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Abstract. Liquid metal droplets are accelerated by electrostatic forces in a process
known as field emission. In this study, we simulate the emission of charged indium
droplets on a needle in 2D cylindrical coordinates. The boundary element method is
used to rapidly and accurately calculate the electric field on the fluid surface, which
is then advected forward in time using level sets. This is the first time these meth-
ods have been combined, and this combination addresses difficult detachable surface
tracking issues successfully. A histogram of droplet charge-to-mass ratio is generated
in which it is predicted that smaller satellite droplets are more densely charged. In
addition, our model is compared with independent pre- and post-snap off data and
produces good agreement with the result.

AMS subject classifications: 65C20, 65M06, 65N38, 65Z05, 74S15, 76B45, 81T80

PACS (2006): 47.11.-j, 47.11.Hj, 79.70.+q

Key words: Field emission electric propulsion, modeling, level set, boundary element method.

1 Introduction

Field emission refers to the process of using a strong electric field to produce a spray of
charged liquid droplets or ions. The field comes from a potential difference between an
electrode and the liquid surface that is balanced by the surface tension of the fluid. As
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a result, the surface deforms to an equilibrium shape of a cone. The strong field at the
tip then causes a propellant jet to form [1]. The phenomenon of droplet and ion evap-
oration from charged liquid surfaces is of considerable interest in many areas of science
and technology. Some of the many realms in which field emission occurs include: elec-
tron microscopy, data displays, carbon nanotube fluorescence, ink jets and thermoelectric
coolers.

Field emission thrusters are currently considered for a variety of space missions both
in the United States and Europe. FEEP thrusters provide a source of high specific im-
pulse, ultra-low impulse bit electrostatic space propulsion. A space-tested indium FEEP
has been under development in Austria for over a decade [2]. The liquid metal ion
source (LMIS) base consists of a needle covered in the element indium reacting to an
applied electric potential from an extractor ring held above the tip at -6 kV. When the
field strength at the tip reaches 109 V/m, indium is then ionized from the surface and ac-
celerated over a fine tungsten needle that is about 1 cm long and 50 µm wide. Depending
on the mass flow rates, either ions or droplets are observed to be emitted from the tip. A
schematic of a FEEP thruster [3] is shown in Fig. 1.

Figure 1: FEEP in droplet production mode.

The existence and corresponding behavior of droplets is of large practical concern
in FEEP because as more droplets form, operational efficiency decreases, lifetime is lim-
ited due to the electrode clogging and plume divergence is unpredictable due to varying
charge distributions. Therefore, a numerical investigation into the formation and charge
of these expelled droplets has been undertaken. Experimental efforts indicate that be-
low 20 µA only ion emission occurs in FEEP needles [4]. Above that point, at a current
that varies based on the thermal and electrical properties of the fluid, periodic stochastic
motions of droplet formation and emission interrupt the steady ion stream.

As the potential on the ring electrodes increases, the liquid curvature increases until
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reaching a conical surface with a half angle of 49◦, a so-called Taylor cone where the forces
of electrostatics and surface tension are mathematically in balance [5]. During droplet
formation and detachment, the fluid radius necks to zero width between the two shapes.
When simulating snap off, this can cause substantial surface location and divide-by-zero
difficulties. A combination of the level set and the boundary element methods success-
fully sidesteps this issue.

Level sets are one mathematical method used to computationally track the movement
of a surface between solid-liquid, liquid-vacuum and other types of discrete interfaces.
They were introduced by Osher and Sethian [6] and have been heavily studied over the
next couple of decades. A complementary surface simulation technique is the boundary
element method (BEM). Using boundary points in simulations mimics the more com-
mon finite element method, except that boundary elements span only the edges of the
shapes instead of the entire volume. This allows for faster computation due to use of
fewer nodes, avoids the need to adaptively mesh, allows for easier design changes and
successfully deals with infinite domains and arbitrary shapes.

This paper has two main objectives. The first is to explain how the level set and
boundary element methods are coupled to simulate liquid metal droplets, while the sec-
ond goal is to predict droplet size and charge characteristics and relate them to external
work. This study discusses how these two mathematical techniques can be used on a new
topic, examines some of the computational difficulties inherent in surface tracking and
models how a field emitter shape changes over time. The paper is organized as follows.
Section 2 presents the physical model governing equations. Section 3 describes how the
level set and boundary element methods are formulated and why they are appropriate
to solve these evolution equations. Section 4 presents illustrative results on droplet size
and charge.

2 Overview

2.1 Model description

The simulation model considers an incompressible, isothermal and viscous liquid against
a perfect vacuum. The propellant indium is treated as a perfect conductor and its atoms
are accelerated with ring electrodes, producing thrust. The 2D axisymmetric governing
equation for the system is

1
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A=B+σκ+qEn.
(2.1)

The electric field ~E is treated as a surface normal force En, since all electrons in a conductor
remain on the surface. Continuity and conservation of momentum are enforced. The
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main momentum equation state terms are
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The normal stress boundary condition at the free surface is

p=σκ+qEn +2µ(Dliquid ·~n)·~n, (2.3)

where D is the rate of deformation tensor. The electric field is computed by ~E=−∇U(~x),
where U(~x) is the electrostatic potential at position ~x.

2.2 Physical submodels

The surface tension σ of liquid indium does not vary rapidly with temperature, as indi-
cated by

σIn =
555−0.12(T[K]−430)

1,000

[

N

m

]

. (2.4)

During normal FEEP operation, the temperature remains within the narrow operational
range of 440-450 K where indium is far enough above its melting point to be fully liquid
[4]. The ability of indium to flow over a solid surface is determined largely by its viscosity
µ, which varies with temperature through the weak exponential relationship of

µIn =3×10−4e800/T[K]

[

kg

m·s

]

. (2.5)

Over the expected temperature range, the fluid viscosity changes only 4%. The density ρ
of indium is given by

ρIn =1,000×(7.1295−6.7987×10−4(T−273.15))

[

kg

m3

]

, (2.6)

and changes about 0.01% per degree Celsius.
Among the model assumptions, the treatment of the propellant as a perfect conductor

is very reasonable. Since indium is a metal, the conductivity is so high that an electron can
travel through the liquid surface along the needle body at the Fermi velocity. For metals,
the Fermi energy (eF) provides the minimal energy for conducting electrons. However,
the maximum amount of energy which can be given to any electron is on O(µeV), so only
the electrons very near the Fermi energy can participate in conduction [7]. The Fermi
velocity (vF) of these conduction electrons can be calculated from the Fermi energy. For
indium, vF is

vF = c

√

2eF

mec2
=1.74×106

[m

s

]

. (2.7)
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The fluid flows at a maximum speed 10 orders of magnitude slower, only 1×10−4m/s.
The isothermal assumption for droplets is accurate because only radiation is available to
cool them after snap off. For example, detachment occurs in 0.1 µs, but a 100 µm diameter
droplet at 450 K treated as a blackbody cools less than 0.1 mK in that time. Therefore, σ,
µ and ρ can accurately be treated as constant.

3 Numerical methodology

When computationally tracking the movement of a surface between solid-liquid and
liquid-vacuum interfaces as discussed in Section 2, the determination of the normal elec-
tric field commonly is quite drawn out and error-prone. The combination of the level
set and the boundary element methods improves on prior work by providing similar or
better resolution combined with a rapid simulation of droplet pinch off.

3.1 Level sets method

Interface tracking using level set computation relies on the determination and evolution
of the surface boundary. In our model, the position of the free surface is updated via the
level set equation

φt+~v·▽φ=0, (3.1)

where φ is the level set function; positive in liquid and negative in the vacuum. The
interface velocity ~v is the indium fluid velocity. In the vacuum, lines of constant ~v are
projected normal to the indium surface. The interface is advected by only the normal
velocity component of ~v. This component is the normalized gradient of the level set
surface,

~vn =
~v·∇φ

|∇φ|
. (3.2)

The extension was first suggested in [8], analyzed carefully in [9], and further discussed
in [10, 11]. In the special case where ~vn=1, then Eq. (3.1) becomes a Hamilton-Jacobi
equation whose solution generally develop kinks, or jumps in derivatives.

If a point starts on the surface ∂Ω where φ =0, that particle moves through time, but
remains on the surface. Fig. 2 shows the φ≥ 0 cross-section of a double-humped shape
intersected at 3 different heights.

After each time step, φ is renormalized to be the signed distance function d. A signed
distance function is an implicit function φ with |φ(~x)|= d(~x) for all ~x. Connecting any
point~x with the nearest point I on the surface boundary ∂Ω gives the path of steepest de-
scent for d. Due to the reinitialization step, the distance constraint |∇φ|=1 applies. The
extrapolation procedure uses the distance function since xI =x−(∇φ)φ is the closest cor-
responding point on the interface. The curvature of the interface κ can then be described
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Figure 2: Level set surface determination at various heights.

using the level set variable φ itself as

κ =
∇·(∇φ)

|∇φ|
. (3.3)

Near pinch off, the curvature determination is more prone to errors as a greater change
in κ occurs within a smaller area. To combat this problem, adaptive mesh refinement is
used to locally generate more cells in a given area, so that the surface curvature per cell
is limited.

The free surface is represented with second order accuracy in space through a “cou-
pled level set and volume-of-fluid” (CLSVOF) method. In addition to solving the level
set equation, the volume-of-fluid function VF is computed [12, 13],

∂VF

∂t
+~v·∇VF =0, (3.4)

where the net volume of fluid is conserved both locally and globally. Interfaces are
tracked in this volume-of-fluid method by locally calculating the flux of volume in or
out of a given computational cell. If a cell has no fluid, VF = 0; totally filled grid points
have VF =1. Interface (’mixed’) cells have VF ∈ (0,1) [14]. The cell (i,j) fluid volume frac-
tions are determined by checking for fluid at points (x,y) via

VF(x,y)=

{

1 if fluid at (x,y),
0 if no fluid at (x,y).

(3.5)

These local fluid values are combined with H, the Heaviside function evaluated as

VFij
=

1

∆x∆y

∫

i

∫

j
VF(x,y)dxdy. (3.6)
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Using the above definitions for level sets, this work builds on prior two- and three-
dimensional efforts of interface migration by Sussman [15]. A variety of numerical algo-
rithm schemes are needed in the CLSVOF approach [16]. The method is briefly outlined
below [17].

1. Advance the location of the interface using the coupled level set and volume of fluid method.
Velocity and pressure fields are computed based on variable density projection methods [18].

2. Calculate nonlinear advective force terms in each fluid separately using high order, upwind,
slope limited discretization. The liquid indium is discretized using a Godunov second-order
upwind predictor-corrector step [19].

3. Compute the viscous forces. Use the Crank-Nicholson [20] and Runge-Kutta methods. The
new velocity field is continuous across the φ=0 surface. Surface tension is included as a body
force, as in [21]. Curvature is calculated directly from volume fractions.

4. Cell centered forces are interpolated to face centered forces.

5. Pressure and velocity fields are updated and implicitly projected via

∇·
∇p

ρ
=∇·v,

u=v−
∇p

ρ
.

(3.7)

The new velocity field satisfies the continuity condition and the new pressure satisfies the
appropriate jump conditions [p]=g and [ 1

ρ∇p·~n]=h. The Cartesian-grid approach is used to
approximate the divergence operator.

6. The liquid velocity is extrapolated in a narrow band around the φ=0 interface.

7. Face centered velocity is interpolated back to cell centered velocities.

8. Finally, the cell centered pressure gradient term is updated.

3.2 Boundary element method

For all the benefits of surface determination, the efficient calculation of the magnitude
of the normal electric field En in Eq. (2.3) still presents many challenges. The algorithm
employed in this study for determining the electrostatic force is the boundary element
method (BEM).

The boundary element method rapidly and directly solves for the force on the surface
without meshing the volume of the domain. It handles arbitrary geometries by only
discretizing points along the boundary. For example, consider Poisson’s equation

△U(x)=−
ρ̆

ǫ0
, x∈Ω, U|∂Ω = f or ∇U|∂Ω ·~n= g, (3.8)
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where ρ̆ is the charge density, f is the Dirichlet fixed potential and g is the Neumann fixed
flux boundary condition. A solution to Poisson’s equation can be formed from a Green’s
function approach.

3.2.1 Green’s function

Let G(x |x0) be the free space Green’s function for the Laplace operator, which is the so-
lution to

△G=δ(x0−x), (3.9)

where x = (x,y) is a boundary point and x̄0 is a point on the interior of the domain. In
two dimensional coordinates, the function becomes

G=−
1

4π
ln

{

(x0−x)2+(y0−y)2
}

. (3.10)

Using Green’s 2nd identity to relate the surface to the boundary flux,

∫ ∫

A
(D△E−E△D)dA=

∮

(D▽E−E▽D)·~ndS (3.11)

and replacing D by the Greens function G and E by the potential U gives

∫ ∫

A
G

ρ̆(x)

ǫ0
dA−U(x0)=

∮

(G(∂~nU)−U(∂~nG))·~ndS, (3.12)

where ∂~nx = ∇x·~n. Since we do not have any internal charge in a perfect conductor,
ρ̆(x0)=0 and the potential at any point can be calculated from the boundary flux and po-
tential conditions. Carefully taking the limit from the inside of the domain to the bound-
ary of the single and double layer potential gives Eq. (3.13) [22]

βU(x0)=
∮

∂Ω
U(x)∂~nG(x|x0)ds−

∮

∂Ω
∂~nU(x)G(x|x0)ds, (3.13)

where ∂Ω consists of a mixture of U(x) along Dirichlet (∂ΩD) and ∂~nU(x) along the Neu-
mann (∂ΩN) boundary conditions, ∂Ω = ∂ΩD +∂ΩN , and β(x) is 1/2 or 1 if x∈ ∂ΩD or
x∈∂ΩN respectively.

3.2.2 Numerical discretization of the problem

Approximating the potential and flux of each panel as being a C−1 constant over the Mk

panels along surface ds gives the following approximation:

∮

∂Ωk

U(x)∂nG(x|x0)ds
.
=

Mk

∑
i=1

U(xi)
∮

∂Ωi

∂nG(x|x0)ds,

∮

∂Ωk

∂~nU(x)G(x|x0)ds
.
=

Mk

∑
i=1

∂~nU(xi)
∮

∂Ωi

G(x|x0)ds.

(3.14)
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The assumption of a perfect conductor means that the electrode and needle have a fixed
potential throughout. Therefore, changing the panels from constant C−1 to linear C0

potential representations may not increase the accuracy of the approach.
Inserting Eq. (3.14) into Eq. (3.13) gives the full descriptive integrals for both bound-

ary types. The first term represents a Dirichlet boundary condition and the second a

Neumann one. The terms U(x0) and
∂U(x0)

∂n0
in the expansion arise from the effect of a

panel on itself.
If x is on the boundary, then the discrete form of Eq. (3.13) is

βU(x0)=
MD

∑
i=1

U(xi)
∮

∂ΩD,i

∂n,0G(xi|x0)ds+
MN

∑
j=1

U(xj)
∮

∂ΩN,j

∂~n,jG(xj|x0)ds

+
MD

∑
i=1

∂~n,iU(xi)
∮

∂ΩD,i

G(xi|x0)ds+
MN

∑
j=1

∂~n,jU(xj)
∮

∂ΩN,j

G(xj|x0)ds,

(3.15)

where MD is the number of Dirichlet panels and MN is the number of Neumann panels.
Note that the flux on Dirichlet and the potential on Neumann boundaries is unknown
and needs to be solved, that is the ∂~nU(x)|∂ΩD

and U(x)|∂ΩN
terms. Using the prior

discretization and by collecting terms, the matrix can be described as in Eq. (3.16) and
mathematically as Eq. (3.17):

[

distance from one
panel to another

][

unknown Dirichlet
and Neumann BC

]

=

[

known Neumann
and Dirichlet BC

]

, (3.16)
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. (3.17)

Here, the ai,j represent the inter-panel distances between Dirichlet-Dirichlet types bound-
aries, bi,j are the Dirichlet-Neumann distances, ci,j are the Neumann-Dirichlet distances
and di,j describe the Neumann-Neumann distances. The right hand side of Eq. (3.17) is
the known quantities in Eq. (3.15).

The actual boundaries do not have to be all Dirichlet and then all Neumann types as
described above; the boundary conditions can alternate back and forth arbitrarily. The
potential at any point in the domain is thus given by summing the contributions from
fixed, diverse boundaries types, as in Eq. (3.15).

3.3 Calculating the electrostatic force

One of the main advantages of the BEM formulation of Eq. (3.17) is the direct computa-
tion of the interface force. Solving for the ∂~nV(x1)|∂ΩD

term of the normalized test shape
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Figure 3: Boundary nodes and normal electric field along a curved surface.

in Fig. 3a provides the normal component of the electric field (En) for points in the inter-
val (x,y)∈ [−0.05,0.05]×[0.7,0.75], as seen in Fig. 3b. To calculate the electrostatic force
term qE in the model, consider the droplets’ position. Gauss’ Law states that the total
flux of the electric field through an element dA is given by the sum of the electric field’s
surface normals; this is shown in

UL

[

N ·m2

C

]

=
∫

EdA=
∮

~E·~ndS=
q

ǫ0
, (3.18)

where the flux is β =1 unit into the page. By drawing a box around each computational
panel, the earlier assumption of a perfect conductor now implies that all electric flux is
normal to the surface so ~E≡ ~En and there is no tangential electric field. Solving for the
charge:

q=ǫ0LEnβ. (3.19)

As a result, the total electrostatic force experienced by the panel is given by

FE [N]=qEn =ǫ0LE2
n. (3.20)

The electrostatic solution is computed independent of a surrounding volume grid. The
calculation method for the electrical force holds for all non-crossing complex geometries,
including the nesting of multiple shapes. The model is capable of determining electro-
static surface forces on a needle FEEP.

3.4 Surface node generation

Since BEM is a directional method, not only do all the interface locations have to be
determined, but they also have to be examined sequentially. This computational task
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Figure 4: Surface as represented by the (a) level set variable φ from [−0.001 ≤ φ ≤ 0.001] and (b) surface
reconstruction points.

of ordered surface node generation from level set grid data is an issue that arises of-
ten. Shape determination strongly impacts model behavior; problems in calculating the
physical connectivity between panels arise from the existence of: areas of high curvature,
variational spacing between located surface points, multiple surfaces, and variation in
both time and space. Fig. 4 displays a situation commonly encountered that concerns
surface recognition and separation of five unique droplets. In Fig. 4a, the level set vari-
able is graphed for values [−0.001≤φ≤0.001], while the second picture displays the φ=0
locations. Fig. 5 displays the droplets along with the possible separation points. The top
three drawn circles are discrete droplets; any surface tracking program has to recognize
this and that droplet #5 extends over a region whose middle is necking, but not detached.

Numerous approaches for discrete shape identification were attempted before settling
on a hybrid anti-crossing, tracking normal-weighting (ACTNOW) scheme. This method
was created using parts of many discrete schemes in the literature. It can generate con-
nected droplets using only φ values, including parallel lines and necking. Other alter-
native schemes investigated for the shape connectivity include nearest neighbor, limited
distance, normal minimization, angle gradient minimization and pseudo-entropy reduc-
tion [23–27].

Starting from the top point on the midline, the ACTNOW approach traverses the
level set grid vertically until the first positive φ value is encountered. The direction is
then recorded, where the first instance is south. The algorithm then looks at the level set
values 135 degrees counter-clockwise, or northeast originally. From there, the level set
values are examined every 45 degrees to see if φ changes sign. When that sign change
is identified, the new surface point is marked and the 8-point circle check is continued
from the new location. In this way, a listing of the intersection points for each shape is
determined. Using the list of individual droplet nodes, the order of points is determined
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Figure 5: Individual droplets with circled potential detachment locations.

Figure 6: Computational domain, 2D axisymmetric case.

using a combination of all the prior methods. If two lines cross when linking nodes, a
connection between two nodes was mistakenly drawn, and the process for that particular
shape is begun again, with that connection no longer possible. The most successful sub-
techniques used in ACTNOW include limiting the length of the proposed connection
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near the average of the other connections and restricting the interior angle change from
one point to the next.

3.5 Numerical verification and analysis

To verify the numerical stability of the methods against perturbations, multiple steps
were taken. The simulated computational domain is shown in Fig. 6. Refining the level
set mesh from 2562 to 2,5062 cells and lowering the top panel from y=2.6 cm to y=1.5 cm
showed no change in potential contours at the needle tip or the eventual evolved shape.

Convergence in the volume loss simulations is shown in Fig. 7. Convergence is
demonstrated above the 256 node level, at a cell length of 12 µm. The instantaneous calcu-
lation of the shape area with varying grid densities in Fig. 8 demonstrates the method’s
second-order accuracy as the error drops two decades for each order of magnitude in-
crease in the number of nodes.

In addition, the combined method is more stable than the boundary element method
alone. Dynamic time steps are chosen through a reduced CFL number stricture based on
the locally smallest cell size. On its own, BEM requires (1) computational surgery when
droplets form. The new shape has to be defined as a new surface and not just an extension
of the previous one. In addition, the method also requires (2) a point redistribution step
for panel locations to equalize relative lengths, thereby reducing numerical noise. In
our implementation, the nodes are derived from the level set function at each time step,
thereby avoiding both aspects (1) and (2). The level set creates these nodes by assuming
symmetry about the axis. The points (x,y) and (2xaxis−x,y) are then added as surface
points. The adaptive cell size and panel lengthes were limited to be at most one tenth the
diameter of the tracked droplets.

An example of an intermediate step in the surface evolution in Fig. 9 presents a snap-
shot of the liquid surface evolution, showing both adaptive mesh refinement boxes and
instantaneous velocity vectors. The run time to generate a hundred detached droplets.
using a 2 GHz single-CPU machine with 2 GB of RAM was 10 minutes for the coarse
grid, 2 hours for the 128x256 grid, 15 hours for the converged grid spacing of Fig. 7 and
40 hours for the finest grid.

4 Illustrative results

Using Eq. (3.20), the force on the surface can be calculated and then the droplets advected
forward in time with Eq. (3.1), with the corresponding droplet formation varying in space
and time. The needle field emitter uses indium propellant at 453 K, with a viscosity of
0.0017 N ·s/m2, a surface tension of 0.552 N/m and an electric field magnitude of 10
V/nm at the tip [2,3]. The simulation shows the fluid accelerating at about 1.4×109 m/s2,
and with a maximum velocity of 6.5 km/s. The rectangle at the top of Fig. 6 represents
the position of the ring electrode and the triangle in the bottom center is the underlying
solid tungsten needle.
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Figure 7: Volume loss over time versus level set grid density.
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Figure 8: Area calculation error versus number of grid nodes shows a second order method.

4.1 Mass to charge ratio

Recording the properties of 7,600 droplets at snap off gives a mass to charge ratio dis-
tribution as seen in Fig. 10. The histogram yields a double bigaussian, showing two
sub-peaks at 1,000 and 4,000 atoms/electron. The simulated MTCR of 3,900 in Fig. 10
is in agreement with that measured experimentally. Fehringer found the most common
sized droplet had a radius of 0.04 µm [28]. Charged to the Rayleigh limit, those droplets
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Figure 9: Indium surface evolution with adaptive mesh refinement boxes and overlaid velocity vectors.

have q=
√

64π2ǫ0σr3/e=2,774 charges. The number of indium atoms is determined by

#in. atoms=ρAb(MW)in

=(7300)

〈

4

3
π(4×10−8)3

〉〈

1amu

1.6606×10−27kg

〉〈

1molecule

114.818amu

〉

=1.026×107. (4.1)

Dividing the number of atoms by the number of charges results in an experimental needle
FEEP MTCR of 3699 [mol/charge].

4.2 Satellite droplets

When droplets form from the tip of a FEEP, smaller satellite droplets also commonly form.
The electric field directly impacts the formation and fate of these secondary droplets.
The field influences the volume of these satellite droplets by modulating snap off speed
and the distribution of surface charge on the satellite droplets, the primary drop and the
liquid remaining on the needle. These satellite droplets have larger relative charge [29],
forming the smaller MTCR hump shown in Fig. 10. An example detachment location is
shown in Fig. 11a, where five droplets have detached from the surface. The variation
in area of the new droplets is analogous to a faucet, where a large droplet is frequently
followed by a small one. Whether electrostatically charged or not, this trend of oscillating
size of detached areas is common in droplet formation [30]. Fig. 11b displays the area of
sequentially created droplets at one location. The substantial changes in droplet area
occur from a large volume to a small volume and vice versa, in agreement with MTCR
predictions.
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Figure 10: Droplet mass to charge probability density distributions at snap off.
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Figure 11: Droplets (a) detaching from a jet and (b) area at initial detachment. The abrupt spiking from large
to small droplets is consistent with experiments.

The claim of the satellite droplets being largely the low MTCR population and there-
fore having greater relative charge is supported via Fig. 12. The greatest number of
charges per cubic meter is for the smallest diameter droplets. As the droplet diameter
increases, the Rayleigh limit caps the number of electrons on the surface, with greater
diameters having a lower maximum volumetric charge before Coulombic fission occurs.
The large number of droplets with a diameter around 2.5 µm represent the MTCR mode
of 3,900 presented earlier.
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Figure 12: Droplet volumetric charge density versus diameter. The smallest satellite droplets are much more
highly charged.

4.3 Pre-snap off shape

Suvorov presented a self-similar numerical simulation of a perfectly conducting fluid
[31]. He modeled the equations of motion using electrohydrodynamics, simulating a
field emitter surface evolving up to the full Taylor cone angle. Fig. 13 displays his and
our work side by side for comparison; note that the EHD method only tracks the surface
until the Taylor cone angle is reached. Electric field, position, surface tension and vis-
cosity were matched, producing models that are similar in space and time. The external
surface location was recorded at 81, 104, 116 and 123 ns in the EHD simulation. The BEM
simulation shape occurred at 91, 120, 130 and 150 ns.

Fig. 14 presents the angle of the surface χ(r), measured from vertical to the surface
tangent. A fluid peak on the order of 50µm in diameter forms and becomes more pro-
nounced over time. As time increases, χ(50µm) continues to decrease as the surface
becomes more vertical and droplet necking begins. This is the initiation point for the first
droplet detachment.

4.4 Post-snap off radial spread

The PDF simulation results in Fig. 10 have shown a large MTCR frequency in the droplets
around 4,000 indium atoms per electron. The following subsection attempts to sup-
port this finding by presenting a simple model that relates an observed droplet angular
spread to the relative charge necessary to cause this distribution. The MTCR of this order-
of-magnitude analysis was found to approximate the simulation maximum probability
value.
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Figure 14: Angle χ(r) (a) defined from vertical to tangent to the surface and (b) plotted versus radial distance.
At increasing time the angle decreases as the droplet necks.

For a droplet to be deflected in flight, it has to experience a repulsive force. Fig. 15
shows an experimental set up that records the angular density and volume of droplets
from a FEEP. The axial vertical velocity u of the droplet after passing the shutter is con-
stant and is a function only of its relative charge. The off-axis horizontal velocity v is
a function of average acceleration a and time, or v = at. Inserting the experimental dis-
tances, the necessary acceleration and horizontal velocity for a charged droplet to reach
the collection ring at an angle Ψ are described by Eq. (4.2):

a
[m

s2

]

=5.948×107 (tanΨsecΨ)
( q

m

)

, v
[m

s

]

=2181(tanΨ)

√

q

m
. (4.2)
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Figure 15: ARCS droplet angular measurement apparatus.

At a current of 250 µA and an mean offset of 16.6◦, half of the total droplet volume is
closer to the axis and half is further away. This angular density spread can be caused by
droplets that are relatively charged to the O(4000) indium atoms per electron predicted
by the full BEM/LS hybrid approach. The model uses the equality qE=F=ṁa, the elec-
trostatic repulsion as the square of the distance between droplets and the fact that the
average value of the function

∫ r f

ri

1

r2
dr =

1

(r f −ri)2
.

The model prediction was based on the mass of the jth droplet being much less than the
overall mass flux ṁtot. The electric field Ej from the Nd detached drops is then given by
Eq. (4.3), where MTCR is the number of indium atoms per electron in the droplets:

Ej =k
Nd

∑
i=1,i 6=j

qi

r2
i

= kṁ
8.403×105

MTCR

Nd

∑
i=1,i 6=j

1

r2
i

=
1.230×109

MTCR

Nd

∑
i=1,i 6=j

1

r2
i

= 7.687×1011/MTCR. (4.3)

Setting the electric field Ej = ṁa/q from Eq. (4.2), the relative charge of the droplets at
the angle Ψ can be determined. The rudimentary calculation for the MTCR needed to
cause the measured mean beam spread is then given in Eq. (4.4). This simplistic model
is remarkably close to the relative charge of 3,900 predicted with the BEM/LS approach
and is derived solely from the average droplet relative charge needed to match a given



A. VanderWyst, et al. / Commun. Comput. Phys., 2 (2007), pp. 640-661 659

experimental angular dispersion:

MTCRmodel

[

#atoms

e−

]

=8,700. (4.4)

5 Conclusion

The coupling of the boundary element and level set methods allowed for the simulation
of high conductivity liquid metal droplets from a field emission thruster tip. This com-
bination avoided many of the obstacles of modeling detaching surfaces while rapidly
providing 2nd-order accurate results through reducing the electric field calculation do-
main. The boundary element method provided a direct solution of the external potentials
and normal electric fields, thereby driving the liquid’s evolution. Level sets allowed ar-
bitrary surface geometries and the joining and separation of droplets while not requiring
manual boundary modification each time step.

Validation against two independent sources was performed. Pre-snap off surface
movement matches an EHD model, while post snap off relative charge for off-axis par-
ticle spread agreed qualitatively and quantitatively with that expected for droplets with
a mean MTCR between 1,600-40,000. The full LS/BEM hybrid model’s predicted rela-
tive charge maximum is comfortably in this range. The simulation performed signifi-
cantly beyond liquid detachment without having to restart, reflecting a robust modeling
method.
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