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Abstract. Two algorithms for dwell time adjustment are evaluated under the same
polishing conditions that involve tool and work distributions. Both methods are based
on Preston’s hypothesis. The first method is a convolution algorithm based on the Fast
Fourier Transform. The second is an iterative method based on a constraint problem,
extended from a one-dimensional formulation to address a two-dimensional problem.
Both methods are investigated for their computational cost, accuracy, and polishing
shapes. The convolution method has high accuracy and high speed. The constraint
problem on the other hand is slow even when it requires larger memory and thus is
more costly. However, unlike the other case a negative region in the polishing shape
is not predicted here. Furthermore, new techniques are devised by combining the two
methods.

Key words: Polishing; surface grinding; dwell time; convolution method; fast Fourier transform;
constraint problem.

1 Introduction

Recently, the focus on the processing of high-precision optical elements into target shapes
has shifted to surface creation technology using polishing heads that can control the
amount of material removed [1–6]. This technology is known as corrective polishing
method where polishing shape is given by scanning the variable velocity of the polish-
ing head on the work surface of a physical object and by controlling the dwell time of the
polishing head. It is known that the accuracy demanded for modern optical elements is
extended to the order of nanometer. Moreover, the polishing areas are becoming larger
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and posing new challenges for the polishing techniques especially when it takes longer time
to complete the task. Also, the calculating algorithm for the dwell time distribution to
determine processing accuracy and cost are becoming increasingly more important.

In one calculation method, the amount of material removed is estimated using a model
equation that accounts for the polishing velocity, the switching processes and anti-processes
at each point, and the technique for finishing the target shape [7]. However, in this
method the amount of material removed in one scan is considered to be uniform but the
dwell time distribution cannot be obtained. Hence, a method for calculating the dwell
time distribution with a fast Fourier transform (FFT) was proposed by Negishi et al. [8]
which is one of the two methods addressed in this paper. The other method evolved
from a technique for solving one dimensional algorithm for the dwell time calculation as
a constraint problem and was developed by Yang et al. [9].

In this current study, the technique for obtaining the dwell time distribution by the
one-dimensional algorithm for constraint problem is extended to address a two-dimensional
problem which is more appropriate for actual surfaces. This technique is then compared
with the FFT calculation technique, and the characteristics of the two techniques are
analyzed later in this paper. Furthermore, new techniques are designed by combining the
two methods.

2 Two techniques for solving the dwell time distribution

Polishing removal is based on a convolution model [3] derived from Preston’s hypothesis.
The unit removal shape is obtained from a polishing experiment with a polishing head
driven for a unit time. The model is expressed by an integration of a convolution equation
over the grinding area A:

h(x, y) =

∫

A

g(u, v)f(u − x, v − y)dudv, (2.1)

where h(x, y) is removal shape, g(u, v) is dwell time distribution, f(x, y) is unit removal
shape, and x, y, u, v are variables. Moreover, polishing adjustment progresses by bringing
the removal shape close to the error shape, which is defined as the difference between the
work shape and the architectonic shape:

d(x, y) = h(x, y) + e(x, y), (2.2)

where d(x, y) is the error shape, i.e., the target removal shape measured by a shape
measurement device and e(x, y) is the residual error shape that cannot be modified. It is
necessary to calculate the dwell time distribution g from the target removal shape d and
unit removal shape f during polishing adjustment. The concept of convolution is shown
in Fig. 2.

We first describe the technique for calculating d(x, y) the dwell time distribution by
FFT [9]. During the calculation, the following conditions are to be met for polishing
adjustment:
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Target removal shape ( )d x,y

Unit removal shape ( )f x,y

Dwell time distribution ( )g x,y

Removal shape ( )h x,y

Convolution

Polishing head

Figure 1: Convolution model.

1. The dwell time remain positive over the entire region.

2. The residual error be reduced.

3. The processing time be reduced.

4. The width of the change in the dwell time distribution be reduced.

By applying the Fourier transform the Eq. (2.2) turns into the equation

D(ωx, ωy) = G(ωx, ωy)F (ωx, ωy) + E(ωx, ωy), (2.3)

where D(ωx, ωy) is the Fourier transform of d(x, y), abbreviated as D. An instinctive
method, which consists of defining E = 0, calculating G = D/F , performing the inverse
Fourier transform, and obtaining the dwell time G is not reliable: the method is divergent
when |F | is small. Hence, the filter function Q(ωx, ωy) is used to calculate the dwell time:

G = QD/F. (2.4)

Consequently, we use

E = (1 − Q)D (2.5)

and express Q as

Q(ωx, ωy) = a(ωx, ωy) + b(ωx, ωy)j, (2.6)

with real functions a(ωx, ωy) and b(ωx, ωy). Here, j is the imaginary unit. The forms of
a(ωx, ωy) and b(ωx, ωy) are obtained by minimizing the following functional:

S =

∫

A

|e(x, y)|2 dxdy + α

∫

A

|g(x, y)|2 dxdy. (2.7)
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The first term on the right-hand side of (2.7) is the residual error, the second term is
the dwell time distribution to the second power, and α is a weighting factor to suppress
residual error when it is small and to suppress a large stay time. The following equations
are obtained from Parseval’s formula:

∫

A

|e(x, y)|2 dxdy =

∫

W

|E(ωx, ωy)|
2 dωxdωy

∫

A

|g(x, y)|2 dxdy =

∫

W

|G(ωx, ωy)|
2 dωxdωy.

(2.8)

We can use the upper expressions to rewrite Eq. (2.7):

S =

∫

W

{

(

(a − 1)2 + b2
)

|F |2 + α(a2 + b2)
}

|D/F |
2
dωxdωy. (2.9)

This can be expressed as an integral of the function s(a(ωx, ωy), b(ωx, ωy), ωx, ωy). By
making the functional S undescended by the variation principle, i.e.,

∂s

∂a
=

∂s

∂b
= 0, (2.10)

the following results are obtained:

a(ωx, ωy) =
|F (ωx, ωy)|

2

α + |F (ωx, ωy)|
2 , b(ωx, ωy) = 0. (2.11)

In practice, since the weighting factor must not depend on the unit removal shape and must
be constant, α is transformed into the dimensionless weighting factor β = α/ |F (0, 0)|2.
Consequently,

Q(ωx, ωy) =
|F (ωx, ωy)|

2

β |F (0, 0)|2 + |F (ωx, ωy)|
2 . (2.12)

It may be considered that the calculated residual error is the target removal shape in the
method described above again, and improvement may be made by using some iterative
techniques. Note that in this method, a negative value for the dwell time may be obtained
as the method does not take care of the sign of the dwell time. In this case, the negative
value is replaced by zero.

We next describe the technique for solving the dwell time distribution as a constraint
problem. First we describe the one-dimensional problem [9] and then consider the two-
dimensional case. The following conditions must be satisfied for polishing adjustments:

1. The dwell time be not negative at any point over the entire region;

2. The residual error be not negative at any point over the four corners;

3. The variation of the interior, connectivity, and copy shape of the dwell time distri-
bution remain smooth.
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This constraint problem can be modeled using vectors and matrices. In one dimension, for
n data points, let X be an n-dimensional vector representing the dwell time, A an n × n
matrix, and B an n-dimensional vector representing the residual error shape:

X =











x1

x2
...

xn











, A =











a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann











, B =











b1

b2
...

bn











. (2.13)

Then, the problem can be formulated as:

Constraint equation: AX 6 B

Nonnegative condition: X > 0

Goal: B − AX → minimum,

where the matrix A is determined by the unit removal shape of the polishing head. The
one-dimensional unit removal shape data Z is assumed to be a row vector,

Z = ( c−m c−m+1 · · · c0 · · · ck ), m + k + 1 ¿ n, (2.14)

where c0 is the unit removal in the center of the polishing head. The number of unit
removal data elements is m + k + 1 . Then

A =











c0 c0 · · · ck 0 · · · 0 · · · 0
c0 c0 · · · ck−1 ck · · · 0 · · · 0
...

...
...

...
...

...
0 0 · · · 0 0 · · · c−m · · · c0











. (2.15)

Developing the modeling constraint equation gives

n
∑

i=1

ajixi = bj , j = 1, · · · , n. (2.16)

The maximum possible dwell time xi i = 1, · · · , n, is limited by the amount of error bj at
each point:

xi 6
1

N
min {bj/aji : j = 1, · · · , n; aji 6= 0.} (2.17)

The amount of polishing at a certain point is found by overlapping the polishing that
contributes to that point. To ensure that the dwell time distribution is smooth, the dwell
time that contributes to a certain point is allocated proportionally and evenly:

xi =
1

N
min {bj/aji : j = 1, · · · , n; aji 6= 0} . (2.18)
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As the number of unit removal shape data elements is m + k + 1, N is assumed to satisfy

N > m + k + 1. (2.19)

In addition, the remaining residual error E is calculated as follows:

E = B − AX. (2.20)

The residual error can not be minimized by only one cycle of the calculation using an
even allocation of the dwell time. However, the residual error can be reduced by repeating
the calculation until it converges to a certain nonnegative constant. This constant is the
residual error that cannot be corrected and remains unchanged. In short, Xp is the dwell
time obtained by repeating the calculation p times with Bp the error shape:

Xp =













x
(p)
1

x
(p)
2
...

x
(p)
n













, Bp =













b
(p)
1

b
(p)
2
...

b
(p)
n













. (2.21)

The final dwell time X is given by

X =
∑

p

Xp. (2.22)

Moreover, we have

xi =
1

N
min {bj/aji : j = 1, · · · , n; aji 6= 0} , (2.23)

and the minimized residual error E is given by

E = B −
∑

p

AXp. (2.24)

For two-dimensional modeling, the number of data points is m×n , X is an m×n matrix
representing the dwell time, A is a four-dimensional m × n × m × n matrix, and B is an
m × n matrix representing the error shape:

X =











x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
...

xm1 xm2 · · · xmn











, B =











b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
...

bm1 bm2 · · · bmn











. (2.25)
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The factor of A is defined as aijkl, 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n. The two-dimensional
problem then becomes

Constraint equation: AX 6 B

Nonnegative condition: X > 0

Goal: B − AX → minimum,

where AX is an operation for a matrix A determined by the unit removal shape of the
polishing head:

AX =

m
∑

i=1

n
∑

j=1

aijklxij , k = 1, · · · , m, l = 1, · · · , n. (2.26)

Assume the two-dimensional unit removal shape data to be represented by the matrix

Z =

















c−q−s · · · c−q0 · · · c−qp

...
...

...
c0−s · · · c00 · · · c0p

...
...

...
cr−s · · · cr0 · · · crp

















, s + p + 1 ¿ m, q + r + 1 ¿ n, (2.27)

where c00 is the unit removal shape at the center of the polishing head. The number of
two-dimensional unit removal shape data elements is (s + p + 1) × (q + r + 1). This gives

aij11 =

























c00 c01 · · · c0r 0 · · · 0
c10 c11 · · · c1r 0 · · · 0
...

...
...

...
...

cp0 cp1 · · · cpr 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
...

...
...

0 0 · · · 0 0 · · · 0

























. (2.28)

It follows from the modeling constraint equation that

m
∑

i=1

n
∑

j=1

aijklxij = bkl, k = 1, · · · , m, l = 1, · · · , n. (2.29)

The maximum possible dwell time xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, is limited to the amount of
error bkl at each point, i.e.,

xij 6 min {bkl/aijkl : k = 1, · · · , m; l = 1, · · · , n; aijkl 6= 0} . (2.30)
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The amount of polishing becomes

xij =
1

MN
min {bkl/aijkl : k = 1, · · · , m; l = 1, · · · , n; aijkl 6= 0} . (2.31)

As the number of unit removal shape data elements is (s + p + 1)× (q + r + 1), M and N
are assumed to be

M > m + k + 1, N > m + k + 1. (2.32)

The remaining residual error E is then given by

E = B − AX. (2.33)

The residual error is reduced by repeating calculations until a nonnegative constant is
obtained. Xp is the dwell time obtained by p calculations, with Bp the error shape:

Xp =













x
(p)
11 x

(p)
12 · · · x

(p)
1n

x
(p)
21 x

(p)
22 · · · x

(p)
2n

...
...

...

x
(p)
m1 x

(p)
m2 · · · x

(p)
mn













, Bp =













b
(p)
11 b

(p)
12 · · · b

(p)
1n

b
(p)
21 b

(p)
22 · · · b

(p)
2n

...
...

...

b
(p)
m1 b

(p)
m2 · · · b

(p)
mn













. (2.34)

Again the final dwell time X is given by X =
∑

p Xp, and the minimized residual error E
is E = B −

∑

p AXp.

3 Combined algorithm

The two techniques mentioned above can be combined in two different ways. We consider
and compare the ways of combining the two techniques. The two possible combined
algorithms are:

• (1) calculating the removal shape by the FFT calculation technique (Method A) and
calculating the target removal shape by the constraint problem calculation technique
(Method B) known as the A-B Method; and

• (2) calculating the removal shape by Method B and calculating the target removal
shape by Method A known as B-A Method.

The number of iterations is set from the value when for each method the peak value (PV)
and root mean square (RMS) of the residual error converge. The flow charts of the two
calculation methods and the two combined algorithms are shown in Figs. 2-5.

4 Computational results

In this section, the dwell time algorithm is calculated by the two methods (A and B), and
the characteristics of both methods are then evaluated. For the calculation the column-
shaped target removal shape and the Gaussian unit removal shape per minute are shown
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Start

Finish

A method

Loop
m=1, 2, ..., 1500

Figure 2: Flow chart of Method A.

Start

Finish

B  method

Loop
m=1, 2, ..., 150

Figure 3: Flow chart of Method B.

Start

Finish

A method

B  method

Loop
m=1, 2, ..., 1500

Loop
m=1, 2, ..., 150

Figure 4: Flow chart of A-B Method.

Start

Finish

A method

B  method

Loop
m=1, 2, ..., 1500

Loop
m=1, 2, ..., 150

Figure 5: Flow chart of B-A Method.

in Fig. 6; and the cross-section views are shown in Fig. 7. The number of data point in
the calculation is 64 × 64.

The results for the removal shape produced by the Methods A and B obtained from the
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(a) (b)

Figure 6: (a): Two-dimensional column-shaped target removal shape; and (b): Two-dimensional Gaussian unit
removal shape.
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Figure 7: (a): The target removal shape on x-axis; and (b): the Gaussian unit removal shape on x-axis.

(a) (b)

Figure 8: Removal shape produced by (a) Method A, (b) Method B.
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(a) (b)

Figure 9: Residual error shape produced by (a) Method A, (b) Method B.

(a) (b)

Figure 10: Dwell time distribution produced by (a) Method A, (b) Method B.

(a) (b)

Figure 11: Removal shape produced by (a) Method A-B, (b) Method B-A.



712 S. Satake, K. Yamamoto and S. Igarashi / Commun. Comput. Phys., 1 (2006), pp. 701-715

(a) (b)

Figure 12: Residual error shape produced by (a) Method A-B, (b) Method B-A.
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Figure 13: Comparisons of different methods for (a): the removal shape on x-axis; and (b): the residual error
shape on x-axis.

(a) (b)

Figure 14: Dwell time distribution produced by (a) A-B Method, (b) B-A Method.
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Figure 15: Dwell time distribution shape on x-axis.

numerical calculation, after calculating the dwell time distribution, are shown in Figs. 8
(a) and (b). The two-dimensional residual error shapes, i.e., the difference between the
target removal shape, and the actual removal shape are shown in Figs. 9(a) and (b) for the
two Methods A and B. From the PV and RMS of the residual error shape, it appears that
in terms of process accuracy the FFT calculation technique is superior to the constraint
problem method. On the other hand, in the constraint problem method the residual
error only extends over a portion of the calculation domain. The dwell time distributions
obtained finally are shown in Figs. 10(a) and (b) for the two Methods A and B.

The computational time and the required program size shown in Table 1 are considered
as important factors in evaluating the calculation techniques. The CPU used for these
calculations was an Intel Pentium 4 2.5GHz. It can be seen that Method A is about 4
times faster than Method B which is not only slow but also requires a memory that is
200 times larger than that required by A. Hence, it is concluded that the FFT calculation
technique excels in speed as well as in memory.

Next, the dwell time is calculated using the combined techniques followed by an evalu-
ation of the characteristics of these combined techniques. Here target removal shape, unit
removal shape, and the number of data points used in the calculations are the same as for
Methods A and B above.

The results for the removal shapes from the numerical calculation, after calculating the
dwell time distribution, are shown in Figs. 11(a) and (b). Moreover, the two-dimensional
residual errors are shown in Figs. 12(a) and (b). To compare the effectiveness of the two
methods A and B and the two combined methods (A-B and B-A), the cross-section results
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Table 1: Computational speed and program size.

Method A Method B Method A-B Method B-A

Computational speed 25.5s 94.3s 120.1s 120.1s

Program size 684kByte 136MByte 136MByte 136MByte

Table 2: Calculation result of PV, RMS, and average.

Method A Method B Method A-B Method B-A

PV 0.95163425 1 0.9993854307 1.00018126

RMS 0.112684814 0.38059697 0.141542047 0.41950714

Average -0.04148624 0.20869080 0.021950515 0.28417357

for the removal shape and the residual error shape on the x-axis are shown in Fig. 13. The
PV, RMS, and average of the calculation results are shown in Table 2 where the residual
error can be evaluated quantitatively. Finally, the dwell time distributions obtained are
shown in Fig. 14 and the cross-section drawing shown in Fig. 15. From these figures, some
conclusions can be drawn which will be provided in the final section.

5 Conclusions

The following conclusions are arrived at from a comparison of the four techniques for
calculating the dwell time distribution:

1) The FFT calculation technique (Method A) was the most accurate in terms of PV and
RMS measures of the residual error shape. Hence, for calculations of the dwell time
distribution, that requires overall processing accuracy, the FFT technique should be
used.

2) It is preferable to use the constraint problem calculation technique (Method B) when
excess removal occurs.

3) Excess removal does not occur when the removal shape is calculated by the FFT
technique, which gives a highly accurate result with respect to the RMS and PV.
Hence more favorable results can be obtained by calculating the removal shape by
the constraint problem technique and calculating the target removal shape by the
FFT technique (Method A-B). Therefore, it is concluded that Method A-B is the
most effective here.

4) The removal shape, residual error, and dwell time distribution in the case of calculat-
ing only by the constraint problem technique almost coincides with the calculation
result for calculating the removal shape by the constraint problem technique and
calculating the target removal shape by the FFT technique (B-A Method).
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