above initial conditions that the separated distance
of two circular vortices is d=3.0r0 initially, which corresponds to the first case of d/r0≤
3.305 reported in [35].

The calculations are run to t = 30.0 with a constant CFL of 0.6. The viscosity is set
to µ = 10−6. In Figs. 11 and 12, the vorticity evolution, the contour plots of the vorticity
and the corresponding adaptive meshes at times t = 5.0, 10.0, 15.0, 20.0, 25.0, and 30.0

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 699

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 11: Example 4.2: Vorticity evolution (left), contours of vorticity (middle) and the adaptive meshes (right)

with a 642 moving grid at t=5.0, 10.0, and 15.0 (top to bottom, respectively).

are presented; these are obtained using a 642 moving grid. We see clearly detailed vortex
merger process: as time evolves, during the initial stages of the evolution of two vortices
in the merger process, the vortices approach each other as they rotate about their cen-
ter of vorticity and pass through a state very similar to two co-rotating vortices. These
vortices subsequently merge, and simultaneously thin filaments of vorticity are ejected.
The central vortex then consolidates into an ellipse (approximately), and the filaments
are wrapped around the vortex with roll-up. Those results may be comparable to those
found in [16, 23, 35]. As desired, it is also seen from these figures that approximately
half of the grid points are clustered in the regions where the solutions vary rapidly; this
increases the resolution of the numerical solutions. Again this demonstrates the effective-
ness of our moving mesh method and the ability of our method to follow the evolving
vortical structure.

700 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X
Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 12: Same as Fig. 11, except with t=20.0 (top), t=25.0 (middle) and t=30.0 (bottom).

More computational details are given for this example. In Table 2, we show the largest
and the smallest sizes and their ratio of the adaptive mesh at different time levels. From
this table, we can see that at the initial time a quite large portion of the grid points is
moved to the initial vorticity region due to the singularity of the initial data and make
the minimum size of the cell volume very small, see also Fig. 10 (right). Then the ratios
of maximum to minimum of the grid size in the x and y directions become bigger. In
the late time, the evaluated ratio of largest to the smallest grid size in the y-direction is
decreased, while the evaluated ratio of largest to the smallest grid size in the x-direction
is firstly increased and then decreased. In Table 2, the maximum and minimum meshes
are defined as

min ∆x=min
j,k
{∆xj,k}, max ∆x=max

j,k
{∆xj,k}

where ∆xj,k = maxp,q∈{1,2,3,4}{|xp−xq|}. Here xp and xq are the four vertices of the con-

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 701

Table 2: Example 4.2: Adaptive mesh with Nx = Ny =64.

t=0.0 t=5.0 t=10.0 t=15.0

∆x min ∆x 9.24e-04 1.91e-03 1.39e-03 2.14e-03
max ∆x 1.48e-01 1.35e-01 1.39e-01 1.75e-01
max/min 160.17 70.68 100.00 81.78

∆y min ∆y 8.63e-04 9.79e-04 3.47e-03 4.39e-03
max ∆y 1.32e-01 1.71e-01 1.33e-01 1.14e-01
max/min 152.95 174.67 38.33 25.97

|Ajk| min |Ajk| 3.51e-06 8.99e-06 9.56e-06 1.27e-05

max |Ajk| 1.84e-03 2.22e-03 1.78e-03 2.37e-03
max/min 524.22 246.94 186.19 186.61

trol cell Aj+ 1
2 ,k+ 1

2
, and |Aj,k| denotes the areas of the cell Aj+ 1

2 ,k+ 1
2

in this table. Similar

definition is also used for max ∆y and min ∆y.

5 Concluding remarks

In this paper, we have presented an adaptive moving mesh technique applied to incom-
pressible viscous flows in the vorticity stream-function formulation. Our moving mesh
method is fairly simple to code. The numerical approach is based on the strategy pro-
posed in [20] by decoupling the mesh-moving and PDE evolution at each time step. This
approach requires using an interpolation to transform the information from the old mesh
to the new mesh. In this work, we have used the second-order conservative interpolation
proposed in [33] to update the vorticity ω on the resulting new grid. For the choice of
the monitor function, we used an improved parameter-free monitor function [17,18]. The
Navier-Stokes equations are numerically solved in the vorticity stream-function form by
a finite-volume method. The physical domain is allowed to deforma in our computations
and the computed velocity satisfies the discrete divergence constraint. The numerical re-
sults are in good agreement with the finer uniform mesh results and the computations
found in [11, 16, 23]; this clearly demonstrates the accuracy and effectiveness of our pro-
posed algorithm. To obtain the equivalent accuracy as for the much finer uniform mesh,
our approach only needs much lesser grid points and greatly conserves the CPU time.
Future work is to consider the problems with more complex geometry and the extension
of our moving mesh algorithm to 3D problems.

References

[1] A. Almgren, J. Bell, P. Colella, L. Howell and M. Welcome, A conservative adaptive pro-
jection method for the variable density incompressible Navier-Stokes equations, J. Comput.
Phys., 142 (1998), 1-46.

702 Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703

[2] B. N. Azarenok, S. A. Ivanenko and T. Tang, Adaptive mesh redistribution method based on
Godunov’s scheme, Commun. Math. Sci., 1 (2003), 152-179.

[3] B. N. Azarenok and T. Tang, Second-order Godunov-type scheme for reactive flow calcula-
tions on moving meshes, J. Comput. Phys., 206 (2005), 48-80.

[4] G. Beckett, J. A. Mackenzie and M. L. Robertson, An r-adaptive finite element method for the
solution of the two-dimensional phase-field equations, Commun. Comput. Phys., 1 (2006),
805-826.

[5] J. U. Brackbill, An adaptive grid with direction control, J. Comput. Phys., 108 (1993), 38-50.
[6] D. L. Brown and M. L. Minion, Performance of under-resolved two-dimensional incom-

pressible flow simulations, J. Comput. Phys., 122 (1995), 165-183.
[7] J. U. Brackbill and J. S. Saltzman, Adaptive zoning for singular problems in two dimensions,

J. Comput. Phys., 46 (1982), 342-368.
[8] W. M. Cao, W. Z. Huang and R. D. Russell, An r-adaptive finite element method based upon

moving mesh PDEs, J. Comput. Phys., 149 (1999), 221-244.
[9] H. D. Ceniceros and T. Y. Hou, An efficient dynamically adaptive mesh for potentially sin-

gular solutions, J. Comput. Phys., 172 (2001), 609-639.
[10] S. F. Davis and J. E. Flaherty, An adaptive finite element method for initial-boundary value

problems for partial differential equations, SIAM J. Sci. Stat. Comput., 3 (1982), 6-27.
[11] Y. Di, R. Li, T. Tang and P.-W. Zhang, Moving mesh finite element methods for the incom-

pressible Navier-Stokes equations, SIAM J. Sci. Comput., 26 (2005), 1036-1056.
[12] Y. Di and P.-W. Zhang, Moving mesh kinetic simulation for sheared rodlike polymers with

high potential intensities, Commun. Comput. Phys., 1 (2006), 859-873.
[13] H. Ding and C. Shu, A stencil adaptive algorithm for finite difference solution of incom-

pressible viscous flows, J. Comput. Phys., 214 (2006), 397-420.
[14] A. S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds, J.

Comput. Phys., 95 (1991), 221-244.
[15] W. N. E and J.-G. Liu, Essentially compact schemes for unsteady viscous incompressible

flows, J. Comput. Phys., 126 (1996), 122-138.
[16] L. H. Howell and J. B. Bell, An adaptive-mesh projection method for viscous incompressible

flow, SIAM J. Sci. Comput., 18 (1997), 996-1013.
[17] W. Z. Huang and R. D. Russell, Moving mesh strategy based on a gradient flow equation for

two-dimensional problems, SIAM J. Sci. Comput., 20 (1999), 998-1015.
[18] W. Z. Huang and W. Sun, Variational mesh adaptation II: error estimates and monitor func-

tions, J. Comput. Phys., 184 (2003), 619-648.
[19] S. Li and L. Petzold, Moving mesh methods with upwinding schemes for time-dependent

PDEs, J. Comput. Phys., 131 (1997), 368-377.
[20] R. Li, T. Tang and P.-W. Zhang, Moving mesh methods in multiple dimensions based on

harmonic maps, J. Comput. Phys., 170 (2001), 562-588.
[21] R. Li, T. Tang and P.-W. Zhang, A moving mesh finite element algorithm for singular prob-

lems in two and three space dimensions, J. Comput. Phys., 177 (2002), 365-393.
[22] J.-G. Liu and C.-W. Shu, A high-order discontinous Galerkin method for 2D incompressible

flows, J. Comput. Phys., 160 (2000), 577-596.
[23] G. Maze, G. Lapeyre and X. Carton, Dynamics of a 2D vortex doublet under external defor-

mation, Reg. Chaot. Dyn., 9 (2004), 477-497.
[24] K. Miller and R. N. Miller, Moving finite element methods I, SIAM J. Numer. Anal., 18 (1981),

1019-1032.
[25] C.-H. Min and F. Gibou, A second order accurate projection method for the incompressible

Z. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 3 (2008), pp. 679-703 703

Navier-Stokes equations on non-graded adaptive grids, J. Comput. Phys., 219 (2006), 912-
929.

[26] W. Q. Ren and X. P. Wang, An iterative grid redistribution method for singular problems in
multiple dimensions, J. Comput. Phys., 159 (2000), 246-273.

[27] C.-W. Shu and S. Osher, Efficient implement of essentially non-oscillatory shock-wave
schemes, II, J. Comput. Phys., 83 (1989), 32-78.

[28] Z.-J. Tan, Adaptive moving mesh methods for two-dimensional resistive magneto-
hydrodynamic PDE models, Comput. Fluids, 36 (2007), 758-771.

[29] Z.-J. Tan, K. M. Lim and B. C. Khoo, An adaptive mesh redistribution method for the incom-
pressible mixture flows using phase-field model, J. Comput. Phys., 2007, to appear.

[30] Z.-J. Tan, T. Tang and Z.-R. Zhang, A simple moving mesh method for one- and two-
dimensional phase-field equations, J. Comput. Appl. Math., 190 (2006), 252-269.

[31] Z.-J. Tan, Z.-R. Zhang, Y.-Q. Huang and T. Tang, Moving mesh methods with locally varying
time steps, J. Comput. Phys., 200 (2004), 347-367.

[32] H. Z. Tang, A moving mesh method for the Euler flow calculations using a directional mon-
itor function, Commun. Comput. Phys., 1 (2006), 656-676.

[33] H. Z. Tang and T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic
conservation laws, SIAM J. Numer. Anal., 41 (2003), 487-515.

[34] H. Z. Tang, T. Tang and P.-W. Zhang, Adaptive mesh redistribution method for nonlinear
Hamilton-Jacobi equations in two- and three-dimensions, J. Comput. Phys., 188 (2003), 543-
572.

[35] D. W. Waugh, The efficiency of symmetric vortex merger, Phys. Fluids A, 4 (1992), 1745-1758.
[36] A. Winslow, Numerical solution of the quasi-linear Poisson equation in a nonuniform trian-

gle mesh, J. Comput. Phys., 1 (1967), 149-172.
[37] Z.-R. Zhang, Moving mesh method with conservative interpolation based on L2-Projection,

Commun. Comput. Phys., 1 (2006), 930-944.

