
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 2, No. 4, pp. 783-794

Commun. Comput. Phys.
August 2007

Laminated Wave Turbulence: Generic Algorithms II

Elena Kartashova1,∗ and Alexey Kartashov2

1 Research Institute for Symbolic Computations, Johannes Kepler University,
Altenbergerstr. 69, Linz, A-4040, Austria.
2 AK-Soft, Pillweinstr. 41, Linz, A-4020, Austria.

Received 19 October 2006; Accepted (in revised version) 30 November 2006

Communicated by Dietrich Stauffer

Available online 29 January 2007

Abstract. The model of laminated wave turbulence puts forth a novel computational
problem – construction of fast algorithms for finding exact solutions of Diophantine
equations in integers of order 1012 and more. The equations to be solved in integers are
resonant conditions for nonlinearly interacting waves and their form is defined by the
wave dispersion. It is established that for the most common dispersion as an arbitrary
function of a wave-vector length two different generic algorithms are necessary: (1)
one-class-case algorithm for waves interacting through scales, and (2) two-class-case
algorithm for waves interacting through phases. In our previous paper we described
the one-class-case generic algorithm and in our present paper we present the two-class-
case generic algorithm.

PACS (2006): 47.27.E-, 67.40.Vs, 67.57.Fg

Key words: Laminated wave turbulence, discrete wave systems, computations in integers, tran-
scendental algebraic equations, complexity of algorithm.

1 Introduction

The theory of nonlinear dispersive waves begins with hydrodynamics of the 19th century
when it was first established that for nonlinear waves dispersive effects might be more
important than dissipative. The role of the nonlinear dispersive PDEs in the theoretical
physics is determined by their appearance in numerous applications (hydrodynamics,
plasma physics, meteorology, etc.) and is so important that the very notion of dispersion
is used in physics as a base for classification of all evolutionary PDEs dividing them
into two classes – dispersive and non-dispersive [1]. Simply speaking, any evolutionary

∗Corresponding author. Email addresses: lena@risc.uni-linz.ac.at (E. Kartashova), alexkart1@gmx.at
(A. Kartashov)

http://www.global-sci.com/ 783 c©2007 Global-Science Press

784 E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794

nonlinear PDE (NPDE) is called dispersive if its linear part has wave-like solutions of the
form

ϕ= Aexpi[~k~x−ωt], ω :
d2ω

dk2
6=0,

where~k is called wave vector, ~x - space variable, t - time variable, ω - dispersion function
and wave amplitude A may depend on space variables but not on time t. Many known
integrable systems have this form, for instance, Korteweg-de Vries equation, Kadomtsev-
Petviashvili equation, etc. But, of course, most evolutionary PDEs are not integrable and
that was the reason why the method of kinetic equation has been developed beginning
in 1960’s and applied to many different types of dispersive evolutionary PDEs [2–4]. The
wave kinetic equation is approximately equivalent to the initial nonlinear PDE for it is
an averaged equation imposed on a certain set of correlation functions. Some statistical
assumptions have been used in order to obtain kinetic equations; the limit of their appli-
cability then is a very complicated problem which should be solved separately for each
specific equation. One of the most important assumptions justifying this approach is the
existence of a small parameter 0< ε≪1 which in general defines an upper bound of the
magnitudes of the wave amplitudes in such a system. This is the reason why this theory
is also called wave turbulence theory – in contrast to fully developed turbulence where a
NPDE might not even have a linear part.

The most general problem setting of the wave turbulence theory can be regarded in
the form of a nonlinear partial differential equation

L(ψ)= εN (ψ) (1.1)

where L and N denote linear and nonlinear part of the equation correspondingly. Obvi-
ously, sum of any linear waves providing solutions of L(ϕ)=0 is also a linear wave with
a constant amplitude. Intuitively natural expectation is that solutions of Eq. (1.1) with a
small nonlinearity will have the same form as linear waves but perhaps with amplitudes
”slightly” depending on time. Existence of a small parameter ε allows us to use standard
multi-scale method [5,11] and to introduce so-called ”slow” time scale, T= t/ε, such that
now Ai = Ai(T). Solution of (1.1) is now looked for in the form

ψ=ψ0(~x,t,T)+εψ1(~x,t,T)+ε2ψ2(~x,t,T)+···
and after substituting this expression into Eq. (1.1) all terms but resonant are neglected.
Resonance conditions take following general form

{

ω(~k1)±ω(~k2)±···±ω(~kr)=0,
~k1±~k2±···±~kr =0,

(1.2)

for r interacting waves with wave-vectors~ki, i = 1,2,··· ,r. The dispersion function ω =

ω(~k) can be easily found by substitution of ϕ into the linear part of the given PDE, L(ϕ)=

E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794 785

0, while ∂t ↔ iω and ∂xs ↔ iks. For most physical applications it is enough to regard n=3
or n=4, and the most common form of dispersion function is

ω =ω(|~k|), |~k|=
√

m2+n2 for ~k=(m,n)

(for instance, capillary, gravitational and surface water waves, planetary waves in the
ocean, drift waves in tokamak plasma, etc.)

The model of laminated wave turbulence [6] describes two co-existing layers of tur-
bulence - continuous and discrete - which are presented by real and integer solutions
of (1.2) correspondingly. The continuous layer is described by classical statistical meth-
ods [4] while for the discrete layer new algorithms have to be developed. It was shown
in [7] that an arbitrary integer lattice (m,n), each node of the lattice denoting a wave-

vector ~k = (m,n), can be divided into some clusters (classes) and there are two types
of solutions of (1.2): those belonging to the same class and those belonging to different
classes. Mathematically, a class is described as a set of wave-vectors for which the val-
ues of the dispersion function have the same irrationality. For instance, if the dispersion
function has the form ω =

√
m2+n2, then a class is described as follows:

{mi,ni} :
√

m2
i +n2

i =γi
√

q

where γ is a natural number and q is a square-free integer. Physically, it means that
waves are interacting over the scales, that is, each two interacting waves generate a wave
with a wavelength different from the wave lengths of the two initial waves. Interactions
between the waves of different classes do not generate new wavelengths but new phases.

In our preceding paper [8] we presented a generic algorithm for computing all in-
teger solutions of (1.2) within one class. Four-wave interactions among 2-dimensional
gravitational water waves were taken as the main example, in this case (1.2) takes form:











(m2
1+n2

1)
1/4

+(m2
2+n2

2)
1/4

=(m2
3+n2

3)
1/4

+(m2
4+n2

4)
1/4

,

m1+m2 =m3+m4,

n1+n2 =n3+n4,

(1.3)

and classes are defined as Clq = {γ4q}, where q, called class index, are all natural num-
bers containing every prime factor in degree smaller 4 and γ, called weight, all natural
numbers. It can be proven that if all 4 wave-vectors constructing a solution of (1.3) do
not belong to the same class, then the only possible situation is following: all the vectors
belong to two different classes Clq1

,Clq2 and the first equation of (1.3) can be rewritten
then as

γ1
4
√

q1+γ2
4
√

q2 =γ1
4
√

q1+γ2
4
√

q2 (1.4)

with some γ1,γ2∈N and q1,q2 being class indexes. In the present paper we deal with this
two-class case.

786 E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794

2 Computational preliminaries

As in the previous paper [8], we are going to find all solutions of (1.3) in some finite
domain D, i.e. |mi|,|ni|≤D for some D∈N. The first case has been studied for D =1000,
where πcl(103)= 384145 classes have been encountered. The straightforward approach,
not making use of classes, consumes, as for the first case, at least O(D5) operations and
is out of question (see [8], Sec. 3.2.1 for discussion of this point).

Straightforward application of classes also does not bring much. Eq. (1.4) is now
trivial - but classes are interlocked through linear conditions. Even if for each pair of
classes we could detect interlocking and find solutions, if any, in O(1) operations (which
is probably the case, though we did not prove it), the overall computational complexity
is at least πcl(D)2 - i.e. not much less than O(D4). For D = 1000 this implies 1.5·1011

pairwise class matches which is outside any reasonable computational complexity limits.
The trouble with this approach - as, for that matter, with virtually any algorithm con-

suming much more computation time than the volume of its input and output data im-
plies - is, that we perform a lot of intermediary calculations, later discarded. Here we
develop an algorithm performing every calculation with a given item of input data just
once (or a constant number of times). First of all we notice that Eq. (1.4) can be rewritten
as























(m2
1L+n2

1L)
1/4

=(m2
1R+n2

1R)
1/4

=γ1 4
√

q1,

(m2
2L+n2

2L)
1/4

=(m2
2R+n2

2R)
1/4

=γ2 4
√

q2,

m1L−m1R =−m2L+m2R,

n1L−n1R =−n2L+n2R,

(2.1)

where q1,q2 are two different class indexes and γ1,γ2 - the corresponding weights.

Definition 2.1. For any two decompositions of a number γ4
1q into a sum of two squares

(see (2.1)) the value δm = mL−mR is called m-deficiency, δn = nL−nR is called n-deficiency

and ~δm,n =(δm,δn) - deficiency point.

We immediately see that for two interacting waves their deficiencies must be equal:
δ1m =m1L−m1R =−m2L+m2R =δ2m, δ1n =n1L−n1R =−n2L+n2R =δ2n. For a given weight
γ, every two decompositions of γ4q into a sum of two squares yield, in general, four
deficiency points with δm,δn ≥ 0. Consider unsigned decompositions mL,mR,nL,nR ≥ 0.
Assuming mL ≥mR, nL ≤ nR the four points are (mL+mR,nL+nR), (mL+mR,−nL+nR),
(mL−mR,nL−nR), (mL−mR,−nL+nR) and four (symmetrical) points in each of the other
three quadrants of the (m,n) plane.

Definition 2.2. The set of all deficiency points of a class for a given weight, ∆
γ
q , is called

its γ-deficiency set. The set of all deficiency points of a class, ∆q, is called its deficiency set.

The objects defined above play the main role in our algorithm, so we compute as an
illustrative example for the number 50. The number 50 has three decompositions into

E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794 787

sum of two squares, namely, 50 = 12+72 = 52+52 = 72+12, and nonnegative deficiency
points of decomposition pairs are (5,5;7,1), (5,5;1,7), (1,7;7,1). They constitute a subset
of the deficiency set ∆1

50, namely, the 12 points with m≥ 0,n≥ 0. In each of three other
quadrants of the (m,n,) plane there lie 36 more points of this set, symmetrical to the ones
shown with respect to the coordinate axes.

The crucial idea behind the algorithm of this paper is very simple and follows imme-
diately from the exposition above: (2.1) has a solution with vectors belonging to the two differ-
ent classes Clq1

,Clq2 if and only if their deficiency sets have a non-void intersection, ∆q1
∩∆q2 6=∅,

i.e. some elements belong to both classes.

3 Algorithm description

Calculation of relevant class indexes q by a sieve-like procedure, admissible weights γ
and decomposition of γ4q into sum of two squares have all been treated in full detail
in [8]. One new feature we introduced here is, that immediately after generating the
array of class bases q we purge away those which, whatever the admissible weight γ,
do not have a decomposition into a sum of two squares γ4q = m2+n2 with both m≤D,
n≤D. For the problem considered in [8] this would be superfluous because virtually all
these classes have been anyhow filtered away according to another criterium (M(q)=1,
Dec(q)≤ 4) which does not apply here. In this way we exclude 100562 classes from the
384145 which the sieving procedure returns.

Evidently for any deficiency point ~δm,n inequalities |δm|≤ 2D, |δn|≤ 2D hold. And if
deficiency sets of two classes have a non-void intersection, they also have an intersection
over points with non-negative |δm|, |δn|. So we start with declaring a two-dimensional
array arDeficiency (0..2D,0..2D) of type byte which serves storing and processing defi-
ciency sets of the classes. The array is initialized with all zeroes.

3.1 The Five-Pass procedure

3.1.1 Pass 1: Marking deficiency points

In the first pass for every class q in the main domain D we generate its deficiency set Dq.
Notice that after generating deficiency set of the class for each weight γ and uniting them
we must check for doubles and eventually get rid of them. Next, for every deficiency
point (δm,δn) of the class we increment the value of the corresponding element of the
array by 1, except elements with value 255 whose values are not changed.

3.1.2 Pass 2: Discarding non-interacting classes

In the second pass we generate deficiency sets once more and for every point of the
deficiency set of a class check the values of the corresponding point of arDeficiency. If
all these values are equal to 1, no waves of the class participate in resonant interactions
and the class is discarded from further considerations.

788 E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794

For the problem considered this pass excludes just a few (313) classes, so the time gain
is very modest. However, we include this step into the presentation for two reasons. First
of all, it had to be done as no possibility of reducing the number of classes considered as
much as possible and as soon as possible (before the most time-consuming steps) may be
neglected. Second, though giving not much gain for solution of the problem at hand, this
elimination techniques may play a major role in further applications of our algorithm.

3.1.3 Pass 3: Linking interaction points to interacting vectors

In the third pass we generate a more detailed deficiency set for each class, i.e. for all

classes not discarded in the previous pass: for every deficiency point ~δm,n we store
q,γ,mL,nL,mR,nR. We do not discard duplicates as we did in the previous two passes.
Then we revisit the corresponding points of arDeficiency and to each point whose value
is larger than 1 link the structure (q,γ,mL,nL,mR,nR) described above.

3.1.4 Pass 4: Gathering interaction points

In the fourth pass we go through the array arDeficiency once more and store every point
with value greater than one in an array arDeficiencySol(1..2D,0..1). We also relink
structures linked to deficiency points to corresponding points of the new array.

3.1.5 Pass 5: Extracting solutions

The four passes above leave us with an array of points ~δm,n and to each of these points a
list of structures (qi,γi,mi

L,ni
L,mi

R,ni
R) is linked (no less than two different qi). In general,

a linked list is here most appropriate. Every combination of two structures linked to the
same point and having different qi yields a solution of (1.3). From every solution found,
we obtain four solutions changing signs of mi,ni in the general case, i.e. for mi,ni nonzero.

Notice that theoretically we could skip Pass 4 and extract solutions directly from the
array arDeficiency. However, this is not reasonable for implementation reasons, and
Pass 4 is not very time-consuming.

3.1.6 Implementation remarks

Implementing the algorithm described above, we took a few language-specific shortcuts
that will be briefly described here.

Passes 1 and 2 have been implemented one-to-one as described above. However,
manipulating linked lists in VBA involves considerable overhead and for the problem
considered in this paper we do not need the complete functionality of linked lists, i.e. in-
serting into/deleting from intermediate positions of the list. Our main data structure for
Pass 3-5 is a simple two-dimensional array arSolHalves(1..NMNde f ,0..7) and in a single
line of this array we store:

• the class base q;

• the coordinates of deficiency point dm,dn;

• the coordinates of two wave vectors belonging to this deficiency point;

E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794 789

d
1
 d
3
 d
4
 d
r
 d
1
 d
s
 d
v
d
1
d
u
d
2
 d
1

q
1
 q
i
 q
j

Figure 1: Array simulation of deficiency point lists: the overall array/list structure.

• the index in the array arSolHalves of the next line belonging to the same deficiency
point,

which is demonstrated in Fig. 1. Here, NMNde f is the number of m,n-vectors linked to all
deficiency points to which vectors belonging to two or more classes belong (6692832 for
D =1000). We generate the deficiency set of each class and fill all members of this line of
the array except the last one in the process, deficiency point by deficiency point. The last
member is filled later and in the following way.

For this pass we also declare an auxiliary array arDeficiencesPrev(1..2D, 1..2D)
initialized with zeroes. Having added a new line {q,dm,dn,m1L,n1L,m1R,n1R,0} to
arSolHalves, we look up the value inddm ,dn

of arDeficiencesPrev(dm,dn). If it is zero
(this deficiency point being visited the first time) we just assign this point the value of the
index of the new line in the array arSolHalves. Otherwise we first assign arSolHalves

(inddm ,dn
, 7) the value of the current line’s index in arSolHalves, then write this number

to arDeficiencesPrev(dm,dn) (see Fig. 2).
A numerical example for this procedure is given in Table 1. In this way, the array

index of the next “list” member is stored with the previous one, except evidently the last
one, where the corresponding field stays zero.

3.2 Computational complexity

Consider computational complexity of these steps.

3.2.1 Pass 1

For a single class index q and weight γ, generating deficiency points in the first step
consumes less than O(log2(γ4q)) operations because every number X has no more
than O(logX) decompositions into two squares which we combine pairwise to find
deficiency points. Decompositions themselves can be found in O(log(γ4q)) time [9].
There are (D/q)1/4 admissible weights to class index q, so the overall complexity
for a class can be estimated from above as log2 DD1/4. Merging deficiency points
into ∆q can be done in O(X logX) time for number of points X, i.e., no more than

O(log2 DD1/4 log(log2 DD1/4))=O(log3 DD1/4).

790 E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794

Table 1: A few lines of the table containing solution halves for the deficiency point ~d = (1,1) (beginning and
end of the sequence).

Index q dm dn mL nL mR nR NextIndex

1 1 1 1 0 1 1 0 117

117 1 1 1 -119 120 120 -119 1241

1241 4 1 1 -1 2 2 -1 2921

2921 8 1 1 -2 3 3 -2 4958

4958 12 1 1 -3 4 4 -3 8107

8107 19 1 1 -4 5 5 -4 10304

··· ··· ··· ··· ··· ··· ··· ··· ···
6692782 273559 1 1 -995 996 996 -995 6692802

6692802 273567 1 1 -996 997 997 -996 6692816

6692816 273575 1 1 -997 998 998 -997 6692828

6692828 273580 1 1 -998 999 999 -998 6692832

6692832 273583 1 1 -999 1000 1000 -999 0

Ind2

M
1
L

N
1L

M
1R

N
1R

q
1

dM

d

Ind3

M
2L

N
2L

M
2R

N
2R

q
2

dM

0

M
3
L

N
3L

M
3R

N
3R

q
3

dM

dM

dN

Ind
1
 Ind
2
 Ind
3

Index in array of solution

halves

Data fields in array

of solution halves

Array of previous data

fields' indexes

Ind
3

class base

index of next

field

coordinates of

solution half

deficiency

point

coordinates
 dN
 dN
 dN

Figure 2: Array simulation of deficiency point lists: data fields in detail.

Taking a rough upper estimate for the number of classes O(D2), we obtain an estimate
O(log3 DD2.25). Incrementing the points of arDeficiency is linear on the point number
of the set ∆q and need not be considered for computational complexity separately.

E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794 791

3.2.2 Pass 2

The same complexity estimate holds for the second pass. Notice that, having enough
memory, or using partial data loading/unloading similar to that used in [10], we could
preserve deficiency sets calculated on the first pass and not recalculate them here. How-
ever, this would not significantly improve the overall computational complexity of the
algorithm.

We cannot give an a priori estimate for the number of classes discarded at the second
pass, so we ignore it and hold the initial rough upper estimate O(D2) for the number of
classes in our further considerations.

3.2.3 Pass 3

In the third pass, to every point δm,n (no more than O(log2 DD1/4) of them) we link the
values (qi,γi,mi

L,ni
L,mi

R,ni
R) for which this point has been struck. This, as well as linking

to the points of arDeficiency is, clearly, linear on the number of points and does not
raise the computational complexity.

3.2.4 Pass 4

Complexity of the fourth pass can be estimated as follows. Suppose the worst case, i.e., no
classes are discarded at step 2 and every deficiency point is a solution point, i.e., for every
~δm,n =(δm,δn) no less than two classes have deficiency points with the same dm,dn. Then
we must make no more than O(log2 DD2.25) entries into the new array arDeficiencySol.
We must relink no more than the mean of O(log2 D) structures per point, which gives an
upper estimate of O(log4 DD2.25) time for the pass. However, remember that the estimate
for the deficiency point number has been made on the assumption that all (mi

L,ni
L,mi

R,ni
R)

generate distinct deficiency points. In simple words, for every point linked to X > 1
structures we obtain X−1 less solution points. Now elementary consideration allow us
to improve the estimate to O(log2 DD2.25) time.

3.2.5 Pass 5

We did not manage to obtain a reasonable estimate for the computational complexity of
the fifth step. For the worst case of all structures grouped at a single point, the estimate is
O(log4 DD4.5) - but this is not realistic. If the number of solution points is O(log2 DD2.25)
and the number of linked deficiencies is bounded by some number c, then we can make
an estimate O(c2 log2 DD2.25). This, however, is also not quite the case as our numeri-
cal simulations show. However, this last step deals with solution extraction and extracts
them in linear time per solution. Any algorithm solving the problem has to extract so-
lutions, so we can be sure that our step 5 is optimal - even without any estimate of its
computational complexity. Summing up, we obtain the overall upper estimate of com-
putational complexity O(log3 DD2.25) reached at steps 1 and 2 plus the time needed for
solution extraction.

792 E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794

4 Discussion

Our algorithm has been implemented in the VBA programming language; computation
time (without disk output of solutions found) on a low-end PC (800 MHz Pentium III, 512
MB RAM) is about 10 minutes. Some overall numerical data is given in the two figures
below. The number of solutions for the 2-class-case depending on the partial domain is
shown in Fig. 3. Both curves are almost ideal cubic lines. Very probably they are cubic
lines asymptotically - the question is presently under study.

Partial domains chosen in Fig. 3 are of two types: squares mi,ni ≤ D, just for sim-
plicity of computations, and circles m2

i +n2
i ≤ D2, more reasonable choice from physical

point of view (in each circle all the wave lengths are ≤D). The curves in Fig. 3 are very
close to each other in the domain D ≤ 500 though number of integer nodes in a corre-
sponding square is D2 and in a circle with radius D there are only some πD2/4 integer
nodes. This indicates a very interesting physical phenomenon: most part of the solutions
is constructed with the wave vectors parallel and close to either axis X or axis Y.

On the other hand, the number of solutions in rings (D−50)2 < m2
i +n2

i ≤D2 (corre-
sponds to the wavelengths between D−50 and D) grows nearly perfectly linearly. Of
course the number of solutions in a circle is not equal to the sum of solutions in its rings:
a solution lies in some ring if and only if all its four vectors lie in that same ring. That is,
studying solutions in the rings only, one excludes automatically a lot of solutions contain-
ing vectors with substantially different wave lengths simultaneously, for example, with
wave vectors from the rings D−50 and D+100. This “cut” sets of solutions can be of use
for interpreting of the results of laboratory experiments performed for investigation of
waves with some given wave lengths (or frequencies) only.

Another important characteristic of the structure of the solution set is multiplicity of
a vector which describes how many times a given vector is a part of some solution. The
multiplicity histogram is shown in Fig. 4. On the axis X the multiplicity of a vector is
shown and on the axis Y the number of vectors with a given multiplicity. The histogram
of multiplicities is presented in Fig. 4, it has been cut off - multiplicities go very high,
indeed the vector (1000,1000) takes part in 11075 solutions.

Similar histograms computed for different 1-class-cases show that most part of the
vectors, 70-90% for different types of waves, take part in one solution, e.g. they have
multiplicity 1. This means that triads or quartets are, so to say, the “primary elements” of
a wave system and we can explain its most important energetic characteristics in terms
of these primary elements. The number of vectors with larger multiplicities decreases
exponentially when multiplicity is growing. The very interesting fact in the 2-class-case
is the existence of some initial interval of small multiplicities, from 1 to 10, with very
small number of corresponding vectors. For instance, there exist only 7 vectors with
multiplicity 2. Beginning with multiplicity 11, the histogram is similar to that in the 1-
class-case.

This form of the histogram is quite unexpected and demonstrates once more the
specifics of the 2-class-case compared to the 1-class-case. As one can see from the multi-

E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794 793

0,E+00

1,E+08

2,E+08

3,E+08

4,E+08

5,E+08

6,E+08

0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000

Figure 3: Number of solutions in partial domains mi,ni≤D (curve marked diamonds) and m2
i +n2

i ≤D2 (curve
marked circles), D=50,100,··· ,1000.

0,E+00

1,E+04

2,E+04

3,E+04

4,E+04

5,E+04

6,E+04

7,E+04

8,E+04

9,E+04

1,E+05

1
 11
 21
 31
 41
 51
 61
 71
 81
 91
 101
 111

Figure 4: The multiplicities histogram.

plicity diagram in Fig. 4, the major part in 2-class-case is played by much larger groups of
waves with the number of elements being of order 40: each solution consists of 4 vectors,
groups contain at least one vector with multiplicity 11 though some of them can take part
in the same solution. This sort of primary elements can be a manifestation of a very inter-
esting physical phenomenon which should be investigated later: triads and quartets as
primary elements demonstrate periodic behavior and therefore the whole wave system
can be regarded as a quasi-periodic one. On the other hand, larger groups of waves may
have chaotic behavior and, being primary elements, define quite different way of energy
transfer through the whole wave spectrum.

794 E. Kartashova and A. Kartashov / Commun. Comput. Phys., 2 (2007), pp. 783-794

References

[1] G. B. Whitham, Linear and Nonlinear Waves, Series in Pure and Applied Mathematics, Wi-
ley, 1999.

[2] O. Phillips, J. Fluid Mech. 9 (1960) 193.
[3] K. Hasselman, J. Fluid Mech. 12 (1962) 481.
[4] V. E. Zakharov, V. S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence, Series in Non-

linear Dynamics, Springer, 1992.
[5] A. N. Nayfeh, Introduction to Perturbation Techniques, Wiley-Interscience, NY, 1981.
[6] E. A. Kartashova, JETP Lett. 83(7) (2006) 341.
[7] E. A. Kartashova, AMS Transl. 182(2) (1998) 95.
[8] E. A. Kartashova, A. P. Kartashov, Int. J. Mod. Phys. C (2006), to appear.
[9] J. M. Basilla, Proc. Japan. Acad. 80A (2004) 40.

[10] A. P. Kartashov, R. Folk, Int. J. Comput. Phys. 6 (1995) 639.
[11] W. E, B. Engquist, X. Li, W. Ren, Commun. Comput. Phys. 2 (2007) 367.

