Adsorption of cesium, thallium, strontium and cobalt radionuclides using activated carbon

A. Hanafi^{*a,b,**}

^a Community Collage-Al-Quwayiyah, Shaqra University, Saudi Arabia ^b Cyclotron Project, Nuclear Research Centre, Atomic Energy Authority, Egypt

Received 8 October 2009; Accepted (in revised version) 23 November 2009 Published online 2 August 2010

Abstract. Adsorption studies of Cs^+ , Tl^+ , Sr^{2+} and Co^{2+} on activated carbons from aqueous solutions are reported. The carbon samples were characterized using different techniques. The chemical nature of the surface of the carbon was studied. Optimal conditions for adsorption of the metal ions have been identified. The comparative study for the metal ions was also considered in the orespace of different anions. The data suggest the possible use of activated carbon for preconcentration and separation of some cations.

PACS: 07.88.+y, 07.89.+b, 68.43.-h

Key words: radionuclides, activated carbon, batch technique, adsorption

1 Introduction

Adsorption is a significant pher n in many physical, biological and chemical processes. It is a process in mol cules or atoms of one phase interpenetrate nearly other hase to form a solution with it. The material that concenuniformly those of a trated or adsorbed to ce is called the adsorbate while the adsorbing phase is termed the adsorbent. There are any substances which can be used as adsorbents such as fly ash [1], metal oxides, zeolites, biomass [2], goethite, pyrite fines, hydroxides [3], clays, peanut hulls [4], sand and active carbon [5, 6]. Because of their large surface area and their high degree of surface reactivity, active carbons are regarded as very good adsorbents for the removal of both organic [7–9] and heavy metal contaminants and can be used in a number of possible technological and analytical applications.

The presence of heavy metals in the environment is a major concern due to their toxicity to many life forms. In the past few years there has been a manifest interest in the

http://www.global-sci.org/jams

292

^{*}Corresponding author. Email address: hassanhanfi@hotmail.com (A. Hanafi)

adsorption process in solution because these processes play an important role in phenomena such as the environmental transport of heavy metals [10, 11], analytical separations [12] and preconcentration of metals present in trace amounts [13]. With the increase in the number of nuclear power reactors, the radioactive pollution of water is growing, this problem could be alleviated by means of suitable adsorption processes, also activated carbons are used extensively as adsorbents of different compounds [14]. Factors affecting the adsorption process, e.g., pH, activated carbon dosage, contact time, initial metal concentration and solution temperature were studied [15]. Single copper and nickel adsorption from aqueous solutions onto a granular activated carbon were reported. The present paper reports the results of a study of the adsorption of Cs^+ , Tl^+ , Sr^{2+} and Co^{2+} radionuclides from aqueous solutions on three activated carbons, two of them were obtained from almond shells and the other one (sample M) was obtained from commercial sources.

2 Experimental work

2.1 Adsorbents

Two of the three activated carbons used as adso study (samples A-8 and A-14) were prepared using almond shells as r The activation step was carried out in a flow of carbon dioxide (75 cm³ hin⁻ during heating at 1123 K (heating rate= 5 K·min⁻¹) for 8h (sample A-8) and 14 sam le-14). The activated carbons were characterized using various techniques surface area, pore volume and base neutralization capacity. Their textural e determined from adsorption measurements of CO₂ at 298 K. From tion surface area and micropore volume were obtained with aid of the Dubin Raà hkevich equation [16]. The volume of mesopores and that of the macropore termined independently using a Carlo Erba mercury porosimeter, model 200. of the three carbon samples was measured in a suspenof CO₂ free distilled water, the contact time was 48h sion of 1 g of the and the temper as 298 K. The base neutralization capacity of the carbons was determined with a TNacA solution. Ash contents were obtained after burning in air at 973 K for 3 h.

2.2 Adsorption measurement

The adsorption of metal ions by the activated carbons was followed by adding 0.1 g of carbon to a vial containing 4cm³ of an aqueous solution of the corresponding radioiso-tope. The radioisotope (⁶⁰Co) used in this study were supplied by Hot Laboratories Centre-Egyptian Atomic Energy Authority and ⁸²Sr and ²⁰²Tl radioisotopes was supplied by Cyclotron Project-Egyptian Atomic Energy Authority and in this study, I used inactive CsCl solution with concentration 7 M. The amount of carbon and the volume of aqueous solution in all adsorption measurements were kept constant except where

otherwise specified. The concentration of metal ions, was in all cases, 10-7 M and the pH of the solutions was equal to 6 and it was adjusted either with sodium hydroxide or nitric acid. The vials were kept in thermostat shaker bath at 298 K. After different periods of time the radioactivity of the solution was measured. For radioactivity measurements, the aliquots (0.05 cm³) were first dried on planchets under an infrared lamp and then counted under identical geometrical conditions, with a Geiger-Muller counter, model Philips PW-4355. The percentage adsorption was calculated from the relationship: $(A_0 - A)/A_0$, where A_0 is the initial radioactivity of the solution, and A is the solution radioactivity after adding the carbon. The distribution coefficient (K_d) was computed from the expression: $(A_0 - A)/W*V/A$, where W is the amount of carbon (g) and V is the volume of aliquots (cm³).

3 Results and discussion

3.1 Carbon samples characterization

Table 1 shows some characteristics of the activated carbon same arent surface area of the activated carbons from almond shells (A-8 and es with increasing activation time, and their surface areas are higher for sample M. The microporosity of these carbon samples varies in the san -8<A-14. However, the results obtained by mercury porosimetry t in sample M, meso-and dicate macroporosity is more developed than in A-8 and -14.` At the same time, the chemical nature of their surfaces is also different. uced from pH measurements and the NaOH neutralization capacity val whereas sample M exhibits acidic functional groups, A-8 and A-14 show b groups

Table 1 Data	br the	carbon	samples.
--------------	--------	--------	----------

Samples	$S^{a}_{co_2}(m^2g^{-1}) \\$	V^{b} , (cm ³) ⁻¹) CO ₂ t 298	$V_{\rm p}^{\rm f} {\rm cm}^3 {\rm g}^{-1}$)	Ash Content (%)	pН	mEq ^d NaOH g ⁻¹
A-8	1150	.47	0.27	0.20	8.56	0.00
A-14	1288	0.53	0.35	0.21	8.79	0.00
М	0710	0.29	0.60	2.41	6.66	0.30

^{*a*} Apparent surface from CO₂ dsorption at 298 K ^{*b*} Micropore volume

Walance of a great that have diam

^{*c*}Volume of pores that have diameters greater than 7.5 nm, determined by a mercury porosimetry ^{*d*}Base neutralization capacity

3.2 Effect of contact time

The adsorption of Cs^+ , Tl^+ , Sr^{2+} and Co^{2+} on the three samples of activated carbon was investigated as a function of equilibration time. The results are shown in Figs. 1-3. In general, in the beginning, the adsorption increases sharply with increasing equilibration time

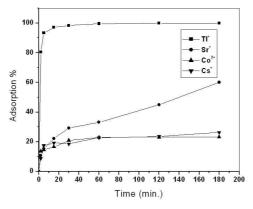


Figure 1: Adsorption of the cations as a function of equilibration time (Sample-A-8).

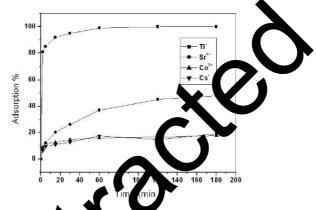


Figure 2: Adsorption of the atlet as a function of equilibration time (Sample-A-14).

then after 20 min., the add reases smoothly, attaining constant value around 40 in min.. However, in that adsorption equilibrium between metallic ions and min. equilibration time was employed in all sequent activated carbo each measurements t to note the small adsorption capacity of these carbon samhav be due to the low polarizing power of Cs^+ as deduced from its ples against Cs^+ ; hus, the carbon Cs⁺ interaction forces are too weak and therefore charge: radius ratio. the cesium ions are retained only on those surface centers which show a high density of negative charge [13].

On the other hand, the amount of Tl⁺ adsorbed by the three carbon samples is too high. Although Tl⁺ is similar to Cs⁺ with respect to their ionic radii (Tl⁺ = 0.144 nm, Cs⁺ =0.169 nm), hydrated radii (Tl⁺_{aq.} = 0.330 nm, Cs⁺_{aq.} =0.169 nm) [12] and charge, it is difficult to explain why both cations behave so differently, and why the amount of Tl⁺ removed from the solution is higher than the amounts of Sr²⁺ and Co²⁺. This may possibly be because of the precipitation of thallium under such conditions. This fact is confirmed by the adsorption values obtained for Tl⁺ which are independent of the carbon sample

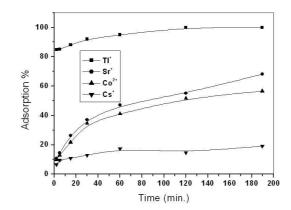


Figure 3: Adsorption of the cations as a function of equilibration time (ample-A-M).

used. In this case it is very hard to differentiate the amount of TL⁺ adstrabed from that precipitated.

These results indicate that the most preferable adsorbent is possible to separate Tl⁺ from Cs⁺ in a solution where they are present nts. Thus, while Ti⁺ m ra is removed from the solution up to 98% and Cs^+ rem urthermore, this adsorption process could be used for Tl⁺ preconcentration how that, except in case of Figs. Tl⁺, the percentage adsorption increases with increases and macroporosity are in ng r order M<A-8<A-14 as shown in Table 1; the hese results indicate that the surface tor cations, not only because of their corresponding to micropore is not acce 2+ =0.412 and $Co^{2+} = 0.423$) but size, (hydrated radius (nm): Cs⁺ Sr

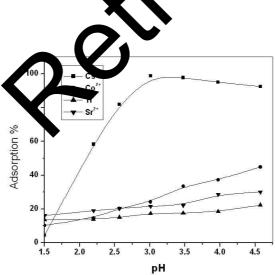
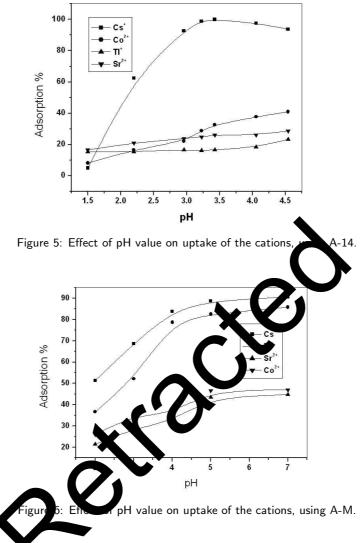



Figure 4: Effect of pH value on uptake of the cations, using A-8.

also because some ectrostatic interactions can take place [12].

3.3 Effect of pH

Figs. 4-6 show the effect of pH on the adsorption of the four metal cations on the three activated carbon samples, in case of A-8 and A-14, the uptake of Cs^+ reaches to about 90%, while only about 20% of other metal cations are adsorbed. In case of adsorption of cations on sample M, the uptake of Cs^+ and Tl^+ reaches to 85% and the uptake of Sr^{2+} and Co^{2+} reaches to about 25%, so the separation of Cs^+ from other cations occur on samples A-8 and A-14. As pH dropped, the cation exchange capacity of samples A-8 and A-14 are increased, this can be explained by the fact that at low pH, higher concentrations

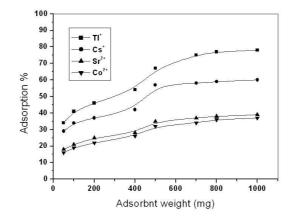
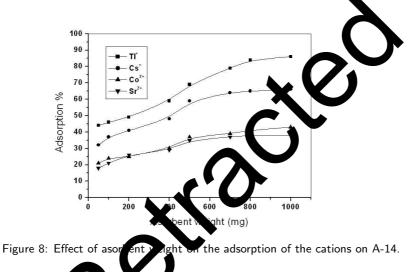



Figure 7: Effect of asorbent weight on the adsorption of the cation A-8.

of H⁺ ions are preservin the solution and therefore increase the exchanging capacity.

3.4 Effect of adsorbent weight

The influence of amount of activated carbon on the adsorption of metal cations has been tested in the range 50-1000 mg. The results are given in Figs. 7-9. The plots of adsorption % vs amount of carbon indicate that initially, adsorption increases sharply with increasing amounts of carbon up to a given value, depending on cation used, and then attains an almost constant value. This may be due to a decrease in the effective surface area resulting from conglomeration of the carbon especially at higher adsorbent concentrations. Since the distribution coefficient K_d , is a measurements of the adsorption yield, it is clear that the optimal amount of adsorbent is that corresponds to the maximum value of K_d . As shown in Figs. 7-9, this optimal amount is a function of each adsorbent cation system.

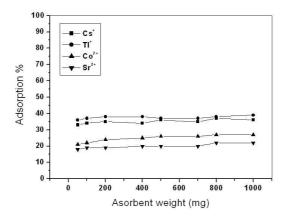


Figure 9: Effect of asorbent weight on the adsorption of the ations on A-M.

It is noteworthy that the adsorption yield in the case of sample (M) independent of the amount of adsorbent in the range investigated, Fig. 9.

3.5 Effect of presence of a number of anions of the adsorption of metal cations

of ads rption in the presence of a number It was considered to carry out some processe of different anions to determine the effe lions on the adsorption of the metal cations by the activated carbon sample ncentration of anions was of the order of Т 10-2 M and most of them were add d in he orm of sodium salts. The results obtained It is evident from this table that there are many using M and A-14 are listed i bb anions which increase the adsorp on the different cations with respect to the process without such anions. This Finterpreted in terms of electrostatic and chemical an act adsorbed on the carbon surface, increasing the density processes. Thus, the lior ήb of negative chap refore its capacity to attract cations. On the other hand, aı

			•							
Ion	Sample	No	Chloride	Ethylene	Acetate	Nitrate	Thio-	EDTA	Tartrate	Citrate
		Anion		diamine			Sulphate			
Cs^+	A-14	06.25	10.21	0	16.37	08.33	09.06	00.91	2.85	00.36
	М	12.63	11.29	5.93	16.26	14.83	18.37	18.84	5.18	13.05
TI^+	A-14	98.05	98.43	98.09	98.76	99.01	99.05	98.50	98.62	98.52
	М	97.20	97.52	97.73	98.32	98.32	98.20	97.32	97.83	99.01
Sr^{2+}	A-14	60.00	57.96	33.88	68.59	74.31	82.07	67.40	67.84	50.92
	М	67.45	75.53	40.58	77.89	83.50	94.28	90.76	69.63	71.56
Co ²⁺	A-14	52.73	85.92	17.97	85.90	93.85	97.17	90.76	21.28	66.23
	М	82.25	90.11	92.81	93.18	96.02	98.88	94.66	93.33	90.53

Table	2.	Data	for	the	carbon	samn	les
Table	۷.	Data	101	unc	carbon	Samp	ICS.

the presence of additional ions in solution leads to a higher ionic force and both the activity coefficient and the activity itself increase, therefore, the equilibrium constant of each adsorption process also increases. However, at the concentration levels mentioned above, anions such as tartrate, citrate and the ligand ethylene-diamine, significantly reduce the adsorption of metal cations. It can be seen (Table 2) that in several cases this reduction takes place only when using the sample A-14. The suppression of adsorption in the presence of these complexing ligands can be explained on the basis of the formation of stable complexes with these cations, which may not therefore undergo adsorption to the same extent on the carbon surface. Since sample A-14 has less meso- and macroporosity than sample M, the latter shows a fraction of sample accessible to these complexes greater than that shown by A-14. This is why both samples behave differently in relation to the mentioned adsorption processes but, of course, the chemical nature of their surfaces must also play an important role.

4 Conclusion

It may be concluded from the data that by using activated calcons with a determined porosity it is possible to separate a given ion from a number of elements; at the same time it can also be preconcentrated. Moreover, the separation and preconcentration processes can be improved by adding a suitable anion.

References

- [1] K. K. Panday, G. Prasad, and V. N. Singh, Ch. m. Jech. Biotechnol. A 34 (1984) 367.
- [2] B. Mattuschka and G. Straube, J. Chem. Ech. Dechnol. 58 (1993) 57.
- [3] C. Namasivayam and K. Ranganatin, W. Res. 29 (1995) 1737.
- [4] F. E. Okieimen, E. U. Okundia, and E. Jeberrun, J. Chem. Tech. Biotechnol. 51 (1991) 97.
- [5] A. Netzer and D. E. Hughes, Vat. 2002) 927.
- [6] M. O. Corapcioglu and S. P. Hurzeg, Vat. Res. 21 (1987) 1031.
- [7] M. S. E. Abdo, S. A. Nosi, Y. X. E. Jawil, S. M. Fadi, and M. I. El-Khaiary, J. Environ. Sci. Health A 32 (1994) 1159
- [8] M. Asfour, M. M. N. Ar, O. A. Fadali, and M. S. El-Geundi, J. Chem. Tech. Biotechnol. A 35 (1985) 28.
- [9] M. Belmouden, A. Assabrane, and Y. Ait Ichou, J. Environ. Monit. 2 (2000) 257.
- [10] B. Reed and M. R. Matsumoto, Separ. Sci. Technol. 28 (1993) 2179.
- [11] R. R. Gadde and H. A. Laitinen, Anal. Chem. 46 (1974) 2022 .
- [12] M. J. Gray and M. A. Malati, J. Chem. Tech. Biotechnol. 59 (2003) 135.
- [13] R. Guin, S. K. Das, and S. K. Saha, Radiochim. Acta 90 (2002) 53.
- [14] A. Seco, P. Marzal, and C. Gabaldon, J. Chem. Tech. Biotechnol. 68 (1997) 23.
- [15] H. Koshima and H. Onishi, Talanta 107 (2004) 795.
- [16] R. Gercira-Valls, A. Hrdlicka, J. Perytka, J. Havel, N. V. Deorkar, L. L. Tavlar-ides, M. Munoz, and M. Valiente, Anal. Chim. Acta 349 (2001) 247.