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Abstract. In this paper, based on the multi-symplecticity of concatenating symplec-
tic Runge-Kutta-Nyström (SRKN) methods and symplectic Runge-Kutta-type meth-
ods for numerically solving Hamiltonian PDEs, explicit multi-symplectic schemes are
constructed and investigated, where the nonlinear wave equation is taken as a model
problem. Numerical comparisons are made to illustrate the effectiveness of our newly
derived explicit multi-symplectic integrators.
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1 Introduction

Consider the following Hamiltonian partial differential equation (PDE),

K∂tz+L∂xz=∇zS(z), (1.1)

where z ∈ R
n, S : R

n 7→ R is some smooth function and K,L are two skew-symmetric
constant n×n matrices. It is well-known that system (1.1) is multi-symplectic, i.e., its
phase flow gives rise to the multi-symplectic conservation law

∂tω+∂xκ =0, (1.2)
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with

ω =dz∧Kdz, κ =dz∧Ldz.

The local invariant (1.2) implies that symplecticity can vary over the spatial domain from
time to time. But this variation is not arbitrary as the changes in time are exactly com-
pensated by changes in space (see [9, 12], and references therein). Some very important
PDEs can be rewritten in this form, particularly, including various wave equations (see,
e.g., [2, 8, 9, 14] and references therein).

More recently, there has been growing interest in multi-symplectic integration for
Hamiltonian PDEs (1.1), i.e., numerical integrators whose numerical flow gives rise to
certain preservation of the local invariant (1.2). Now, for our study, we introduce a uni-
form grid {xk,tl} ∈ R

2 with mesh length h in the x-direction and mesh length τ in the
t-direction, which will be used throughout the paper. According to the definition in [2],
a numerical discretization for (1.1), i.e.,

K∂k,l
t zl

k+L∂k,l
x zl

k =(∇zS(zl
k))

l
k, zl

k ≈ z(xk,tl), (1.3)

where ∂k,l
t and ∂k,l

x are discretizations of the derivatives ∂t and ∂x, respectively, is called
multi-symplectic, if it satisfies a discrete version of the multi-symplectic conservation
law:

∂k,l
t ωl

k+∂k,l
x κl

k =0, (1.4)

where

ωl
k =dzl

k∧Kdzl
k, κl

k =dzl
k∧Ldzl

k,

and dzl
k satisfies the discrete variational equation

K∂k,l
t dzl

k +L∂k,l
x dzl

k =S′′(zl
k)dzl

k. (1.5)

Some progress has been made on multi-symplectic integration for various Hamiltonian
PDEs (see, e.g., [1,5,6,9,11,14] and references therein). In particular, as one of the most im-
portant classes of multi-symplecitic integrators, the concatenation of symplectic Runge-
Kutta (SRK) methods and symplectic partitioned Runge-Kutta (SPRK) methods is inten-
sively studied in [5, 6, 11, 14]. However, since both SRK methods and SPRK methods are
implicit (this means that in the numerical implementation some iteration methods must
be utilized for the nonlinear case) with only a very few exceptional cases of lower or-
der methods [15], multi-symplectic integrators constructed in this way are usually fully
implicit (see, e.g., [11]). Clearly, this brings numerous difficulties for practical imple-
mentations due to the massive computational costs and for this reason, we are led to
the challenging problem of systematically constructing efficient explicit multi-symplectic
integrators.

As mentioned before, both SRK and SPRK are implicit, and concatenations of implicit
methods inevitably produce implicit methods for numerically solving PDEs. Therefore,
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for our investigation, we naturally resort to another notable class of numerical methods,
namely, Runge-Kutta Nyström (RKN) method (see [4, 7, 10, 15]), since which has been
shown to be able to derive explicit symplectic integration algorithms for a wide class of
Hamiltonian ODEs (see [13]). It has been known in [4] that if we use a SRKN method for
one directional discretization [17] and a SRKN/SRK/SPRK method for the other, then
we will obtain a multi-symplectic integrator. But unfortunately, it then turns out that
even if we use explicit SRKN methods for both directional discretizations, the resulting
multi-symplectic schemes are not necessarily explicit. Nonetheless, taking advantage of
the fact that more types of methods are allowed for concatenation, and the explicitness
of SRKN methods, we eventually achieve a class of explicit multi-symplectic schemes for
the nonlinear scalar wave equation. In detail, the new methods are derived by means
of concatenating symplectic Euler method and explicit SRKN methods of arbitrary order
larger than 2. The results obtained are readily extended to some Hamiltonian PDEs other
than nonlinear scalar wave equation.

As an example, we study in detail a two-parameter family of explicit multi-symplectic
SRKN-SRK methods. It is first shown that the explicit schemes are conditionally sta-
ble, which is known to be crucial when numerically solving wave equations with ex-
plicit schemes. Then, we perform some numerical experiments with four different ex-
plicit schemes to test the effectiveness of our newly derived multi-symplectic integrators.
Through comparisons, it is illustrated that the superiority of our novel integrators lies not
only in the capability of long-time scale computation, but also in the good preservation
of local/global energy.

The plan of the paper is as follows. In the next section, we present some prelimi-
nary knowledge on explicit SRKN methods and explicit SRKN methods of orders one
through four are collected for the subsequent use. Section 3 provides the general frame-
work based on which our multi-symplectic integration algorithms are constructed. In
section 4, a two-parameter family of explicit multi-symplectic integrators is constructed
and investigated. Section 5 is devoted to the numerical experiments.

2 Symplectic Runge-Kutta Nyström methods

Consider the Hamiltonian system

q̇=T−1p, ṗ=−∇qU(q), p×q∈R
n×R

n, (2.1)

where T ∈R
n×n is a symmetric positive definite matrix. This system is equivalent to a

second-order differential equation

q̈= f (q), f (q)=−T−1∇qU(q). (2.2)
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An r-stage Runge-Kutta-Nyström method for (2.2) is read as

Qi =qk+cihq̇k +h2
r

∑
j=1

aij f (Qj),

qk+1 =qk+hq̇k +h2
r

∑
i=1

βi f (Qi), (2.3)

q̇k+1 = q̇k+h
r

∑
i=1

bi f (Qi),

where qk and q̇k are the approximations to q(kh) and q̇(kh), respectively, and Qi

(i = 1,··· ,r) are the internal stage values. In the sequel, we denote an r-stage RKN
method (2.3) by the tetrad Nr = (A,b,c,β) with A = (aij)

r
i,j=1, b = (bi)

r
i=1, c = (ci)

r
i=1 and

β=(βi)
r
i=1. Nr is said to be symplectic if dqk+1∧dq̇k+1 =dqk∧dq̇k, which leads to

Proposition 2.1. (Suris [18]) If the coefficients of Nr satisfies the conditions

βi =bi(1−ci), i=1,··· ,r, (2.4)

biβ j−biaij =bjβi−bjaji, i, j=1,··· ,r, (2.5)

then it is symplectic.

It is observed from (2.3) that, if

aij =0, for j≥ i,

then Nr is explicit and the symplectic conditions (2.4)-(2.5) reduce to

βi =bi(1−ci), i=1,··· ,r,

biaij =bibj(ci−cj), j< i, i=1,··· ,r.
(2.6)

If we require bi 6=0 (i=1,··· ,r), then the second condition in (2.6) can be further simplified
to

aij =bj(ci−cj), j< i, i=1,··· ,r,

and the SRKN method Nr in this case can be formulated by the following Butcher’s
tableau:

c1 0 0 ··· 0 0
c2 b1(c2−c1) 0 ··· 0 0
c3 b1(c3−c1) b2(c3−c2) ··· 0 0
...

...
... ··· ...

...
cr b1(cr−c1) b2(cr−c2) ··· br−1(cr−cr−1) 0

b1(1−c1) b2(1−c2) ··· br−1(1−cr−1) br(1−cr)
b1 b2 ··· br−1 br
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From the above tableau, it can be seen that bi and ci, i=1,··· ,r, are the only free parameters
for an explicit SRKN method. Furthermore, one can also see that if ci =ci−1 (i=2,··· ,r) or
bi =0 (i=1,··· ,r), then the ith stage is redundant, i.e., the method is reducible. Therefore,
for the explicit SRKN methods given below, we would require that ci 6= ci−1 (i = 2,··· ,r)
and bi 6=0 (i=1,··· ,r).

In the following, we listed some explicit SRKN methods of order one through four for
the subsequent use (see [13]).

1. 1-stage explicit SRKN methods:

c1 0

1−c1

1

where c1 is a free parameter to be chosen arbitrarily. If c1 6= 1/2, then the method
is of order 1. If c1 =1/2, then the method becomes a 1-stage explicit SRKN method
of order 2, which is equivalent to the well-known Störmer-Verlet method (see, e.g.,
[15]).

2. 2-stage explicit SRKN methods of order 2:
1
2 +α 0 0
1
2 +β β 0

β
β−α( 1

2−α) −α
β−α( 1

2−β)
β

β−α
−α

β−α

where α and β(α 6=β) are two free parameters. For subsequent reference, we call this
method SRKN2(α,β). It can be shown that SRKN2(−1/2,1/2) is also equivalent to
the Störmer-Verlet method. We remark that there are no real α and β such that
SRKN2(α,β) is of order 3.

3. 3-stage explicit SRKN methods:
1
2 +α 0 0 0
1
2 +β

1
12 +βγ
γ−α 0 0

1
2 +γ

1
12 +βγ
β−α −

1
12 +αγ
β−α 0

( 1
12 +βγ)( 1

2−α)
(β−α)(γ−α) − ( 1

12 +αγ)( 1
2−β)

(β−α)(γ−β)
( 1

12 +αβ)( 1
2−γ)

(γ−α)(γ−β)
1
12 +βγ

(β−α)(γ−α)
−

1
12 +αγ

(β−α)(γ−β)

1
12 +αβ

(γ−α)(γ−β)

where α,β,γ are three parameters to be chosen different from each other. It can
be verified that the method is of order 3. In the sequel, we refer to this method
as SRKN3(α,β,γ). Furthermore, one can check that SRKN3(−µ,0,µ) is of order 4
(see [3] and [13]) if µ is chosen to be the real zero of p(x)=48x3−24x2+1, i.e.

µ=
1

12
(2− 3

√
4− 3

√
16)≈−0.1756035959798288. (2.7)
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3 Multi-symplectic integration for Hamiltonian wave equations

In this section, we discuss the multi-symplectic integration for Hamiltonian PDEs (1.1)
through concatenation of SRKN methods and SRK/SPRK methods. Throughout, we take
the nonlinear scalar wave equation as a model problem, which is given by

∂ttu=∂xxu−G′(u), (x,t)∈Ω⊂R
2, (3.1)

where G is some smooth function in u. Introduce v= ∂tu and w = ∂xu, then a first order
PDE system of the abstract form (1.1) equivalent to (3.1) is given by taking z =(u,v,w)T

(see, e.g., [14]),

K =




0 −1 0
1 0 0
0 0 0



, L=




0 0 1
0 0 0
−1 0 0



,

and the Hamiltonian

S(z)=
1

2
(v2−w2)+G(u).

By (1.2), through straightforward calculation, the corresponding multi-symplectic con-
servation law for (3.1) is

∂t[du∧dv]−∂x [du∧dw]=0. (3.2)

Now, we are ready to derive the multi-symplectic integrator for (3.1). Henceforth, we

customarily refer to an s-stage RK method by the triple Rs =(Â,b̂, ĉ), where Â=(âî ĵ)
s
î, ĵ=1

,

b̂ =(b̂î)
s
î=1

and ĉ =(ĉî)
s
î=1

are, respectively, the coefficient matrix, weights and abscissae.

As is well-known, Rs is symplectic if it satisfies (see [15])

B̂Â+ ÂT B̂− b̂b̂T =0, B̂=diag[b̂]. (3.3)

We firstly apply an r-stage RKN method Nr for the temporal discretization and an s-stage
RK method Rs for the spatial discretization, and get the following fully-discrete scheme
for (3.1),

Ul,i

k,̂i
=ul

k,̂i
+ciτvl

k,̂i
+τ2

r

∑
j=1

aij∂ttU
l,j

k,̂i
, 1≤ i≤ r, 1≤ î≤ s, (3.4)

ul+1

k,̂i
=ul

k,̂i
+τvl

k,̂i
+τ2

r

∑
i=1

βi∂ttU
l,i

k,̂i
, 1≤ î≤ s, (3.5)

vl+1

k,̂i
=vl

k,̂i
+τ

r

∑
i=1

bi∂ttU
l,i

k,̂i
, 1≤ î≤ s, (3.6)

Ul,i

k,̂i
=ul,i

k +h
s

∑
ĵ=1

âî ĵW
l,i

k, ĵ
, 1≤ i≤ r, 1≤ î≤ s, (3.7)
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ul,i
k+1 =ul,i

k +h
s

∑
î=1

b̂îW
l,i

k,̂i
, 1≤ i≤ r, (3.8)

W l,i

k,̂i
=wl,i

k +h
s

∑
ĵ=1

âî ĵ∂xxUl,i

k, ĵ
, 1≤ i≤ r, 1≤ î≤ s, (3.9)

wl,i
k+1 =wl,i

k +h
s

∑
î=1

b̂î∂xxUl,i

k,̂i
, 1≤ i≤ r, (3.10)

∂ttU
l,i

k,̂i
=∂xxUl,i

k,̂i
−G′(Ul,i

k,̂i
), 1≤ i≤ r, 1≤ î≤ s, (3.11)

where we have used the following notations:

Ul,i

k,̂i
≈u(xk+ ĉîh,tl +ciτ), ul,i

k ≈u(xk,tl +ciτ), ul
k,̂i
≈u(xk+ ĉîh,tl), etc.

By a standard proof (see [4] and [16]) we have the following conditions which character-
ize the multi-symplecticity of above the RKN-RK method (3.4)-(3.11).

Proposition 3.1. If the method (3.4)-(3.11) satisfies the following coefficients conditions

b̂îb̂ ĵ = b̂î âî ĵ+ b̂ ĵ â ĵ î, (3.12)

βi =bi(1−ci), (3.13)

bi(β j−aij)=bj(βi−aji), (3.14)

for all î, ĵ = 1,··· ,s, and i, j = 1,··· ,r, then it is multi-symplectic and gives rise to the
following discrete multi-symplectic conservation law:

τ
r

∑
i=1

bi

[
dul,i

k+1∧dwl,i
k+1−dul,i

k ∧dwl,i
k

]
−h

s

∑
î=1

b̂i

[
dul+1

k,̂i
∧dvl+1

k,̂i
−dul

k,̂i
∧dvl

k,̂i

]
=0. (3.15)

Remark 3.1. Proposition 3.1 shows that concatenation of the SRKN method and SRK
method, applied respectively to the temporal and spatial discretizations, yields a multi-
symplectic integrator for the wave equation (3.1). For the discretization, we can alterna-
tively apply an SRK method in time and an SRKN method in space, and the obtained
scheme can also be shown to be multi-symplectic in a similar way as above.

Remark 3.2. For the above concatenation, instead of the RK method Rs, one can also use

an s-stage PRK method R(1)
s −R(2)

s , whose coefficients are assumed to satisfy

b̂(1) = b̂(2) := b̂. (3.16)

The resulting scheme is the same as (3.4)-(3.11), but with equations (3.7)-(3.10) replaced
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by

Ul,i

k,̂i
=ul,i

k +h
s

∑
ĵ=1

â
(1)

î ĵ
W l,i

k, ĵ
, 1≤ i≤ r, 1≤ î≤ s,

ul,i
k+1 =ul,i

k +h
s

∑
î=1

b̂
(1)

î
W l,i

k,̂i
, 1≤ i≤ r,

W l,i

k,̂i
=wl,i

k +h
s

∑
ĵ=1

â
(2)

î ĵ
∂xxUl,i

k, ĵ
, 1≤ i≤ r, 1≤ î≤ s,

wl,i
k+1 =wl,i

k +h
s

∑
î=1

b̂
(2)

î
∂xxUl,i

k,̂i
, 1≤ i≤ r.

It can be proved similarly that if the RKN-PRK method satisfies the coefficients conditions

b̂
(1)

î
b̂
(2)

ĵ
= b̂

(1)

î
â
(2)

î ĵ
+ b̂

(2)

ĵ
â
(1)

ĵî
,

βi =bi(1−ci),

bi(β j−aij)=bj(βi−aji),

for all î, ĵ =1,··· ,s, and i, j =1,··· ,r, together with the assumption (3.16), then it is multi-
symplectic and preserves the discrete multi-symplectic conservation law (3.15). That is,
concatenation of the SPRK method and SRKN method also produces a multi-symplectic
integrator. Here, for our discussion in the sequel, we remark that if we utilize the sym-
plectic Euler method (which is a first-order SPRK method) for the spatial discretization,

and eliminate the introduced variable W l,i

k,̂i
, we till get the second-order central difference

for uxx.

Remark 3.3. We emphasize that concatenation of SRK/SPRK methods with SRKN meth-
ods can also be used to derive multi-symplectic integrators for other kinds of Hamilto-
nian PDEs.

Next, we apply RKN methods for both directional discretizations of equation (3.1),
i.e., a RKN method Nr = (A,b,c,β) in t-direction and a RKN method N̄s = (Ā,b̄, c̄, β̄) in
x-direction, and get the following scheme:

Ul,i

k,i
=ul

k,i
+ciτvl

k,i
+τ2

r

∑
j=1

aij∂ttU
l,j

k,i
, 1≤ i≤ r, 1≤ i≤ s, (3.17)

ul+1
k,i

=ul
k,i

+τvl
k,i

+τ2
r

∑
i=1

βi∂ttU
l,i

k,i
, 1≤ i≤ s, (3.18)

vl+1
k,i

=vl
k,i

+τ
r

∑
i=1

bi∂ttU
l,i

k,i
, 1≤ i≤ s, (3.19)
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Ul,i

k,i
=ul,i

k +cihwl,i
k +h2

s

∑
j=1

aij∂xxUl,i

k,j
, 1≤ i≤ r, 1≤ i≤ s, (3.20)

ul,i
k+1 =ul,i

k +hwl,i
k +h2

s

∑
i=1

βi∂xxUl,i

k,i
, 1≤ i≤ r, (3.21)

wl,i
k+1 =wl,i

k +h
s

∑
i=1

bi∂xxUl,i

k,i
, 1≤ i≤ r, (3.22)

∂ttU
l,i

k,i
=∂xxUl,i

k,i
−G′(Ul,i

k,i
), 1≤ i≤ r, 1≤ i≤ s. (3.23)

The multi-symplecticity of the above RKN-RKN method is stated as follows.

Proposition 3.2. ([16]) If the method (3.17)-(3.22) satisfies the coefficient conditions

βi =bi(1−ci), (3.24)

biβ j−biaij =bjβi−bjaji, (3.25)

βi =bi(1−ci), (3.26)

bi(βj−aij)=bj(βi−aji), (3.27)

for all i, j=1,··· ,r, and i, j=1,··· ,s, then it is multi-symplectic and gives rise to the discrete
multi-symplectic conservation law

τ
r

∑
i=1

bi

[
dul,i

k+1∧dwl,i
k+1−dul,i

k ∧dwl,i
k

]
−h

s

∑
i=1

bi

[
dul+1

k,i
∧dvl+1

k,i
−dul

k,i
∧dvl

k,i

]
=0. (3.28)

Remark 3.4. Proposition 3.2 shows that concatenation of SRKN-type methods can pro-
duce a multi-symplectic integrator for Hamiltonian wave equations. It is remarked that
the above conclusion applies equally to other Hamiltonian PDEs. For example, consider
the beam equation

utt+uxxxx =V ′(u), (3.29)

where V(u) is some smooth function in u, which is shown to be a multi-symplectic PDE of
form (1.1) in [8]. Now, we apply an SRKN method Nr to the temporal discretization and
an SRKN method Ns to the spatial discretization, and get the following multi-symplectic
scheme:

Ul,i

k,i
=ul

k,i
+ciτ∂tu

l
k,i

+τ2
r

∑
j=1

aij∂ttU
l,j

k,i
, 1≤ i≤ r, 1≤ i≤ s,

ul+1
k,i

=ul
k,i

+τ∂tu
l
k,i

+τ2
r

∑
i=1

βi∂ttU
l,i

k,i
, 1≤ i≤ s,
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∂tu
l+1
k,i

=∂tu
l
k,i

+τ
r

∑
i=1

bi∂ttU
l,i

k,i
, 1≤ i≤ s,

Ul,i

k,i
=ul,i

k +cih∂xul,i
k +h2

s

∑
j=1

aijW
l,i

k,j
, 1≤ i≤ r, 1≤ i≤ s,

ul,i
k+1 =ul,i

k +h∂xul,i
k +h2

s

∑
i=1

βiW
l,i

k,i
, 1≤ i≤ r,

∂xul,i
k+1 =∂xul,i

k +h
s

∑
i=1

biW
l,i

k,i
, 1≤ i≤ r,

W l,i

k,i
=wl,i

k +cih∂xwl,i
k +h2

s

∑
j=1

aij∂xxW l,i

k,j
, 1≤ i≤ r, 1≤ i≤ s,

wl,i
k+1 =wl,i

k +h∂xwl,i
k +h2

s

∑
i=1

βi∂xxW l,i

k,i
, 1≤ i≤ r,

∂xwl,i
k+1 =∂xwl,i

k +h
s

∑
i=1

bi∂xxW l,i

k,i
, 1≤ i≤ r,

∂ttU
l,i

k,i
=−∂xxW l,i

k,i
+V ′(Ul,i

k,i
), 1≤ i≤ r, 1≤ i≤ s.

4 A two-parameter family of explicit multi-symplectic integra-

tion algorithms

Clearly, based on the general framework provided in Section 3, a large number of novel
multi-symplectic schemes can be constructed and more members are added to the known
class of multi-symplectic integrators. Besides, as has been mentioned in Section 2, SRKN
methods can be used to derive explicit symplectic schemes, one naturally expects that
concatenation of explicit SRKN methods may produce explicit multi-symplectic schemes.
But unfortunately, by straightforward calculations, it can be shown that this is not always
the case; that is, even if we use explicit SRKN methods for both directional discretiza-
tions, the resulting multi-symplectic scheme is not necessarily explicit. Nevertheless, it
is found that if in one direction, we apply the symplectic Euler method, which finally
gives the second-order central difference (see Remark 3.2), and in the other direction,
we apply an explicit SRKN method given in section 2, then the resulting scheme is ex-
plicit (here, “explicit” means that we don’t utilize the fixed point iteration), which is also
multi-symplectic according to Remark 3.2. As is widely recognized, it is not easy to con-
struct explicit schemes for numerically solving PDEs, and the case will become more
complicated when turn to the structure-preserving numerical integrators. Noting that
the explicit SRKN methods utilized for the concatenation can reach order even higher
than 4, those obtained schemes are of significant interests since they are high-order (at
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least in one direction) explicit and multi-symplectic methods. This is in sharp contrast to
the multi-symplectic Runge-Kutta-type methods, where the methods are always fully im-
plicit, especially in the high-order case (see [5,6,11,14]). Next, as an example, we present a
two-parameter family explicit multi-symplectic scheme for wave equation (3.1). In space,
we apply the symplectic Euler method and in time, we apply the method SRKN2(α,β).
The resulting multi-symplectic scheme is formulated as follows:

Ul,1
k =ul

k+

(
1

2
+α

)
τvl

k,

(∂xxU)l,1
k =

Ul,1
k+1−2Ul,1

k +Ul,1
k−1

h2
,

Ul,2
k =ul

k+

(
1

2
+β

)
τvl

k+τ2β[(∂xxU)l,1
k −G′(Ul,1

k )],

(∂xxU)l,2
k =

Ul,2
k+1−2Ul,2

k +Ul,2
k−1

h2
,

ul+1
k =ul

k+τvl
k +τ2 β(1/2−α)

β−α

[
(∂xxU)l,1

k −G′(Ul,1
k )
]
−τ2 α(1/2−β)

β−α

[
(∂xxU)l,2

k −G′(Ul,2
k )
]

,

vl+1
k =vl

k+τ
β

β−α

[
(∂xxU)l,1

k −G′(Ul,1
k )
]
−τ

α

β−α

[
(∂xxU)l,2

k −G′(Ul,2
k )
]

.

In the sequel, we refer to the above scheme as MSIA2(α,β). It is easily seen that
MSIA2(α,β) advances explicitly from (ul

k,vl
k) to (ul+1

k , vl+1
k ). The method can be verified

directly to be of order 2 in both space and time. For the concatenation, one can alterna-
tively utilize method SRKN3(α,β,γ) for the temporal discretization and would achieve a
three-parameter explicit multi-symplectic scheme MSIA3(α, β,γ), which is of order 3 in
time (here if we choose α=−µ, β=0, γ=µ with µ given in (2.7), then it will be of order 4 in
time). It is emphasized that all the above arguments apply equally to the case where the
role of x and t is exchanged; i.e., we can use the symplectic Euler method for the temporal
discretization while explicit SRKN methods for the spatial discretization. Now, it is clear
that with different free parameters to be fixed, we can obtain a large number of novel nu-
merical integrators, and most significantly, they are both explicit and multi-symplectic.
In the rest of this section, we turn to another crucial issue for those constructed schemes
above, namely, the stability. As is known, the attractiveness of explicit schemes obviously
relies on the efficiency, but such efficiency is always at the cost of stability. Using the well-
known Fourier method (see [7]), we now make some linear stability analyses for those
explicit multi-symplectic schemes, and where we only take MSIA2(α,β) as an example.
Results show that our newly derived integrators possess good stability properties which
ensure their practicality.

Set ul
k = ûl exp{iξkh}, vl

k = v̂l exp{iξkh}, Ul,1
k =Ûl,1exp{iξkh}, Ul,2

k =Ûl,2exp{iξkh} etc.,

where ξ ∈R and i =
√
−1 and we also let θ = τ/h be the ratio of step-sizes. Next, sub-

stituting the above expressions into scheme MSIA2(α,β) with nonlinear terms removed
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and after straightforward calculations, we get

Ûl,1 = ûl +

(
1

2
+α

)
τv̂l ,

Ûl,2 = ûl +

(
1

2
+β

)
τv̂l +τ2βÛl,1[eiξh−2+e−iξh],

ûl+1 = ûl +τv̂l +τ2 β(1/2−α)

β−α
Ûl,1[eiξh−2+e−iξh]−τ2 α(1/2−β)

β−α
Ûl,2[eiξh−2+e−iξh],

v̂l+1 =vl +τ
β

β−α
Ûl,1[eiξh−2+e−iξh]−τ

α

β−α
Ûl,2[eiξh−2+e−iξh].

Then, by getting rid of Ûl,1 and Ûl,2, we further obtain
(

ûl+1

v̂l+1

)
=G(ξ,τ)

(
ûl

v̂l

)
,

where G(ξ,τ)=(Gij)
2
i,j=1 is the amplification matrix with

G11 =1−2θ2 sin2 ξh

2
+16

αβ(β−1/2)

β−α
θ4sin4 ξh

2
,

G12 =τ−τ(1+4αβ)θ2 sin2 ξh

2
+16τ

αβ(1/2+α)(β−1/2)

β−α
θ4sin4 ξh

2
,

G21 =−4
θ2

h
sin2 ξh

2
−16

αβ

β−α

θ4

h
sin4 ξh

2
,

G22 =1−2θ2 sin2 ξh

2
−16

αβ(1/2+α)

β−α
θ4sin4 ξh

2
.

The eigenvalues of G(ξ,τ) satisfy the equation

λ2−(G11+G22)λ+(G11G22−G21G12)=0, (4.1)

where it can be easily verified that G11G22−G12G21=1, and hence equation (4.1) becomes

λ2−(G11+G22)λ+1=0. (4.2)

Obviously, the roots λi (i=1,2) of equation (4.2) satisfy |λi|≤1 (i=1,2) iff |G11+G22|≤2
and the method satisfies the von Neumann condition, which is known to be a necessary
condition of stability (see [7]). Then, one can solve the above inequality for specific α and
β to find the conditions satisfied by θ, which gives the necessary condition of stability,
and then from which one can further deduce the sufficient conditions of stability by re-
fining. Next, we take the method MSIA2(−1/4,1/4) as an example and the subsequent
arguments apply equally to other α and β. The amplification matrix then becomes

G(σ,τ) :=G(ξ,τ)=




1−2θ2 sin2 σ

2
+

1

2
θ4sin4 σ

2
τ−τ

3

4
θ2sin2 σ

2
+τ

1

8
θ4sin4 σ

2

−4
1

h
θ2sin2 σ

2
+2

1

h
θ4sin4 σ

2
1−2θ2 sin2 σ

2
+

1

2
θ4sin4 σ

2



,
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where we have set σ= ξh. From |G11+G22|≤2, we get
∣∣∣2−4θ2 sin2 σ

2
+θ4sin4 σ

2

∣∣∣≤2,

which is equivalent to ∣∣∣θsin
σ

2

∣∣∣≤2. (4.3)

Clearly, if we choose 0 < θ < 2, then the inequality (4.3) is satisfied. Now, we show that
it also gives a sufficient condition for the stability of MSIA2(−1/4,1/4). In fact, it can be
seen that when 0< θ < 2 and σ 6= 2nπ with n being an arbitrary integer, G(σ,τ) has two
different eigenvalues and when σ=2nπ,

G(σ,τ)=

(
1 τ
0 1

)
= I+O(τ),

and therefore we know that when 0 < θ < 2, the method MSIA2(−1/4,1/4) is linearly
stable. It is emphasized that we can argue similarly for MSIA3(α,β,γ), but we will not
explore more details here.

5 Numerical experiments

In order to test the effectiveness of the newly derived explicit multi-symplectic integra-
tors, we perform some numerical experiments. For the numerics, we are mainly con-
cerned about the long-time behaviors and preservation of local/global energy, which are
known to be the eminent properties of multi-symplectic integrators.

The local energy conservation law of the Hamiltonian PDE (1.1) is (see, e.g., [5, 14])

∂tE(z)+∂xF(z)=0, (5.1)

with

E(z)=S(z)− 1

2
zT L∂xz, F(z)=

1

2
zT L∂tz,

and for the wave equation (3.1) we have

E(z)=
1

2
(v2+w2)+G(u), F(z)=−vw.

Integrating (5.1) over the (k,l)-cell gives

∫ xk+1

xk

∫ tl+1

tl

(
∂E

∂t
+

∂F

∂x

)
dtdx=0,

which further implies

∫ xk+1

xk

[E(z(x,tl+1))−E(z(x,tl))]dx+
∫ tl+1

tl

[F(z(xk+1,t))−F(z(xk,t))]dt=0. (5.2)
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For the multi-symplectic RKN-RK scheme (3.4)-(3.11), we define

(Ele)k,l =h
s

∑
î=1

b̂î

(
El+1

k,̂i
−El

k,̂i

)
+τ

r

∑
i=1

bi

(
Fl,i

k+1−Fl,i
k

)
,

to be an approximation to the above integral (5.2), where we have made use of the obvi-
ous abbreviations

El
k,̂i

=
1

2

(
vl

k,̂i

2
+wl

k,̂i

2
)
+G

(
ul

k,̂i

)
, Fl,i

k =−vl,i
k wl,i

k .

We refer to [14] for a similar definition for multi-symplectic Gauss-Legendre RK methods.
Clearly, we still need to introduce some compatible auxiliary systems to replenish the

missing values of wl
k,̂i

and vl,i
k , and which can be conducted in a similar manner as having

been done in [14]. Next, we define

(E∗
le)k,l =

(Ele)k,l

τh

to denote the discretization error of the local energy conservation law (LECL) (5.1), and
let

(Errorle)l =max
k

|(E∗
le)k,l | (5.3)

to be the error of LECL depending only on the time-steps.

The spatial interval to be considered is [−L/2,L/2] with L = 120, and we always as-
sume the periodic boundary condition u(−L/2,t) = u(L/2,t) to exclude the boundary
effects. Then, it is easy to deduce from (5.2) that

d

dt
E(t) :=

d

dt

∫ L/2

−L/2
E(x,t)dx=0.

We define E(t), being some constant, as the global energy and let

E l
L =h∑

k

s

∑
î=1

b̂îE
l
k,̂i

be the discrete global energy at some fixed time-step tl , which is obviously an approxi-
mation to the integral

E(tl) :=
∫ L/2

−L/2
E(x,tl)dx.

Now, define

(Errorte)l =E l
L−E0

L, (5.4)

it depicts the error propagation of the conservation of global energy.
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We also use

(erroru)l =max
k

|ŭl
k−ul

k| (5.5)

to represent the maximum error of the scheme at the time-step tl . Here, ŭl
k and ul

k are the
exact solution and numerical solution at (xk,tl), respectively.

In the following, we take in (3.1) the potential function G(u)= 1−cosu, which gives
the well-known Sine-Gordon equation

utt =uxx−sinu. (5.6)

We only consider the so-called breather solution for (5.6),

u(x,t)=−4tan−1

[
m√

1−m2

sin(t
√

1−m2+c2)

cosh(mx+c1)

]
, (5.7)

where we take m=0.2, c1 =0, c2 =−10
√

1−m2. The initial conditions employed are

u(x,0)=−4tan−1

[
m√

1−m2

sin(c2)

cosh(mx+c1)

]
, (5.8)

and

v(x,0)=
∂

∂t

{
−4tan−1

[
m√

1−m2

sin(t
√

1−m2+c2)

cosh(mx+c1)

]}

t=0

. (5.9)

For comparisons, we implement four different schemes for the experiment, which are
referred to as scheme I, II, III & IV and described as follows:

(i). Scheme I is the well-known leap-frog scheme for the wave equation

ul+1
k −2ul

k+ul−1
k

τ2
=

ul
k+1−2ul

k+ul
k−1

h2
−G′(ul

k),

which is also known to be multi-symplectic (see, e.g., [8] and [11]).

(ii). Scheme II is the multi-symplectic SRKN-SRK method MSIA2(α,β) constructed in
Section 3.

(iii). Scheme III is given by

ul+1
k =ul

k+τvl
k +

1

2
τ2

[
ul

k+1−2ul
k+ul

k−1

h2
−G′(ul

k)

]
,

Ul,2
k =ul

k+
1

2
τvl

k,

vl+1
k =vl

k+τ

[
Ul,2

k+1−2Ul,2
k +Ul,2

k−1

h2
−G′(Ul,2

k )

]

,
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Table 1: Numerical results for scheme I, III & IV.

τ\h scheme l (erroru)l (Errorle)l (Errorte)l

τ =0.01 I 500 1.30e-5 2.56e-3 -3.33e-3
h=0.2 III 500 2.51e-5 9.14e-3 3.13e-7

IV 500 1.62e-4 2.63e-3 -3.22e-3

τ =0.02 I 250 1.19e-5 5.06e-3 -6.72e-3
h=0.2 III 250 6.37e-5 1.82e-2 4.15e-6

IV 250 1.51e-4 5.12e-3 -6.61e-3

τ =0.02 I 250 9.82e-6 5.05e-3 -3.36e-3
h=0.1 III 250 5.40e-5 7.29e-2 2.07e-6

IV 250 3.75e-5 5.07e-3 -3.35e-3

τ =0.01 I 500 9.84e-6 2.55e-3 -1.67e-3
h=0.1 III 500 1.50e-5 3.65e-2 1.57e-7

IV 500 4.09e-5 2.57e-3 -1.65e-3

which is a method-of-line, and can be obtained by using the second-order central
difference for the Laplace operator and the following 2nd order RK method in time,

0 0 0
1/2 1/2 0

0 1

Since the RK method utilized is not symplectic, scheme III is not multi-symplectic.

(iv). Scheme IV is a modified leap-frog scheme:

ul+1
k −2ul

k+ul−1
k

τ2
=

ul
k+1−2ul

k+ul
k−1

h2
−G′

(
ul

k+1+ul
k−1

2

)
.

We note that all of the above schemes are explicit, conditionally stable and of second
order in both space and time. We run those different schemes on the same computer. The
first result is on the maximum error of the numerical solution, the error of LECL and the
error of global energy after l time-steps. Data given in Tables 1 and 2 show the averagely
superiority of scheme II. Particularly, scheme II preserves the LECL prominently better
than the other three.

Next, we plot the maximum error (erroru)l, the error of LECL (Errorle)l and the error
of global energy (Errorte)l as functions of the time-step. These results are given in Figs. 1-
3, respectively, and are all obtained by using τ = 0.01 and h = 0.2. From Fig. 1, it can be
seen that there is no evident difference in maximum solution error for scheme I, scheme II
and scheme III, but scheme IV displays a quick amplification of error. And they all show
the process of accumulation of global errors and reasonable oscillations.

Fig. 2 shows the numerical error of LECL as a function of the time-step. The multi-
symplectic RKN-RK method, i.e., scheme II is better than the other three. In fact, the error
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Table 2: Numerical results for scheme II (MSIA2(α,β)).

τ\h α, β l (erroru)l (Errorle)l (Errorte)l

τ =0.01 −
√

2/4,
√

2/4 500 1.64e-5 1.01e-4 2.67e-6
h=0.2 −1/4, 1/4 500 1.20e-5 1.00e-4 -3.08e-6

−1/8, 1/8 500 1.23e-5 9.95e-5 -8.51e-6
−1/8, 3/8 500 1.09e-5 9.99e-5 -5.38e-6

τ =0.02 −
√

2/4,
√

2/4 250 2.50e-5 1.04e-4 1.07e-5
h=0.2 −1/4, 1/4 250 1.29e-5 1.01e-4 -1.23e-5

−1/8, 1/8 250 2.32e-5 9.84e-5 -3.41e-5
−1/8, 3/8 250 1.63e-5 1.00e-4 -2.15e-5

τ =0.02 −
√

2/4,
√

2/4 250 1.52e-5 5.32e-5 5.34e-6
h=0.1 1/4, 1/4 250 6.64e-6 5.02e-5 -6.15e-6

−1/8, 1/8 250 1.76e-5 4.72e-5 -1.70e-5
−1/8, 3/8 250 1.01e-5 4.89e-5 -1.07e-5

τ =0.01 −
√

2/4,
√

2/4 500 6.31e-6 5.09e-5 1.33e-6
h=0.1 −1/4, 1/4 500 3.30e-6 5.02e-5 -1.54e-6

−1/8, 1/8 500 5.89e-6 4.95e-5 -4.26e-6
−1/8, 3/8 500 4.15e-6 4.99e-5 -2.69e-6

of scheme II is not of the same magnitude than that of the others, which is approximately
second-order in τ.

Fig. 3 exhibits the numerical error of the global energy, i.e., (Errorte)l. For scheme I,
scheme II and scheme IV, the errors do not show numerical amplifications. But the errors
of scheme I and scheme IV only reach the magnitude of 10−3, while for scheme II, it is
10−6. Though the error of scheme III is in the scale of 10−5, it exhibits an obvious linear
growth process.

We also run the scheme MSIA2(−1/4,1/4) with different spatial and temporal step-
sizes. Fig. 4 is for the numerical error of LECL with different step-sizes. One can see
that the change of error has less relation to the change of temporal step-size τ and stays
reasonable oscillation for a long time. Fig. 5 is for the maximum solution error, which is
seen to be consistent with the theoretical analysis that the method is of accuracy O(τ2+
h2). Moreover, Fig. 6 is about the error of global energy, which can be seen to be of order
τ2h, for when the spatial step-size h increases two times, the error also increases two
times, and if the temporal step-size τ increases two times, the error goes up four times.

Finally, we apply the multi-symplectic SRKN-SRK method MSIA3(−µ,0,µ) with µ =
(2− 3

√
4− 3

√
16)/12 for the breather solution. Here, we still take τ =0.01 and h=0.2. The

numerical result is plotted in Fig. 7, which is shown to give a good simulation.
All the numerical phenomena in this section reveal that the superiority of the explicit

multi-symplectic RKN-RK method lies not only in the conservation of multi-symplectic
geometric structure, but also in the good preservation of some crucial conservative prop-
erties in physics.
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Figure 1: Maximum solution error (erroru)l as a
function of the time-step tl for different schemes:
Top is for scheme I; second is for scheme II with
α =−1/4, β = 1/4; third is for scheme III; bottom
is for scheme IV.
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Figure 2: Numerical error of LECL, i.e., (Errorle)l as
a function of the time-step tl for different schemes:
Top is for scheme I; second is for scheme II with
α =−1/4, β = 1/4; third is for scheme III; bottom
is for scheme IV.
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Figure 3: Numerical error of global energy, i.e.,
(Errorte)l as a function of the time-step tl for dif-
ferent schemes: Top is for scheme I; second is for
scheme II with α = −1/4, β = 1/4; third is for
scheme III; bottom is for scheme IV.
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Figure 4: Error of LECL, i.e., (Errorle)l for scheme II
(α=−1/4, β=1/4) with different spatial and tem-
poral step-sizes: Top is for τ=0.04 and h=0.2; sec-
ond is for τ = 0.04 and h = 0.4; third is for τ = 0.08
and h=0.2; bottom is for τ =0.08 and h=0.4.
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Figure 5: Maximum solution error (erroru)l for
scheme II (α =−1/4, β = 1/4) with different spa-
tial and temporal step-sizes: Top is for τ=0.02 and
h=0.1; middle is for τ =0.04 and h=0.2; bottom is
for τ =0.08 and h=0.4.
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Figure 6: Error of global energy, i.e., (Errorte)l for
scheme II (α=−1/4, β=1/4) with different spatial
and temporal step-sizes: Top is for τ = 0.02 and
h=0.1; middle is for τ=0.04 and h=0.1; bottom is
for τ =0.04 and h=0.2.

6 Conclusions

The present paper considers the systematic construction of explicit multi-symplectic in-
tegration algorithms by means of concatenating symplectic Runge-Kutta-Nyström meth-
ods and symplectic Runge-Kutta-type methods. Based on a general framework provided
in this paper, we construct a class of high-order explicit multi-symplectic schemes for
the nonlinear scalar wave equation. Clearly, our results are readily extended to some
other Hamiltonian PDEs. Furthermore, the newly derived explicit methods are shown
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Figure 7: The breather solution of MSIA3(−µ,0,µ) with µ=(2− 3
√

4− 3
√

16)/12.

to possess good stability properties which ensures their practicality. Through numerical
comparisons, it is illustrated that the superiority of the newly derived integrators lies not
only in the capability of long-time scale computation, but also in the good preservation
of local/global energy. We believe that more efficient multi-symplectic integrators can be
constructed based on the general framework present in this paper, since it allows more
types of methods for concatenation, including SRK methods, SPRK methods and SRKN
methods. Further research will be conducted on this aspect, and pertinent results will be
reported elsewhere in the future.
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