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Abstract. We develop an embedded boundary finite difference technique for solving
the compressible two- or three-dimensional Euler equations in complex geometries on
a Cartesian grid. The method is second order accurate with an explicit time step de-
termined by the grid size away from the boundary. Slope limiters are used on the em-
bedded boundary to avoid non-physical oscillations near shock waves. We show com-
puted examples of supersonic flow past a cylinder and compare with results computed
on a body fitted grid. Furthermore, we discuss the implementation of the method for
thin geometries, and show computed examples of transonic flow past an airfoil.
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1 Introduction

This paper describes an embedded boundary finite difference method for solving the
time-dependent compressible Euler equations external to a two- or three-dimensional
object. In an embedded boundary approach the computational domain is discretized
on a regular Cartesian grid and the boundary intersects the grid in an arbitrary fashion.
Compared with boundary fitted structured or unstructured grid approaches, the biggest
advantages of the embedded boundary method are the simplicity by which the grid can
be generated as well as the efficiency and simplicity of the numerical method due to the
Cartesian grid. The main challenge with the embedded boundary method is to accu-
rately satisfy the boundary conditions while retaining stability of the resulting scheme.
The proposed method is based on the second order accurate node-based discretization
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technique for the wave equation in second order differential form subject to Dirichlet or
Neumann boundary conditions [9–11]. Of particular interest for practical purposes is
that these methods are explicit in time, but do not suffer from small-cell stiffness.

For the Euler equations, zero flux conditions are enforced on solid boundaries by
combining Dirichlet and extrapolation conditions on different components of the solu-
tion. The Dirichlet components could in principle be approximated by the boundary
condition in [9]. However, to avoid unphysical oscillations near shock waves we com-
bine that technique with slope limiters to obtain a new zero flux boundary condition for
embedded boundaries. The resulting method is formally second order accurate at the
embedded boundary away from shock waves and smooth extrema, uses a finite differ-
ence formulation for the spatial discretization and is explicit in time, where the stability
limit on the time step is based on the grid size away from the boundary.

Most previous work on embedded boundary methods for the compressible Euler
equations are based on the finite volume formulation. At the embedded boundary, a
naive finite volume discretization leads to an explicit time step that is limited by the
smallest cell cut by the boundary. To overcome this so called “small cell problem”, the
method in [14] uses a modified non-conservative approximation at the boundary com-
bined with a mass redistribution procedure after each time step [4] to achieve global
conservation. Another way to overcome the small cell problem is provided by the h-box
method, which is described in [1] and extended to multi-dimensional problems in [7, 8].
An h-box is a larger control volume which is used for computing the flux on the side
of a small cell. The one-dimensional h-box method is shown in [1] to be conservative,
second order accurate, and having a time step which is not affected by small cut cells.
For a simplified but less accurate approach, also see [2]. A third finite volume embed-
ded boundary approach avoids the small cell problem by introducing uncut ghost cells
around the boundary [5]. This method is second order accurate, but conservation has
not been established. A fourth way of overcoming the small cell stiffness is provided by
merging small cells at the embedded boundary with larger neighboring cells [3].

There is a large literature on embedded or immersed boundary methods for incom-
pressible flow problems, see for example [12, 15] and the references therein. In these
methods the immersed boundaries are often evolving material interfaces. Some of the
boundary interpolation techniques are similar to what is used for compressible flows,
but the incompressible problem is somewhat easier due to the absence of shock waves.

The remainder of the paper is organized as follows. The discretization of the Eu-
ler equations on a Cartesian grid is described in Section 2, and the discretization of the
boundary conditions is developed in Section 3. In Section 4, we evaluate the perfor-
mance of the method on several external flow problems. In the first numerical example
we compare the accuracy of the computed solution at the embedded boundary with re-
sults obtained on a body fitted grid. Issues with the sharp trailing edge of an airfoil are
discussed in Section 4.1 and the conservation properties of our method are investigated
in Section 4.2. The embedded boundary discretization is extended to three space dimen-
sions in Section 4.3 and conclusions are given in Section 5.
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Figure 1: Computational domain is exterior of the objects Oi.

2 Numerical method

We consider a system of strongly hyperbolic conservation laws for u=u(x,y,t)∈Rm on a
two-dimensional domain Ω between an outer rectangular boundary ΓO and one or more
internal objects with boundary ΓI , see Fig. 1,

ut+F(u)x+G(u)y =0, (x,y)∈Ω, t>0,

u(x,y,0)=u0(x,y), (x,y)∈Ω.
(2.1)

On the outer boundary, we have boundary conditions

L0u(0,y,t)= c0(y,t), L1u(lx,y,t)= c1(y,t), 0≤y≤ ly, t>0,

L2u(x,0,t)= c2(x,t), L3u(x,ly,t)= c3(x,t), 0≤ x≤ lx, t>0,
(2.2)

and on the boundary of the internal objects, we impose

LEBu(x,y,t)= cEB(x,y,t), (x,y)∈ΓI , t>0.

Here, LEB and Li, i = 0,1,2,3, are m×m matrices that can depend on u. Inhomogeneous
boundary data is prescribed through the vectors cEB and ci, such that they belong to
the range space of LEB and Li respectively. Let n = (n(x),n(y))T be the unit normal of
the boundary directed into Ω. Denote the flux normal to the boundary and its Jacobian
matrix by

F⊥(u)=n(x)F(u)+n(y)G(u), A⊥=
∂F⊥
∂u

,

respectively. Since (2.1) is strongly hyperbolic, all eigenvalues of A⊥ are real and there is
a complete set of eigenvectors,

A⊥R= RΛ, Λ=diag(λ1,λ2,··· ,λm).
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Let there be r positive eigenvalues, 0≤ r≤m. This number equals the number of ingoing
characteristic variables, so the boundary condition matrices LEB and Li, i=0,1,2,3, should
have rank r. Note that r depends on the solution, so it can change along the boundary.
Let the free-stream state be u∞. On the outer boundary ΓO, we assign Dirichlet data for
the ingoing characteristic variables by imposing

DinR−1
u= DinR−1

u∞, i.e., Li = DinR−1, ci = DinR−1
u∞, i=0,1,2,3. (2.3)

Here, Din is a diagonal m×m matrix with elements Din
kk = 1, if λk > 0, otherwise Din

kk = 0.
Note that in general, all variables are not assigned boundary values on all boundaries.

The remainder of this section describes the numerical approximation of (2.1) and (2.2).
The discretization at the internal boundary, ΓI , is described in Section 3.

2.1 Approximation of the PDE

To solve (2.1) numerically, we first discretize the computational domain [0,lx]×[0,ly], on
a Cartesian grid with grid points (xi,yj), xi = (i−1)∆x, i = 1,2,··· ,M, yj = (j−1)∆y, j =
1,2,··· ,N. The grid spacings ∆x = lx/(M−1) and ∆y = ly/(N−1) are constant and we
define half-indices according to xi+1/2 = xi+∆x/2. We discretize time on a grid 0= t0 <

t1 < ···< tn, with variable time-step ∆tk >0 using the notation tk = tk−1+∆tk.
We use the following notation for vector valued variables, their semi-discrete approx-

imation at grid point (xi,yj), and their fully discrete approximation at that grid point at
time tn:

u(x,y,t)=




u(1)(x,y,t)

u(2)(x,y,t)
...

u(m)(x,y,t)


, ui,j(t)=




u
(1)
i,j (t)

u
(2)
i,j (t)

...

u
(m)
i,j (t)




, un
i,j =




u
(1)n
i,j

u
(2)n
i,j
...

u
(m)n
i,j




.

The t dependency will be surpressed from the semi-discrete notation when the meaning
is obvious.

The semi-discrete approximation of the hyperbolic system (2.1) is given by

dui,j(t)

dt
+

ai+1/2,j−ai−1/2,j

∆x
+

bi,j+1/2−bi,j−1/2

∆y
=0, (2.4)

for i = 3,··· ,M−2, j = 3,··· ,N−2. Here ai+1/2,j and bi,j+1/2 are discrete flux functions
corresponding to the continuous flux functions F(u) and G(u), respectively. We will use
the five point second order accurate MUSCL scheme, given by

ai+1/2,j =h(uR
i+1/2,j,u

L
i+1/2,j), (2.5)

where h(u,v) is the numerical flux function of the first order upwind method [16], with
a standard entropy correction [6]. Furthermore, uR

i+1/2,j and uL
i+1/2,j are the right and
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left side limits of the piecewise linear reconstruction of the solution, as x → xi+1/2. It
is known that unphysical oscillations can occur when the conserved variables are used
for the piecewise linear reconstruction. For example, the conserved variables (u) for Eu-
ler’s equations of compressible gas dynamics are density, momentum, and energy, but it
has turned out in numerical experiments that better results are obtained when the recon-
struction is done with primitive variables, i.e., density, velocity, and pressure (v). For this
reason, we make a transformation of variables, v=v(u), at each grid point and define the
piecewise linear reconstruction as

vr(x,yj)=vi,j+
x−xi

∆x
si,j, xi−1/2 < x< xi+1/2. (2.6)

Here si,j is the slope of v in the x-direction at the point (i, j). This is a one-dimensional
reconstruction, defined for y=yj. The slopes are functions of the forward- and backward
differences of v, applied componentwise,

s
(k)
i,j =S(v

(k)
i+1,j−v

(k)
i,j ,v

(k)
i,j −v

(k)
i−1,j), k=1,2,··· ,m,

where S(x,y) is a limiter function. In the present work, we use the minmod function

Smm(x,y)=





0, xy<0,

x, xy>0,|x|< |y|,
y, otherwise,

(2.7)

or the van Albada limiter

Sva(x,y)=((x2+ǫ)y+(y2 +ǫ)x)/(x2+y2+2ǫ), (2.8)

where ǫ is a very small positive number, introduced to prevent division by zero. The
limiter averages the forward- and backward differences, but puts more weight on the
difference that has the smallest absolute value, thereby reducing unphysical oscillations
near discontinuities. It can be proven that both above limiters give the TVD property
for scalar conservation laws. Note that the slope si,j depends on v at (i−1, j), (i, j), and
(i+1, j), therefore the slopes are defined for i=2,··· ,M−1 and j=1,··· ,N.

The left- and right-limit values at xi+1/2 are obtained as

vR
i+1/2,j =vi+1,j−si+1,j/2, vL

i+1/2,j =vi,j+si,j/2, (2.9)

for i = 2,··· ,M−2 and j = 1,··· ,N. The corresponding conserved variables, uR
i+1/2,j and

uL
i+1/2,j are obtained by applying the inverse of the variable transformation v = v(u),

thereby determining the numerical flux (2.5).
The discrete flux function in the y-direction, bi,j+1/2, is constructed in a corresponding

way.
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2.2 Approximation near the boundary

We next describe the discrete boundary conditions for the boundary x=0 (i.e., i=1); the
other sides are handled in a corresponding way. Boundary conditions are needed for u1,j

and u2,j, j=1,··· ,N, since (2.4) is a five point scheme. To compute u2,j, we define the slope
at i=1 by extrapolation to first or second order,

s1,j = s2,j or s1,j =2s2,j−s3,j, j=1,··· ,N.

Note that this is an extrapolation of already limited slopes, so the introduction of new
oscillations should be minimal. Once s1,j is defined, the numerical flux function a3/2,j,
can be evaluated for j=1,··· ,N, and we can apply the numerical scheme (2.4) also at i=2.
We implement this boundary slope extrapolation as a part of the interior scheme (2.4).
The solution at i =2, j =2,··· ,N−1 is then computed by (2.4) and the scheme effectively
becomes a three point scheme at the boundary. At the points (2,2) and (2,N−1), the
procedure described above is applied in both the x- and y-directions.

It remains to impose values at the outermost points i =1, j =1,··· ,N. If we order the
eigenvectors in R such that the first r eigenvalues of A⊥ are positive, we can decompose
the characteristic variables according to

(
ũ

I

ũ
I I

)
= R−1

u.

The ingoing characteristic variables correspond to ũ
I and are determined by the physical

boundary conditions (2.3), which we discretize as

DinR−1
u1,j = DinR−1

u∞, j=1,··· ,N.

The Jacobian matrix of the flux normal to the boundary, its eigenvalues and eigenvectors
are evaluated at (u2,j). A numerical boundary condition for the remaining components
of u is provided by extrapolation,

ũ
I I
1,j =2ũ

I I
2,j−ũ

I I
3,j, j=1,··· ,N. (2.10)

The extrapolation can introduce unphysical states when the solution is discontinuous
near the boundary. For such problems we replace (2.10) by

ũ
I I
1,j = ũ

I I
2,j−Smm(ũ

I I
3,j−ũ

I I
2,j,ũ

I I
4,j−ũ

I I
3,j), (2.11)

where Smm(x,y) is the minmod limiter given by (2.7).

2.3 Time discretization

We use a two stage, second order accurate, Runge-Kutta method to integrate (2.4) in
time. We introduce a constant CFL-number, c f l. At each time tn we choose a time step,
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Figure 2: Boundary interpolation.

∆tn, according to

∆tn max
i,j

(
Sp(A(un

i,j))

∆x
+

Sp(B(un
i,j))

∆y

)
= c f l ,

where A and B are the Jacobian matrices of the flux functions f (u) and g(u), respectively,
and Sp(A) denotes the spectral radius of the matrix A.

3 Embedded boundary

Internal boundaries are embedded into the Cartesian grid and the boundary ΓI is allowed
to cut through the grid in an arbitrary fashion, as long as it is resolved on the grid. Fig. 2
shows a close up of a few grid points near an embedded boundary.

This section describes how to impose Dirichlet and extrapolated boundary conditions
on an embedded boundary. We only consider scalar problems. For systems the scalar
procedure is applied componentwise, as described in Section 2.2. For a scalar dependent
variable u(x,y,t), we denote the numerical solution at grid point (xi,yj) by ui,j(t), where
the t dependence will be surpressed when possible. We assume a three point stencil, so
that the internal scheme updates all points except the points just outside the boundary,
the ghost points (one ghost point is indicated by a circle in Fig. 2). Note that the MUSCL
scheme is a five point stencil, but the previously described slope extrapolation effectively
reduces the scheme to a three-point stencil near the boundary.

Assume that the points in the interior of the domain, above the boundary curve in
Fig. 2, have been updated using the interior difference scheme. To define the value of u
at the ghost point, we proceed as follows. Let the index of the ghost point be (i, j). Let
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n =(α, β) be the normal to the boundary that goes through the point (i, j). The value uI

in Fig. 2 is obtained by linear interpolation along the grid line yj+1 between the values at
the nearest left and right neighboring grid points. A corresponding linear interpolation
procedure is used along the grid lines yj+2 and yj+3, to define the values uI I and uI I I . For
the case shown in Fig. 2, we obtain

uI =w1ui,j+1+(1−w1)ui+1,j+1,

uI I =w2ui,j+2+(1−w2)ui+1,j+2, (3.1)

uI I I =w3ui+1,j+3+(1−w3)ui+2,j+3,

where the weights 0≤wk ≤ 1, k = 1,2,3, depend on where the normal intersects the hor-
izontal grid lines. When the normal has a positive y-component and the angle between
the normal and the x-axis is between π/4 and π/2, the normal will always intersect the
grid line y = yj+1 between xi and xi+1. There are two different cases for uI I (between
(i, j+2) and (i+1, j+2) or between (i+1, j+2) and (i+2, j+2)) and, similarly, three differ-
ent cases for uI I I . For other directions of the normal, the boundary interpolation scheme
is obtained as mirror images and/or reflections of Fig. 2. Since the three interpolated val-
ues are obtained by linear interpolation, they can not cause any new maxima or minima
in the presence of discontinuities.

3.1 Dirichlet boundary condition

Consider imposing the Dirichlet condition u(xΓ,yΓ) = g(xΓ,yΓ) for (xΓ,yΓ) on Γi, where
g(x,y) is given data on the boundary. We obtain uI , uI I , and uI I I by interpolation as
described above. Let (xΓ

i ,yΓ
i ) be the point where the normal intersects the boundary.

Denote the distance between the ghost point and the boundary by b and let the distance
between the ghost point and the grid line y=yj+1 along the normal be ∆ (see Fig. 2). By
interpolating along the normal, we define values ub1 and ub2 at points b+∆ and b+2∆

from the ghost point, respectively. Let

ub1 =(b/∆)uI I +(1−b/∆)uI , ub2 =(b/∆)uI I I +(1−b/∆)uI I .

Note that the points (xΓ
i ,yΓ

j ), (xb1,yb1), and (xb2,yb2) are equidistant by construction. Next

we define a limited boundary slope,

sΓ =Smm(ub1−g(xΓ
i ,yΓ

j ),ub2−ub1),

where Smm(x,y) is the minmod limiter given by (2.7). We can interpret sΓ as the slope at
the point b+∆ away from the ghost point, extrapolated to (xΓ

i ,yΓ
i ). The ghost point value

is finally defined by extrapolating the boundary value using the limited boundary slope,

ui,j = g(xΓ
i ,yΓ

j )−
b

∆
sΓ. (3.2)
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Remark 3.1. The above construction is always well-defined, since h≤∆≤
√

2h. In many
finite volume methods, computation of the value at the boundary point includes dividing
by a coefficient that can become arbitrarily small when the cut cell becomes small. This
leads to a severe time step restriction when using an explicit method in time. ∆ in (3.2)
is bounded away from zero even when the cut cell size becomes very small, therefore we
do not expect any time additional step restrictions from the embedded boundary in the
present approach. This is verified by the numerical experiments in Section 4 were in all
cases we successfully used the time step determined by the standard CFL condition in
the interior of the domain. See [9] for an analysis that shows stability without additional
time step restrictions from the boundary for a similar boundary procedure applied to the
wave equation.

3.2 Extrapolation boundary condition

For variables that do not have a physical boundary condition, we use extrapolation as
numerical boundary condition. Since there is no condition to be imposed, we can extrap-
olate without using any information about the boundary location. We use (2.11) along
the normal to obtain

ui,j =uI−S(uI I I−uI I ,uI I−uI). (3.3)

In practice, it has turned out that the extrapolation (3.3) sometimes can give negative
densities or pressures. This can for example occur for Euler’s equations in wake regions
behind objects in high speed fluid flow. In our solver, we first try (3.3), but if that formula
takes the density or the pressure below zero at the ghost point, we instead use

ui,j =uI . (3.4)

The boundary extrapolation (3.4) is only first order accurate, but has turned out to be very
robust. This reduction of accuracy when extrapolating near vacuum only takes place at
a small number of grid points. This accuracy reduction at a few boundary points should
not lead to any reduction of accuracy in the L1 or L2 norms even when the solution is
smooth, because there are already some points in the domain, the smooth extrema, where
the TVD scheme reduces the formal order of accuracy from second to first.

4 Numerical experiments

We start by considering the Euler equations of compressible gas dynamics. The equations
are 



ρ
ρu
ρv
ρw
e




t

+




ρu
ρu2+p

ρuv
ρuw

u(e+p)




x

+




ρv
ρuv

ρv2+p
ρvw

v(e+p)




y

=




ρw
ρuw
ρvw

ρw2+p
w(e+p)




z

=




0
0
0
0
0




,
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Figure 3: Mach 3 flow. Body fitted grid (left), embedded boundary (right). Density contours (upper) and
entropy contours (lower).

where ρ is the density, u is the velocity in the x-direction, v is the velocity in the y-
direction, w is the velocity in the z-direction, and e is the total energy. The pressure is
defined by the ideal gas gamma law

p=(γ−1)

(
e− 1

2
ρ(u2+v2+w2)

)
.

On solid wall boundaries, we set the normal velocity to zero. In the notation of (2.2)
this means taking r=1, ci =0, and defining the boundary operator to be a rotation which
selects the component of the momentum normal to the wall. In this case Li is independent
of u.

We compute supersonic two-dimensional compressible flow past a disk of radius 0.5.
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Figure 4: Mach 3 flow. Pressure coefficient on the body. Body fitted grid (dash-dot), embedded first order bc
(solid), and embedded second order bc (dot).
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Figure 5: Mach 3 flow. Error in entropy on the body. Body fitted grid (dash-dot), embedded first order bc
(solid), and embedded second order bc (dot).

The free stream Mach number is 3 and γ = 1.4. We solve the problem first with a body
fitted grid of 101×51 points. This is a standard computation, see for example [17,18]. The
body fitted grid only covers the front part of the disk. Secondly, we solve the same prob-
lem using embedded boundary method on the domain [−2,2]×[−2,2]. For the embedded
boundary method, 305×305 grid points are used. With these resolutions approximately
the same number of grid points are placed on the body with both methods.

Fig. 3 shows the density contours for the body fitted grid (upper left), the density
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Figure 6: Mach 3 flow, three disks, density contours.
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Figure 7: Mach 3 flow, three disks, entropy contours.

contours the embedded boundary method (upper right). Also shown are entropy con-
tours for the body fitted grid (lower left) and for the embedded boundary method (lower
right).

The flow in the wake behind the disk is determined by numerical viscosity, and has
no physical relevance. Note that the flow is supersonic at the outflow boundaries for
the body fitted grid computation, so the upstream flow field is not affected by having a
smaller domain.

In Fig. 4 we show the pressure coefficient along the body as function of the x-
coordinate, computed for the body fitted grid, the embedded boundary with the low
order extrapolated boundary conditions (3.4) everywhere, and the embedded boundary
with 2nd order extrapolated boundary conditions (3.3). The Dirichlet condition for the
normal velocity was imposed according to (3.2) in both cases. The boundary values for
the embedded boundary method are computed at the points where normals from ghost
points intersect the boundary, as described by the interpolation scheme in Fig. 2. The
curves show good agreement.

For compressible flows, the entropy is constant along streamlines. The entropy on the
body can be computed analytically, by using the Rankine-Hugoniot conditions for the
streamline normal to the bow shock at y=0. Fig. 5 displays the error in entropy along the
body as function of the x-coordinate. The same three methods as were shown in Fig. 4
are also shown in Fig. 5. Near the stagnation point, both embedded boundary methods
are more accurate than the body fitted grid method. The second order embedded method
stays more accurate than the body fitted method along the entire body.

As a second example, in Fig. 6 we display two-dimensional flow past three disks
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Figure 8: Trailing edge of the NACA0012 airfoil. Grid line in middle.

0.8 0.85 0.9 0.95 1 1.05 1.1
−0.1

−0.05

0

0.05

0.1

x

y

Figure 9: Trailing edge of the NACA0012 airfoil. No grid line in middle.

at Mach 3, computed by the embedded boundary method. The disks are centered at
(−1.3,−1.0), (−1.0,0.8), and (1.3,0.2), with radii 0.3,0.3, and 0.4 respectively. The com-
putational domain is [−4,4]×[−4,4] and 305×305 grid points were used. In Fig. 7, the
corresponding entropy contour lines are shown. This example demonstrates that the em-
bedded grid method easily handles more than one object in the computational domain.

4.1 Flow past a NACA0012 airfoil

The boundary of the NACA0012 airfoil has an unsmooth normal at the trailing edge,
which complicates the definition of the embedded boundary discretization. One diffi-
culty is that the thickness of the airfoil becomes very small, so that near the trailing edge,
there can be ghost points which serve as a ghost point for both the upper and the lower
sides. This occurs if the trailing edge of the airfoil is centered around one horizontal grid
line, see Fig. 8. The inside points are marked by ’o’ and the points in the computational
domain are marked by ’x’. In 0.9<x<1 there is only one layer of points inside the airfoil.
To handle this case, we let these special ghost points have two values and two normals,
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Figure 10: NACA0012 airfoil, Mach 0.8, angle 1.25◦. Density contours.

one normal to the upper boundary curve, the other normal to the lower boundary curve.
When computing above the airfoil, the upper value of the ghost point, and the upward
normal is used. When computing below the airfoil, the lower value of the ghost point
and downward normal are used. Imposing boundary data is straightforward, defining
one value by interpolating from above and the other value by interpolating from below.
The very last point serves as ghost point for three directions, and the above technique is
extended to a three-valued ghost point.

Although this procedure is conceptually straightforward, implementation in a com-
puter code requires some organization. We maintain a list of multiple valued ghost points
with one list entry for each value. For the example in Fig. 8, the table would contain 17
entries. In order to define the table, special logic is used to make sure the two different
normals belonging to the same ghost point are found. Each time the interior difference
scheme accesses a point which could be a ghost point, the point is looked up in the mul-
tiple ghost point table. If it is found there, its value is supplied from the table, otherwise
the value in the standard array is used.

To test the method, we computed transonic flow with Mach number 0.8 and angle of
attack 1.25◦ around the NACA0012 airfoil. This is a test case which is often used, see for
example [5]. The computational domain is [−2,2]×[−2,2]. In Fig. 10, we show density
contours of a solution computed with 300×300 grid points, and in Fig. 11, we display the
pressure coefficient (Cp) on the boundary.

In this computation the number of grid points was even. A close up of the trailing
edge is displayed in Fig. 9. There is no grid line exactly in the middle of the airfoil, there-
fore there are no special ghost points with multiple values. If instead the computation
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Figure 11: Pressure coefficient.

is done with 301×301 points, the situation is as displayed in Fig. 8. For this number of
points, a few of the ghost points are handled as special multiply valued points. In Fig. 12,
we show a comparison between the Cp curves for the computations with 300×300 points
and 301×301 points. The difference is fairly significant, and because the geometries dif-
fers by O(h), it is not unreasonable to expect that the difference between the Cp curves is
first order in the grid spacing.

To further investigate the convergence properties, we display in Fig. 13 the Cp curves
for grids with 300×300, 600×600, and 1200×1200 grid points. The curves converge as
the grid is refined, but convergence is slow at the shock on the upper side on the airfoil.
Similarly, we show in Fig. 14 the Cp curves for grids with 301×301, 601×601, and 1201×
1201 grid points. Comparing Figs. 13 and 14, we conclude that the convergence to the
fine grid solution appears to be better when the number of points is odd. Fig. 15 shows
a comparison between the Cp curves on the grids with 1200×1200 and 1201×1201 grid
points. The even and odd cases seem to converge to the same solution, except for a minor
discrepancy near the shock at the lower side of the airfoil.

4.2 Conservation properties

The proposed method is not guaranteed to be conservative at the embedded boundary.
To investigate the size of the possible loss of mass from the embedded boundary, we
here compute a steady subsonic flow in a channel with an elliptic obstacle. Fig. 16 shows
density contours of the steady flow. The domain is of size [−3,3]×[−2,2] and the ellipse
have the axis lengths 0.5 and 0.3 in the x- and y-directions respectively. Ideal gas flow
enters at the left boundary with speed Mach 0.5. The upper and lower boundaries are
solid walls where slip boundary conditions are imposed. Conservation is measured by
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Figure 12: Cp with 300×300 points (solid) and with 301×301 points (dash).
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Figure 13: Cp with 300×300 points (solid), with 600×600 points (dash), and with 1200×1200 points (dash-dot).

comparing the total mass flux across the left inflow with the total mass flux across the
right outflow boundary. The mass flux over the grid line xi is approximated by the sum

Fi =
N−1

∑
j=1

hρi,j+1/2ui,j+1/2,

where N is the number of grid points in the j direction, and ρi,j+1/2 =(ρi,j+1+ρi,j)/2. Ide-
ally, the influx F1 should equal the outflux FM, where M is the number of grid points in
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Figure 14: Cp with 301×301 points (solid), with 601×601 points (dash), and with 1201×1201 points (dash-dot).
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Figure 15: Cp with 1200×1200 points (solid) and with 1201×1201 points (dash).

the x-direction. In Table 1, we show the mass loss ∆F=FM−F1 as function of the number
of grid points. From Table 1, we conclude that the mass loss goes to zero as the grid is
refined with a rate O(h1.6). The limiters in the boundary interpolation scheme locally
reduces the order of the truncation error at some points on the embedded boundary. To
investigate whether this is the reason for not getting full second order decrease, we dis-
play in the last column of Table 1 the mass losses without using the boundary limiters.
The convergence rate is improved to O(h1.8) between the two finest grids. It is not prac-
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Table 1: Mass loss due to non-conservative embedded boundary procedure.

M ∆F Relative loss ∆Fnolim Relative loss

301 0.015 0.54% 0.012 0.43%
601 0.0053 0.19% 0.0035 0.12%

1201 0.0018 0.064% 0.0010 0.036%
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Density contours, Mach 0.5

Figure 16: Mach 0.5 flow in a channel with obstacle.

tical, however, to solve without limiters. In the present computation we started from the
converged steady solution obtained with limiters. For any other initial data we tried the
computation became unstable due to discontinuities in the transient phase.

4.3 Three space dimensions

We here outline the extension of the embedded boundary technique to three space di-
mensions. First, we compute the normal to the boundary through each ghost point. This
computation depends on the representation of the geometry. In the example below, we
compute fluid flow past a sphere. In this case, analytical formulas can be used for calcu-
lating normals and boundary distances.

The sphere is simple enough that the computation of normals can be done directly by
analytical formulas.

Given the boundary normals, we define values uI ,uI I , and uI I I in the same way as
in (3.1). In three dimensions these values are determined as weighted averages of the
four neighbors of the intersection point between the normal and a coordinate plane. In
Fig. 2, the normal can intersect the grid line y= yj+2 in two different cells, and there are



B. Sjögreen and N. A. Petersson / Commun. Comput. Phys., 2 (2007), pp. 1199-1219 1217

three different possibilities for the intersection of y = yj+3. In three dimensions the cor-
responding number of possible intersections are four in the y= yj+2 grid plane and nine
in the y = yj+3 grid plane. Nevertheless, it is not difficult to implement these boundary
conditions. Given the normal n=(nx ny nz), we determine the element with the largest
absolute value. Let us assume that |nx| ≥ |ny| and |nx| ≥ |nz|. The other two cases, |ny|
largest and |nz| largest, are treated with obvious changes.

The three dimensional version of the interpolation (3.1) can be written

um =(1−ξm)(1−ηm)uim,jm ,km
+ξm(1−ηm)uim,jm+s,km

+(1−ξm)ηmuim,jm,km+s+ξmηmuim,jm+s,km+s, m=1,2,3, (4.1)

where we set
uI =u1, uI I =u2, uI I I =u3.

We have introduced

s= sign(nx), ξ = |ny/nx|, η = |nz/nx|,

and

ξm =mξ−⌊mξ⌋, ηm =mη−⌊mη⌋, (4.2)

im = i+sm, jm = j+s⌊mξ⌋, km = k+s⌊mη⌋, m=1,2,3, (4.3)

where ⌊x⌋ denotes the integer part of x.
Once uI , uI I , and uI I I are known, the remaining part of the boundary formulas is one

dimensional, and we use (3.2) and (3.3) as previously.
We show in Fig. 17 the density distribution for the steady Mach 3 flow past a

sphere. The sphere has radius 0.25 and is embedded in a Cartesian domain of size
[−1,1]×[−1,1]×[−1,1], discretized on a grid with 120×120×120 grid points. The com-
putation was run time accurately until the bow shock moved into its correct position.

5 Conclusions

We have presented a finite difference embedded boundary method for computing invis-
cid compressible flows around complex geometries. The method is second order accurate
when the flow is smooth, easy to implement for two- and three-dimensional problems,
and the explicit time-stepping is stable with a time step determined by the grid size away
from the boundary.

Some work has been performed to generalize our method to handle viscous com-
pressible flows [13], and a new embedded boundary compressible Navier-Stokes solver is
under development. A challenge for embedded boundary methods is to resolve bound-
ary layers in viscous flows when the flow exhibits a much smaller length scale normal to
the boundary than in the tangential directions. A Cartesian mesh which is locally refined
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Figure 17: Mach 3 flow past a sphere. Density. 120×120×120 grid points.

near the boundary can alleviate the resolution requirements, but more work is needed to
handle mesh refinement boundaries intersecting the embedded boundary. To accurately
and efficiently capture turbulent phenomena in Navier-Stokes flows, we would also like
to increase the accuracy of the method beyond second order.
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