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Abstract. The dissipative quantum systems are treated using Klein-Kramers equation,
combined with the Gaussian kernel trajectory ensemble, for time evolution of Wigner
function ρw(q, p,t) in phase space. The entangled trajectory molecular dynamics ap-
proach is used to obtain trajectory solutions for the Klein-Kramers equation with three
models: free particle, damped harmonic oscillator and metastable potential. It is found
that the performance of semiclassical Wigner propagation is effectively for the relax-
ation of damped harmonic oscillator and dissipative decay of a metastable state. In
addition, the energy of trajectory ensemble decays faster with smaller friction value
and changes slightly with variable temperature parameters.
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1 Introduction

The description of quantum mechanics via phase space distributions developed by Wigner
[1] is a seminal work for the formulation of semiclassical quantum motion equations.
Since then Wigner distribution function has been a standard tool for establishing the
quantum classical correspondence [2–4], and has a wide range of applications in mate-
rial science and quantum optics as well as quantum computing [5–7]. Wigner function is
termed as a quasi-probability distribution, as it may become negative in some regions of
phase space even for nonnegative initial conditions. For a closed quantum system with a
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potential V(q), the time evolution of Wigner function is governed by the quantum Liou-
ville equation equivalent to the Schrödinger equation,

∂ρw(q,p;t)

∂t
= −

n

∑
k=1

pk

m

∂ρw(q,p;t)

∂qk

+
∫

dξ J(q,ξ−p)ρw(q,ξ;t), (1)

where

J(q,ξ)=
i

2nπnh̄n+1

∫

dz

[

U

(

q+
z

2

)

−U

(

q− z

2

)]

e−
i
h̄ z·ξ . (2)

Recently Martens and coworkers have proposed an entangled trajectory molecular dy-
namics method of solving the quantum Liouville equation in the context of Wigner for-
malism [8–12]. The entangled trajectory ensemble evolves as a unified whole by spatial
and momentum partial derivatives of Wigner distribution in equations of motion. The
theory of open quantum systems plays a major role in quantum physics since perfect iso-
lation of quantum systems is impossible [13]. Quantum Markov processes represent the
simplest case of the dynamics of open systems. An appropriate equation of motion for
a Markovian system in phase space is Klein-Kramers equation [14–17], which describes
the deterministic evolution of Wigner function ρw(q,p,t),

∂ρw

∂t
=− p

m

∂ρw

∂q
+U′(q)

∂ρw

∂p
+γ0

∂

∂p

(

p+mkBT
∂

∂p

)

ρw, (3)

where the first of the two terms involving the friction coefficient γ0 is the dissipative
term and the second acts to smooth out momentum diffusion in the distribution func-
tion. Several analytical and numerical approaches have been developed to solve this
partial differential equation or research the characteristics of its solutions [18, 19]. Entan-
gled trajectory approaches to quantum dynamics in phase space have become the subject
of many recent studies. The ensemble of trajectories in phase space is sampled from an
initial distribution ρw(q,p,0), and the evolving time-dependent density ρw(q,p,t) is ob-
tained by solving the Klein-Kramers equation.

The entangled trajectory molecular dynamics (ETMD) approach has been extensively
studied for closed quantum systems in our previous work [20–24], while the average
energy of trajectory ensemble keeps a constant with time evolution. Particularly, we have
vividly interpreted the quantum tunneling phenomenon for closed systems based on the
Wigner-Liouville formulation of quantum physics. Here we show in detail how to solve
the semiclassical master equation for quantum open systems.

The structure of this paper is organized as follows. In Sec. 2, we present the theoretical
approach to pave a way for subsequential analysis on quantum open systems. In Sec. 3,
numerical analysis on three models are discussed with physical pictures. The paper is
ended up with conclusion in Sec. 4.
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2 Theory

Wigner showed that quantum mechanics can be reformulated in phase space (q,p) with
quasi-probability distribution [1]

ρw(q,p;t)=

(

1

2πh̄

)n∫

dyψ∗(q+y/2;t)ψ(q−y/2;t)e
i
h̄ p·y, (4)

where all integrals are from −∞ to +∞ unless otherwise mentioned. Particularly, marko-
vian master equations of dissipation systems in Wigner’s formulation can be described
by the Klein-Kramers equation. Since the phase space trace of Wigner function is con-
served Trρw =

∫

ρwdqdp=1, the trajectory ensemble obeying the continuity equation,

∂ρw

∂t
+∇·j=0, (5)

where j=(jq ,jp) and ∇=( ∂
∂q , ∂

∂p ) are the current vector and gradient operator in phase

space, respectively. The N trajectories {qk,pk} (k= 1,2,...,N) of the ensemble are propa-
gated by integrating the set of coupled differential equations

q̇k =
pk

m
,

ṗk =−U′(qk)−γ0pk−γ0mkBT
1

ρw(qk,pk)

∂ρw(qk,pk)

∂p
. (6)

Many approaches to the problem of constructing a smooth (positive) distribution
from a finite set of sampled points have been developed. The distribution ρ is repre-
sented in terms of N trajectories {qk,pk} (k=1,2,...,N).

ρw(q,p,t)=
1

N

N

∑
k=1

δ(q−qk(t))δ(p−pk(t)). (7)

We employ the kernel density estimation [25–27] method to fit ρw(q,p,t) in Eq. (6) in
every step of the propagation. For two-dimensional Gaussian kernel can be expressed as

φ(q,p)=
1

2πh2σqσp
exp

(

− q2

2h2σ2
q

− p2

2h2σ2
p

)

, (8)

where the width parameters of D dimensional data sets are determined by h=(4/N(D+
2))1/(D+4). Then the continuous distribution ρ(q,p,t) is given by

ρw(q,p,t)=
1

N

N

∑
k=1

φ(q−qk(t),p−pk(t)). (9)
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The initial state is set as a Gaussian wave packet,

Ψ0(q,0)=
(mω

πh̄

)
1
4
exp(ip0q)exp

(

−mω

2h̄
(q−q0)

2

)

. (10)

And it corresponds to the ground state of a harmonic oscillator with mass m and fre-
quency ω, where q0 and p0 are the initial mean position and mean momentum, respec-
tively. And the corresponding Wigner distribution is,

ρ0
w(q,p,0)=

1

πh̄
exp

(

− (q−q0)2

2σ2
q

− (p−p0)2

2σ2
p

)

, (11)

where σq =
√

h̄/(2mω) and σp =
√

h̄mω/2. We choose m=200.0, ω=0.005, and have the
same width of position and momentum σq =σp.

3 Numerical results

3.1 Free particle

The trajectory ensemble equations for a free particle model can be described as follows,

q̇k =
pk

m
,

ṗk =0.0. (12)

In Fig. 1, we show four phase space snapshots of the evolving trajectory ensemble for the
free particle model. The initial distribution is shown in the frame labeled t=0, with same
width of position and momentum. The contour of Wigner distribution with quantity 0.03
is also shown. It is found that the contour line with initial circle boundary changes to an
elliptic shape with time evolution. And the width of the position distribution becomes
wider, but the momentum width keeps invariant. The Wigner distribution function at
four time steps are shown in Fig. 2. During the time interval, the motion along p is
nearly frozen. However the spatial distribution becomes widely with time evolution,
and the Wigner distribution changes largely at the density maps. Obviously, the energy
of trajectory ensemble keeps a constant with time evolution in Fig. 3.

3.2 Damped harmonic oscillator

The effect of dissipation on a nonlinear quantum system is a problem of fundamental
interest. For simplicity, we discuss the well-understood problem of the damped harmonic
oscillator. And we believe the results illustrate this simple prototype model might expect
in more complicated systems. The potential of the harmonic oscillator is given by

U(q)=
1

2
mω2q2. (13)
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Figure 1: (Color online) Snapshots of trajectory ensemble and contour plot of the Wigner distribution evolution
of the free particle model with initial mean position and momentum q0=0.0 and p0=0.0.
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Figure 2: (Color online) Density maps at four time steps for the free particle model.
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Figure 3: Energy of free particle with time evolution.

And the initial phase space distribution obeys the Klein-Kramers equation which relaxes
to a Maxwell-Boltzmann distribution

ρeq=Zexp[−H/(kBT)], (14)

where

H=
p2

2m
+

1

2
mω2q2. (15)

And the explicitly expression of the Maxwell-Boltzmann distribution

ρeq =Zexp

[

− p2

2mkBT
−mω2q2

2kBT

]

. (16)

According to initial Wigner distribution, we got the bath temperature in this simulation
work

kBT=σ2
p/m. (17)

Then the entangled trajectory ensemble for the damped harmonic oscillator are propa-
gated by integrating the set of coupled differential equations

q̇k =
pk

m
,

ṗk =−mω2qk−γ0pk−
γ0

h2

N

∑
j=1

(pk−pj)φ(qk−qj,pk−pj)

φ(qk−qj,pk−pj)
. (18)

In Fig. 4, we show four phase space snapshots of an evolving ensemble for the case
γ0=0.5, with the temperature bath kBT=σ2

p/m=0.0025. The initial Winger distribution is
taken to be centered at q0=3.03 and p0=0.0. It is shown that the momentum distribution
relaxes to the final distribution rapidly. And the spatial relaxation to the bottom of the
harmonic oscillator (q0 = 0.0) needs longer times than the momentum relaxation. The
contour of Wigner distribution with quantity 0.03 is also shown, which shown that the
contour line keeps circle shape. The evolution of the Wigner distribution is illustrated in
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Figure 4: (Color online) Damped harmonic oscillator phase space snapshots of the evolving trajectory ensemble
for the case of γ0=0.5. The initial distribution is shown in the frame labeled t=0. Three subsequent snapshots
are shown at t=2500, 50000, 100000. The ensemble has relaxed to a thermal Gaussian final distribution at the
bottom of the harmonic well. The contour of Wigner distribution function with quantity 0.03 are also shown.
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Figure 5: (Color online) Evolution of the Wigner distribution function ρw(q,p,t) for the damped harmonic
oscillator with γ0=0.5. The initial distribution is shown in the frame labeled t=0. Three subsequent snapshots
are shown at t=2500, 50000, 100000. The ensemble has relaxed to a thermal Gaussian final distribution at the
bottom of the harmonic well.
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Figure 6: Energy decay of a displaced harmonic oscillator in a thermal bath with different friction values γ0.
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Figure 7: (color online) Snapshots of a trajectory ensemble evolving for the trajectory ensemble in a metastable
potential with initial center q0=−1.0 and p0 =0.0 at four different times: t=0, 100, 1000, 5000. The contour
of Wigner distribution function with quantity 0.03 are also shown.

more detail in Fig. 5. It is shown that the distribution with initial center q0 = 3.03 and
p0 = 0.0 propagated to q0 = 0.0 and p0 = 0.0 with time evolution. The zero point energy
of the harmonic oscillator is E0 = h̄ω/2= 0.0025. The initial energy is E= 10E0 = 0.025.
The energy decay of the damped harmonic oscillator with several values of γ0 is shown
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in Fig. 6. It is shown that the energy decays to the zero point energy with several friction
values. In addition, the rate of energy decay is faster as the friction γ0 is small.

3.3 Metastable potential

In this study, a different metastable potential of the form

U(q)=αq2−βq3, (19)

with the parameter values α=0.1 and β=0.06 [28]. These values were chosen to ensure
that there is little probability of escape from the well when the interaction with the bath is
turned off. This potential has a minimum at q=0.0 and a barrier height of V∗=0.0412 at
q=1.1111. Initially, the distribution of minimum uncertainty is centered at (0,0) in phase
space. The entangled trajectory ensemble for the metastable potential is propagated by
integrating the set of coupled differential equations

q̇k =
pk

m
,

ṗk =−2αqk+3βq2
k−γ0pk−

γ0mkBT

h2σ2
p

N

∑
j=1

(pk−pj)φ(qk−qj,pk−pj)

φ(qk−qj,pk−pj)
. (20)

Four snapshots of the evolving trajectory ensembles in the phase space with parameters
γ0 = 5.0 and kBT = 0.0025 are shown in Fig. 7. The initial ensemble snapshot centered
in the q0 =−1.0 and p0 = 0.0 with energy 0.2740. The contour plot of the initial Wigner
distribution function with quantity 0.03 are shown. It is found that the shape of the
contour changes largely from the initial circle. It is shown that no particle can escape to
right of the barrier height (q=1.1111) under the entangled trajectory molecular dynamics
method with time evolution due to strongly damped value γ0 = 5.0 and the entangled
trajectory ensemble. The initial energy of trajectory is higher than the barrier height, the
energy decay with both the friction and energy interactions between trajectory ensemble.
The trajectory ensemble propagates as a unified whole, so the trajectory initial energy is
higher than the barrier cannot escape from the well due to being hindered by the small
initial energy of trajectories. And the corresponding Winger distribution function evolves
are shown in the Fig. 8. We found the center of distribution propagates to the q0=0.0 and
p0 = 0.0 with time evolution. The energy decay of the trajectory ensemble is shown in
Fig. 9. The center of momentum distribution are set to zero, and three position center are
q0=−0.8,−1.0, and −1.5 respectively. Three different initial energies decay to nearly zero
with time evolution due to this high friction value. In addition, the energy decay of the
trajectory ensemble with three different friction and temperature values are show in Fig.
10. It is found that the energy of trajectory ensemble decays faster with smaller friction
value due to weak friction. However, the energy decay changes slightly even when the
temperature is increased ten times. It is demonstrated that the friction parameter is more
effective than the thermal bath in this metastable potential.
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Figure 8: (color online) Evolution of the Wigner distribution function ρw(q,p,t) for the metastable potential
with γ0=5.0. The initial distribution is shown in the frame labeled t=0. Three subsequent snapshots are shown
at t=100, 1000, 5000. The ensemble has relaxed to a thermal Gaussian final distribution at the bottom of the
harmonic well.
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Figure 9: Energy decay of the trajectory ensemble in the metastable potential with a constant thermal bath for
three different initial center.

4 Conclusion

In this paper, we extend the entangled trajectory molecular dynamics approach to solve
the Klein-Kramers equation for simple models of dissipative systems. Wigner distribu-
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Figure 10: Energy decay of the trajectory ensemble in the metastable potential with three different friction and
temperature values.

tion of the damped oscillator propagated to the bottom of the oscillator potential and
the energy of corresponding trajectory ensemble decayed to the zero point energy. For
high friction of the metastable potential, nearly all trajectories under the ETMD method
are trapped by the potential well. This phenomena can be explained in terms of the en-
tangled trajectory molecular dynamics. The trajectory ensemble propagates as a unified
whole and concomitant energy exchanges along with the time evolution. The initial en-
ergy of trajectory is higher than the barrier height cannot cross the barrier due to the both
the friction and entangled trajectory ensemble reasons. We believe the entangled trajec-
tory molecular dynamics method can be used to research more complicated quantum
diffusion systems.
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