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Abstract. The structures and elastic constants of face-centered-cubic (fcc) structured nickel
at high temperature have been calculated for the first time using molecular dynamics (MD)
with the direct method and the quantum Sutton-Chen (Q-SC) potential. The obtained
thermoelastic constants are in excellent agreement with the experiment data. Calculated
results for the radial distribution function show that the short-range atomic order of low-T
is similar to the high-T solid with the applied temperatures. The thermoelastic constants,
the bulk and shear modulus as a function of the applied temperature are presented. An
analysis for the calculated parameters has been made to reveal mechanical stability of
nickel up to 1300 K.
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1 Introduction

Nickel, a d-band transition metal, is very important materials owing to broadly industrial ap-
plications such as catalysis, rechargeable batteries, and so on [1–3]. As an important transi-
tion metal in the field of condensed matter physics, it has recently attracted tremendous exper-
imental and theoretical interest in its wide range of properties including the equation of state
(EOS) [4], the elastic [5–7], transport properties [8–10], and melting properties [11–15],
etc.
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Knowledge of thermoelastic constants is fundamental for describing the mechanical prop-
erties response of a material to applied sound velocity, anisotropy, thermoelastic stress, load
deflection, fracture toughness, etc, so a complete set of single-crystal thermoelastic properties
as a function of temperature is desirable. To date, several theoretical methods are applied
to calculate the elastic constants, such as the tight-binding method (TB) [6], the ab initio

density-functional theory method (DFT) [7, 16], the full-potential linear muffin-tin orbital
method (FP-LMTO) [17–19], and the molecular dynamic (MD) simulation methods [20–27].
For the fcc structured nickel, the theoretical investigations of elastic properties have been per-
formed [6,7]. For example, Papanicolaou et al. [6] applied the tight-binding method (TB) and
obtained the elastic constant, but C11 and C12 are relatively larger than experimental data [5].

In this work, we focus on the temperature dependence of elastic constants of the fcc struc-
tured Ni from MD simulation, in which the intramolecular forces are modeled by using the
quantum Sutton-Chen (Q-SC) potential [28]. The validated of the Q-SC potential is confirmed
by reproducing the density, cohesive energy, bulk modulus, surface energy, etc. In Section 2,
the computational parameters for calculation will be presented in detail. In the following
section, the theoretical result of the thermoelastic properties are listed and discussed. Finally,
conclusions are summarized in Section 4.

2 Theoretical methods

In this work, we have adopted the quantum Sutton-Chen (Q-SC) potential as the reference
potential. In the Q-SC potential [28], the total potential energy of the metal is given as follows
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where V (ri j) is a pair potential defined by the following form
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which accounts for a two body repulsive interaction between the atoms i and j, ρi is a local
density representing the cohesion associated with atom i defined by
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In Eqs. (1)-(3), ǫ sets the overall energy scale, ri j is the distance between the atom i and j, a is
an arbitrary length parameter leading to dimensionless for V (ri j) and ρi, ci is a dimensionless
parameter scaling the attractive term relative to the repulsive term, n and m are positive
integer parameters such that n>m. The fitted parameters for Ni [28] are n= 10, m= 5,
ǫ=0.0073767 eV, c=84.745 and a=3.5157 Å.



12 F. Luo, X. R. Chen, L. C. Cai, and Q. Wu / J. At. Mol. Sci. 2 (2011) 10-19

We performed MD simulations of a super cell consisted of 5×5×5 conventional unit cell
(500 Ni atoms), which is sufficient for the statistics of the equilibrium properties, such as
pressure, temperature, energy, etc. In simulations, the NVT ensemble [29] were applied to
reach the constant volume and temperature. The potential cutoff radius of 8 Å was used and
the smooth particle mesh Ewald method [30] was employed with electrostatic interaction.
Integration of the equation of motion has been performed with a time step of 1 fs; the system
was equilibrated for a minimum of 6000 fs (6000 time steps), and statistical average of prop-
erties such as volumes and energies were computed over the remaining time of the 4000 fs
(4000 time steps) simulation. We have used these relatively long simulation runs to ensure
that the elastic constants extracted from the MD runs are converged. All the calculations are
implemented by the DL_POLY2.17 program [31].

The elastic constants can be calculated from MD simulations using the strain- fluctuation
method [20], stress-fluctuation method [21–23], and direct method [24]. The strain- fluc-
tuation method converges slowly, while the stress-fluctuation method involves interatomic
potential derivative terms that must be evaluated in the MD simulations. Herein, we used the
direct method of Gao et al. [25, 26] based on the correlation between the stress and strain.
Our practical procedure for the elastic constants calculations is as follows.

First, we construct an orthorhombic simulation cell, whose edge vectors are parallel with
the edges of the conventional unit cell of nickel lattice, with [100] along x , [010] along y,
[001] along z. Then, to obtain the C11 and C12, we should scale x direction by a factor 1+e,
where e is deformation ratio ranging from -0.005 to 0.005 with 0.001 interval. For the small
value of e the system is under a strain ǫx x = |e|. From the Hooke’s law, we have [25,26]

σx x =C11|e|, (4)

σy y+σzz =2C12|e|. (5)

In the NVT simulations, the corresponding stresses, σx x , σy y and σzz can be found from the
ensemble averages and C11 and C12 can be calculated with Eqs. (4) and (5).

To determine C44, we construct an orthorhombic simulation cell, whose one edge is par-
allel with the [110] direction of conventional unit cell. If a strain of 1+e is applied along the
[110] direction, then the pressure an imaginary plane perpendicular to the [110] direction
P110 can be calculated by [25,26]

P110=
1

2
(C11+C12+2C44)|e|. (6)

The pressure P110 can be obtained from the NVT simulation.
Finally, the three elastic constants of the fcc crystal can be calculated from the direct

method described above.

3 Results and discussion

The canonical NVT ensemble is applied to the simulations of the direct method. The depen-
dence must be determined to ensure that all simulations are done at zero pressure owing
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to the lattice of nickel is dependence upon temperature. So a series of MD simulation with
NPT ensemble [32] were conducted. Through these calculations, we can obtain the equilib-
rium lattice parameters. The equilibrium lattice constants of fcc Ni from present calculation
is a=3.510 Å is well according with the experiment data of 3.523 Å [33] at ambient condi-
tion. The isothermal compression curves compared with experiment [4] is shown in Fig. 1,
in which the 300 K isotherm is in excellent agreement with experiment values at low pres-
sure, but a little deviate from experiment at high pressure. The influence of temperature on
volume is much smaller than that of the pressure on the volume. At zero pressure, when the
temperature increases from 300 K to 1500 K, the volume increase about 2%. However, the
volume just decreases 13% with the increasing of temperature from 0 to 300 GPa. We show
the isobars at different pressures versus temperature in Fig. 2. When temperature goes from
300 K to 1500 K at 0 GPa, the calculated volume expands about 6.6%. Under high pressure,
the thermal expansion is suppressed quickly by pressure.

Figure 1: Isotherms of the f Ni at various temperatures ompare with the experiment result [4℄.
In order to investigate the behaviour of fcc structured of nickel at high temperature, we

have run the MD simulation at a number of temperatures ranging from 300 K to 1500 K at
zero pressure. Fig. 3 reports our calculated radial distribution function g(r) at T =300 K,
900 K, 1500 K. At 300 K, the shells containing 12 first neighbors and 6 second neighbors at
interatomic radius of r=2.48 Å and r=3.52 Å are clearly separated, and between the second
and the third shells g(r) goes to zero at r≈3.03 Å. However, at 900 K, the third and higher
neighbors becoming broadened, while the similar trends of g(r) are showed at 1500 K. Except
that, we can found the third and fourth atomic shells moves uptowns from zero. We define
the coordination number Nc in the usual way as Nc =4πρ̄

∫ rc

0
g(r)r2dr, which ρ̄ is the bulk

number density and rc is the distance of first minimum. The rc of the three temperatures are
3.03, 3.14, and 3.19 Å and the corresponding coordination number Nc are 12, 12 and 12,
which shows the coordination number is unchanged in the three temperatures.

With the direct method, the strain-stress relationships were applied to obtain the elastic
constant in NVT ensemble. Fig. 4 shows the typical linear dependence of σx x , σy y+σzz, P110
on the compassion ratio e. Then, we can calculate the elastic constants from the strain-stress



14 F. Luo, X. R. Chen, L. C. Cai, and Q. Wu / J. At. Mol. Sci. 2 (2011) 10-19

Figure 2: Isobars of the f Ni at di�erent pressures.

Figure 3: Calulated radial distribution funtion of Ni for: at T =300 K (solid line), at T =900 K (dashedline), at T =1500 K (dotted line).
relationships at the range of temperature from 300 K to 1300 K. In Table 1, the results of the
calculations of the elastic constants and bulk modulus of Ni obtained from MD simulations are
presented at 0 K and 300 K, compared with experiment [5] and other results [6,7]. For C44,
our result is as same as the experimental value, while Papanicolaou et al. [6] overestimates it
by 12.0%. With C11 and C12, our elastic constants are only 7.6%, 9.2% discrepancy with the
experiment values, while Papanicolaou et al. continues to overestimate them by about 26.0%,
44.3%. At 300 K, our calculated results are in generally good accordance with the experimen-
tal and theoretical results [7] due to that the MD simulations fully include anharmonicity in
the solid crystal.

According to the Vogit-Reuss-Hill approximation [34], we obtain the isotropic bulk mod-
ulus BV and shear modulus GV of a polycrystalline aggregate from the single-crystal elastic
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Figure 4: Stress as a funtion of ompression ratio e, the elasti onstant an be determined by the relationsdesribed in the text.
constants [19]

GV =
(C11−C12+3C44)

5
, (7)

GR=
5(C11−C12)C44
�

4C44+3(C11−C12)
� . (8)

The arithmetic average of Voigt and Reuss bounds is called the Voigt-Reuss-Hill approxima-
tions [19]

G=
(GV +GR)

2
, B=

(C11+2C12)

3
. (9)

The longitudinal, bulk, and shear sound velocities Vl , VB and VS can be given by

Vl =

�
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�1/2

, (10)
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. (12)

In Table 1, the temperature dependence of elastic constants, the bulk modulus B and the shear
modulus G at zero pressure have been presented. It is clearly found that C11 is susceptible
to the temperature, while C12 and C44 vary little under the effect of temperature. The elastic
constant C11 represents elasticity in length. A longitudinal strain produces a change in C11.
The elastic constants C12 and C44 are related to the elasticity in shape, which is a shear
constant. A transverse strain causes a change in shape without a change in volume. In
Fig. 5, the variations of elastic constants with respect to temperature are given for Ni. The
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T C11 C12 C44 B G B/G

(K) (GPa) (GPa) (GPa) (GPa) (GPa)

Present

0 241.0 165.0 132.0 190.3 80.4 2.37
100 232.0 164.0 125.0 186.7 74.5 2.50
300 224.0 156.0 120.0 178.7 72.6 2.46
500 207.0 142.0 112.0 163.7 68.4 2.39
700 182.0 139.0 103.0 153.3 40.9 2.75
900 172.0 125.0 96.0 140.7 54.9 2.55
1100 159.0 115.0 91.0 129.7 51.9 2.50
1300 152.0 100.0 83.0 117.4 52.2 2.24

Exp. [5] 0 261.0 151.0 132.0 190.3
300 243.6 149.4 119.6 186.7

Ref. [6] 0 329.0 218.0 148.0 255.0
Ref. [7] 300 252.7 167.7 116.3 196.1

Figure 5: Elasti onstants as funtions of temperature at 0 GPa.
significant thermal softening in C11 is consequence of thermal expansivity. The bulk and shear
modulus B and G as functions of temperature at ambient pressure are illustrated in Fig. 6. It is
noted that with increasing temperature B and G decrease. For a cubic crystal, the mechanical
stability leads to restrictions on the elastic constants as follows [35]: C44>0, C11> |C12| and
C11+2C12>0. The elastic constants of Ni under temperature satisfy all of these conditions
above. Therefore, Ni is mechanically stable at temperature up to 1300K.

Pugh [36] proposed the ratio of bulk to shear modulus, B/G, as an indication of ductile vs
brittle characters. The bulk modulus B represents the resistance to fracture, while the shear
modulus G represents the resistance to plastic deformation. A high B/G ratio is associated
with ductility, whereas a low value corresponds to brittle nature. If B/G>1.75, the material
behaves in a ductile manner; otherwise, the material behaves in a brittle manner. When the
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applied temperature changes from 0 K to 1300 K, Ni is still a ductile material.

Figure 6: The bulk modulus B and shear modulus G as funtions of temperature at ambient pressure.
In Fig. 7, we illustrate the calculated temperature dependencies of the longitudinal veloc-

ity Vl as well as the bulk velocity VB and the shear sound velocities VS . It is found that VS ,
Vl and VB decrease with increasing temperature, and this is because that vibration of atoms
becomes more violent at higher temperature and the violent vibrations of atoms prevent the
propagations of sound velocities.

Figure 7: Sound veloities of Ni as a funtion of temperature at ambient pressure. The squares, irles andtriangles represent the isotropi aggregate veloities Vl , VB and VS.
4 Summary

In summary, we have calculated the structures and the elastic constants of the fcc structured
Ni at high temperature by using molecular dynamics with the direct method and the quantum
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Sutton-Chen (Q-SC) potential. Our calculated elastic constants are in excellent agreement
with available experimental data owing to anharmonic effects in the molecular dynamics.
Our MD calculated results for the radial distribution function showed that the short-range
atomic order of low-T is similar to the high-T solid, except that the coordination number
of the first minimum is unchanged. The elastic constants, the bulk and shear modulus are
presented. Moreover, from our elastic constants of Ni under temperature, we have found that
Ni is ductile at high temperature, and is mechanically stable at temperature up to 1300 K.
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