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ERROR BOUNDS ON SEMI-DISCRETE FINITE ELEMENT
APPROXIMATIONS

OF A MOVING-BOUNDARY SYSTEM
ARISING IN CONCRETE CORROSION

ADRIAN MUNTEAN

Abstract. Finite element approximations of positive weak solutions to a one-

phase unidimensional moving-boundary system with kinetic condition descri-

bing the penetration of a sharp-reaction interface in concrete are considered.

A priori and a posteriori error estimates for the semi-discrete fields of active

concentrations and for the position of the moving interface are obtained. The

important feature of the system of partial differential equations is that the non-

linear coupling occurs due to the presence of both the moving boundary and

the non-linearities of localized sinks and sources by reaction.

Key Words. Reaction-diffusion system, moving-boundary problem, spatial

semi-discretization, finite elements, a priori estimates, a posteriori estimates,

concrete corrosion

1. Introduction

In real-world applications one frequently needs to determine both the a pri-
ori unknown domain, where the problem is stated, as well as the solution itself.
Such settings are typically named moving or free boundary problems. A particu-
larly important moving-boundary problem refers to the determination of the depth
at which molecules of gaseous carbon dioxide succeed to penetrate concrete-based
structures [8]. The process can be summarized as follows: Gaseous carbon dioxide
from the ambient air penetrates through the porous fabric of the unsaturated con-
crete, dissolves in pore water and reacts with calcium hydroxide, which is available
by dissolution from the solid matrix. Calcium carbonate and water are therefore
formed via the reaction mechanism

(1) Ca(OH)2(s→ aq) + CO2(g→ aq)→ CaCO3(aq→ s) + H2O.

The physicochemical process associated with (1) is called concrete carbonation.
Although this chemical reaction seems to be harmless (i.e. not corrosive), it may
produce unwanted microstructural changes, and hence, it represents one of the most
important reaction-diffusion scenarios that affect the service life of concrete-based
structures. In combination with the ingress of aggressive ionic species (like chloride
[32] or sulfate [1]), the carbonation process typically facilitates corrosion, and hence,
cracking and spalling of the concrete may occur [5, 8].

Conceptually different moving-boundary models for the carbonation penetration
in concrete have been recently proposed in [2, 3, 21] and analyzed by the author in
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his PhD thesis [19]. This paper represents a preliminary study in what the error
analysis of finite elements approximations for 1D two-phase moving-boundary sys-
tems with kinetic conditons is concerned. Our one-dimensional formulation refers
to the slab [0, L] (L ∈]0,∞[), away from corners or any other geometric singularity;
see Fig. 1 for details. In this case, solving the moving-boundary model means the
calculation of the involved mass concentrations and of the a priori unknown posi-
tion of the moving interface, where the reaction is concentrated. Our main goal is to
prove that the spatially semi-discrete solutions converge to the solution of the PDE
system in question when the mesh size decreases to zero. A priori error estimates
will show an order of convergence of O(h) for the FEM semi-discretization of the
model, where h denotes the maximum mesh size. An a posteriori error estimate is
also obtained.

The paper is organized in the following fashion: We state the moving-boundary
problem in section 2. Section 3 collects the technical preliminaries and section 4
presents the assumptions on which the error analysis relies. Along the lines of
this section, we also formulate the functional framework and the concept of weak
solution. The main results of this paper are announced in section 5 and proved in
section 6 and section 7. Finally, a short summary and few conclusions and further
remarks are given in section 8.

2. Statement of the problem

We denote by u1 and u2 the concentration of CO2(g) and CO2(aq), respectively,
u3 the Ca(OH)2(aq) concentration, u4 the CaCO3(aq) concentration, and finally,
u5 represents the concentration of moisture produced by (1). The basic geometry
is depicted in Fig. 1.

The problem reads: Find the concentrations vector u = u(x, t) (x ∈ Ω1(t) =
]0, s(t)[, where t ∈ ST :=]0, T [ with T ∈]0,∞[, u = (u1, u2, . . . , u5)t) and the
position s(t) (t ∈ ST ) of the interface Γ(t) := {x = s(t) : t ∈ ST } such that the
couple (u, s) satisfies the following system of mass-balance equations

u1,t −D1u1,xx = P1(Q1u2 − u1) in Ω1(t),(2)
u2,t −D2u2,xx = −P2(Q2u2 − u1) in Ω1(t),(3)

u3,t = S3,diss(u3,eq − u3) at Γ(t),(4)
u`,t −D`u`,xx = 0 (` ∈ {4, 5}), in Ω1(t),(5)

initial conditions

ui(0, x) = ui0(x) in Ω1(0) (i ∈ {1, 2, 4, 5}), u3(0) = u30, at Γ(0),(6)

and boundary conditions

ui(t, 0) = λi(t), t ∈ ST (i ∈ {1, 2, 4, 5})(7)
−D1u1,x(s(t), t) = ηΓ(u(s(t), t) + s′(t)u1(s(t), t)(8)

−D2u2,x(s(t), t) = s′(t)u2(s(t), t)(9)
−D`u`,x(s(t), t) = ηΓ(u(s(t), t) (` ∈ {4, 5}).(10)

In order to close the system, the couple (u, s) also needs to satisfy the non-local
relation

(11) s′(t) = ηΓ(u(s(t), t)), t ∈ ST with s(0) = s0.

To formulate (2)-(11), a set of parameters are employed. In Assumption (I), we
summarize their range of application. The physical meaning of the parameters and
their restrictions is explained in [19].
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(a) (b) (c)

Figure 1. (a) Basic geometry for the model (2)-(11). The box A is
the region which our model refers to. (b) Schematic 1D geometry.
The reactants involved in (1) are spatially segregated at any time
t ∈ ST . Ω2(t) :=]s(t), L[ is the passive phase and the process is
assumed to happen in Ω1(t) (the active phase). (c) Definition of
the interface position.

Assumption (I). Select

(12) Di, Pj , Qj , S3,diss ∈ R∗+ (i ∈ {1, 2, 4, 5}, j ∈ {1, 2}),

(13) λi, u3,eq : ST → R∗+, ui0 : Ω1(0)→ R∗+ (i ∈ {1, 2, 3, 4, 5}),
and

s0 > 0,(14)
s0 ≤ s(t) ≤ L.(15)

Remark 2.1. 1. We refer to the system (2)-(11) as problem P 1
Γ and to its semidis-

crete conterpart as problem P 1,sd
Γ . P 1

Γ consists of a weakly coupled system of semi-
linear parabolic PDEs (2)-(10) to be simultaneously solved together with (11); (11)
is the kinetic condition that drives the movement of the reaction interface Γ(t).
Certain analogies can be drawn between (11) and the kinetic laws by Visintin ([33],
chapter V in [34]). Once the domain Ω1(t) is determined, (4) decouples from the
system and can be solved exactly. Although it produces no mathematical difficulties,
we keep it in the system formulation mainly because of its physical significance (u3

represents the concentration of Ca(OH)2 that waits to be reacted). The PDE system
(2)-(11) represents a one-phase scenario of a more general moving sharp-interface
model developed in [19, 20]. Employing the techniques from [19], it can be shown
that locally in time positive weak solutions to (2)-(11) exist, are unique and depend
continuously on data and parameters; see Theorem 4.3 in section 4.

2. The system (2)-(11) refers to concrete carbonation [18, 19, 20, 22], but con-
tains structural features also present in models describing sulfate attack on concrete
pipes [1], or redox fronts in geochemistry [25](chapter 4) and [26] (chapters 3 and
4).

3. The classical problem of ice melting (the so-called Stefan problem [7, 9]) is
very often considered as prototype when formulating models like (2)-(11). At the
numerics level, there exist many approaches dealing with the error analysis of the
finite element approximation of the weak solution to the classical one-dimensional
one-phase Stefan problem. To our knowledge, Nitsche (cf. [23, 24]) was the first
who analyzed the semi-discrete one-phase Stefan problem and obtained an optimal
error estimate in the W 1,∞-norm for the interface position. Using a fixing-front
technique by Landau [13] and a special scaling of the time variable, he “freezed”
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the boundaries of the moving phase and examined the transformed PDEs in fixed-
domains. Developments of his technique, are reported, for instance, in [27, 29, 28,
11, 16, 15, 12] and [35]. In all these contributions, various L∞−, L2−, H1− and
H2− error estimates have been obtained for the scalar (both linear and quasi-linear
scalar PDEs) provided that the standard Stefan conditions are imposed across the
moving interface. Much less is known about how to deal with the case of coupled
systems of PDEs when, additionally, non-standard boundary conditions (such as
kinetic conditions) act across the moving boundary. This is the novelty brought in
by this paper. At the technical level, we combine ideas from [4, 6, 19] and [20]. In [6],
the authors are concerned with the error analysis of a viscous 1D Burgers equation,
where the end of the moving domain is driven by a linear kinetic condition. In
their setting, the main difficulty was to deal with the Burger’s type non-linearity
and with additional non-local terms typically arising when immobilizing the moving
boundary. We rely on some of their arguments. The challenge here is to deal with
both the strong coupling of the system and the non-linearity of the reaction rate.

4. 2D situations cannot be treated in this framework due to the following reasons:
(1) the kinetic law (11) is only valid for one-dimensional scenarios; (2) some of
the imbeddings (e.g. H1(Ω) ↪→ L∞(Ω)) work only in 1D, and (3) Landau-type
transformations cannot be applied for multidimensional cases.

3. Technical preliminaries

The error analysis requires some basic results concerning the approximation
properties of first-order polynomials and of the functions spaces used. These results
are elementary. We collect them in this section without proofs.

Notation 3.1. (a) We employ the sets of indices:

(16) I1 := {1, 2, 4, 5}, I2 := {3}, I := I1 ∪ I2.

(b) We denote u′(t) := ∂u
∂t (·, t) = ut(·, t), uy(y, t) := ∂u

∂y (y, t) for (y, t) ∈]a, b[×ST .
Notice also that, sometimes, we omit to write explicitly the dependence of u, ū, û,
or the test function on the variables t, y and/or x. We often neglect to write the
dependence of s on t. In particular, e(1), u(1) and u,y(1) replace e(1, t), u(1, t) and
u,y(1, t).

3.1. Function spaces and elementary inequalities. (i) Let us introduce the
notation of spaces and norms to be considered here:

Set H = L2(0, 1) := Hi (i ∈ I1) and H =
∏
i∈I1

Hi := H |I1|. The space Hi

is equipped with the norm |u|Hi :=
(∫ b

a
u2(y)dy

) 1
2

and with the scalar product

(u, v)Hi :=
(∫ b

a
u(y)v(y)dy

) 1
2

for all u, v ∈ Hi. The product space H is normed by

means of |u|H =
(∑

i∈I1∪I2
|ui|2Hi

) 1
2 for all u ∈ H and is equipped with the standard

scalar product. Sometimes, the following conflict of notations appear: For instance,
we use in the same context |u|H2(0,1) and |u1|H2(0,1). The first norm acts on the
product space H2(0, 1)|I1|, while the second one refers to H2(0, 1).

Denote V := {v ∈ H1(0, 1) : v(0) = 0} := Vi (i ∈ I1), V :=
∏
i∈I1

Vi := V |I1|.
The space Vi is endowed with the norm ||u||Vi = |u,y|Hi .

The set W 1
2 (ST , V,H) := {u ∈ L2(ST , V ) and ut ∈ L2(ST , V ∗)} forms a Banach

space with the norm

||u||W 1
2

:= ||u||L2(S,V ) + ||u′||L2(S,V ∗).
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The space W 1
2 (ST ,V,H) is defined similarly. For more details on the mentioned

function spaces, see [36].
(ii) We list a few elementary inequalities that we extensively use in the sequel.

We have

(17) ab ≤ ξap + cξb
q,

where ξ > 0, cξ := 1
q

1
p
√

(ξp)q
> 0, 1

p + 1
q = 1, p ∈]1,∞[ and a, b ∈ R+. (17) is the

inequality of Young. We also make use of the following generalization1 of (17)

(18) abθc1−θ ≤ ξ̄

2
a2 + ξcξ̄b

2 + cξ̄cξc
2

for all θ ∈ [0, 1] and a, b, c ∈ R+, where cξ̄ := 1
2ξ̄2 and cξ is taken as in (17).

The inequality

(19) |a+ b|p ≤

{
(1 + ξ)p−1|a|p +

(
1 + 1

ξ

)p−1

|b|p for p ∈ [1,∞[
|a|p + |b|p for p ∈]0, 1[

holds for arbitrary a, b ∈ R and ξ > 0.
Furthermore, let us consider ξ > 0, cξ > 0 set as in (17), and θ ∈ [ 1

2 , 1[. Then it
exists the constant ĉ = ĉ(θ) > 0 such that

(20) |ui|∞ ≤ ĉ|ui|1−θ||ui||θ ≤ ĉ(ξ||ui||+ cξ|ui|) for all ui ∈ Vi (i ∈ I1).

(20) is the so-called interpolation inequality [36].

3.2. Useful basic facts from approximation theory. In section 4, we employ a
piecewise-linear finite element discretization of the interval [0, 1]. For each i ∈ Jn :=
{0, . . . , n}, we denote Ji :=]yi, yi+1[, take y0 = 0 < y1 < y2 < . . . yn < yn+1 = 1
and set hj = yj+1 − yj for all j ∈ Jn. Let h be the maximum mesh size, namely
h := maxi∈Jn hj . We introduce the space

Vh := {ψ ∈ C([0, 1]) : ψ|[yj ,yj+1] ∈ Π1, j ∈ Jn},

where Π1 represents the set of polynomials of degree one. In the sequel, u0h is the
Lagrange interpolant of u0 ∈ V in V

|I1|
h , and respectively, for each i ∈ I1, ui0h

represents the interpolant of ui0 ∈ Vi in Vh. Hence, we have ||u0,h||V ≤ ||u0||V. Set
Vh := V

|I1|
h .

If ui0 ∈ H2(0, 1) for all i ∈ I1, then by classical interpolation results (see [10] or
Lemma 3.2 below) we obtain

(21) |ui0 − ui0h| ≤ ch2||u0||H2(0,1),

where c is a strictly positive constant independent of h.
Let us denote by Iih (i ∈ I1) the interpolation operator

Iih : C([0, 1])→ Vh defined by (Iihu)(y) :=
∑
j∈Jn

ui(y, t)ψi(y), y ∈ [0, 1]

and P ih (i ∈ I1) the orthogonal projection

P ih : Hi → Vh defined by (P ihui − ui, ψ) = 0 for all ψ ∈ Vh and ui ∈ Hi.

1We obtain (18) by applying first the arithmetic-geometric mean for the numbers a and bθc1−θ

and then by using (17) in the second term for the numbers b2 and c2 with 1
p

:= θ and 1
q

:= 1− θ.
If in (18) ξ and ξ̄ belong to a compact subset of R∗+, then it results that cξ and cξ̄ are strictly

positive and bounded from above.
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Since P ihui is the best approximation of ui in Vh with respect to the L2-norm, we
have

(22) |P ihui − ui| ≤ |Iihui − ui| ≤ chr||ui||Hr∩H1 for all v ∈ Hr ∩H1,

where Hr ∩ H1 := {ϕ ∈ Hr(0, 1) : ϕ(0) = ϕ(1) = 0}. For each i ∈ I1, let
Rih : H1

0 (0, 1) → Vh be the orthogonal projection with respect to the energy inner
product (∇ui,∇ϕ). With other words, a(Rihui − ui, ϕ) = 0 for all ϕ ∈ Vh and
ui ∈ H1

0 (0, 1), where a(ui, ϕ) := (∇ui,∇ϕ). The operator Rh := (R1
h, R

2
h, R

4
h, R

5
h)t

is the elliptic Ritz operator; Rhu is the finite element approximation of the solution
of the corresponding elliptic problem in terms of u. Finally, we recall the following
classical interpolation result:

Lemma 3.2. Assume θ ∈
[

1
2 , 1
[

and take ϕ ∈ H2(0, 1). Let Rh denote Riesz’s
projection operator. Then there exists the strictly positive constants γ1, γ2 and γ3

such that the Lagrange interpolant Rhϕ of ϕ satisfies the following estimates:
(i) |ϕ−Rhϕ| ≤ γ1h

2|ϕ|H2(0,1);
(ii) ||ϕ−Rhϕ|| ≤ γ2h|ϕ|H2(0,1);
(iii) |ϕ(1)−Rh(1)ϕ(1)| ≤ γ3h

2−θ|ϕ|H2(0,1).

Proof. (i) and (ii) are classical results, see Theorem 5.5, p.65 in [14] (or [10], e.g.).
The proof of (iii) follows combining (i), (ii) and the interpolation inequality (20).
More precisely, we set γ3 := ĉγ1−θ

1 γθ2 , whereas ĉ > 0 is cf. (20) and θ ∈
[

1
2 , 1
[
. �

Remark 3.3. In sections 6 and 7, we use Lemma 3.2 with the choice Rh := Rih
and ϕ := ϕi ∈ Vi ∩H2(0, 1) = H2 ∩H1 for i ∈ I1.

4. Fixed-domain formulation. Further notations and assumptions. Aux-
iliary results

By the Landau transformation [13]

(23) y =
x

s(t)
, t ∈ ST ,

we map the moving domain Ω1(t) into ]0, 1[. We perform (23) for (2)-(11), but keep
(4) unchanged. The calculations are obvious, and therefore, we omit to write down
the classical formulation of the transformed system and only give its weak form in
(46). The concentrations vector acting in the fixed-domain is denoted by u(y, t)
and corresponds to the concentrations vector u(x, t) that is acting in the original
domain Ω1(t). We keep the same notation s(t) for the position of the interface in
both the moving-domain and fixed-domain formulations.

Let ϕ := (ϕ1, ϕ2, ϕ4, ϕ5)t ∈ V be an arbitrary test function and take t ∈ ST .
We let a(·) denote the transport part of the model, bf (·) and e(·) comprise vari-
ous volume and surface productions, and h(·) incorporate a non-local term, whose
presence is due to the use of (23), viz.

a(s, u, ϕ) :=
1
s

∑
i∈I1

(Diui,y, ϕi,y),(24)

bf (u, s, ϕ) := s
∑
i∈I1

(fi(u), ϕi),(25)

e(s′, u, ϕ) :=
∑
i∈I1

gi(s′, u(1))ϕi(1),(26)

h(s′, uy, ϕ) :=
∑
i∈I1

s′(yui,y, ϕi).(27)
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The production terms fi and gi are given by

f1(u) := P1(Q1u2 − u1),(28)
f2(u) := −P2(Q2u2 − u1),(29)
f4(u) := f5(u) = 0,(30)

g1(s′, u) := ηΓ(1, t) + s′(t)u1(1, t),(31)
g2(s′, u) := s′(t)u2(1, t),(32)
g5(s′, u) := ηΓ(1, t).(33)

We define

(34) K :=
∏

i∈I1∪I2

[0, ki],

and

(35) MηΓ := max
u∈K
{ηΓ(u,Λ)}

for fixed Λ ∈MΛ. In (34), we set

(36)
{

ki := max{ui0(y) + λi(t), λi(t) : y ∈ [0, 1], t ∈ S̄T }, i = 1, 2, 4,
k5 := max{u50(y) + λ5(t), λ5(t), κ : y ∈ [0, 1], t ∈ S̄T },

where

(37) κ :=
L0

D5 −MηΓLL0

(
MηΓ +

L

2
|λ5,t|+ 1

)
.

The assumptions that are needed to describe the reaction rate ηΓ are contained in
the items (A) and (B) below:
Assumption (II). Consider

(A) Fix Λ ∈ MΛ. Let ηΓ(u,Λ) > 0, if u1 > 0 and u3 > 0, and ηΓ(u,Λ) = 0,
otherwise. Moreover, for any fixed u1 ∈ R the reaction rate ηΓ is bounded.

(B) The reaction rate ηΓ : R|I1| ×MΛ → R+ is locally Lipschitz.
(C1) 1 > k3 ≥ maxS̄T {|u3,eq(t)| : t ∈ S̄T }; D5 −MηΓL > 0;
(C2) P1Q1k2 ≤ P1k1; P2k1 ≤ P2Q2k2.

A typical choice of ηΓ is the generalized mass-balance law, i.e.

(38) ηΓ(u,Λ) := kup1u
q
3, p ≥ 1, q ∈ R, k > 0,Λ := {p, q, k},

where u3 is the strictly positive solution of (4).
For the initial and boundary data, we assume:

Assumption (III). Select

λ ∈W 1,2(ST )|I1|, λ(t) ≥ 0 a.e. t ∈ S̄T ,(39)
u3,eq ∈ L∞(ST ), u3,eq(t) ≥ 0 a.e. t ∈ S̄T ,(40)

u0 ∈ L∞(0, 1)|I1|, u0(y) + λ(0) ≥ 0 a.e. y ∈ [0, 1],(41)
u30 ∈ L∞(0, s(t)), u30(x) > 0 a.e. x ∈ [0, s(t)].(42)

Remark 4.1. Owing to (4), (38), (40) and (42), we see that Assumption (II)
(A) is fulfilled with ηΓ chosen as in (38). Relations (36), (37), (C1) and (C2) are
of technical nature. Their are needed to ensure the positivity and L∞- estimates
for the involved concentrations. The reader is referred to [19] for their physical
interpretation.
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Definition 4.2 (Weak Solution to P 1
Γ). We call the couple (u, s) a weak solution

to problem P 1
Γ if and only if there is a Sδ :=]0, δ[ with δ ∈]0, T ] such that

(43) s0 < s(δ) ≤ L0,

(44) s ∈W 1,4(Sδ),

(45) u ∈W 1
2 (Sδ; V,H) ∩ [S̄δ 7→ L∞(0, 1)]|I1|,

s
∑
i∈I1

(ui,t(t), ϕi) + a(s, u, ϕ) + e(s′, u+ λ, ϕ) = bf (u+ λ, s, ϕ)
+h(s′, u,y, ϕ)− s

∑
i∈I1

(λi,t(t), ϕi) for all ϕ ∈ V, a.e. t ∈ Sδ,
s′(t) = ηΓ(1, t) a.e. t ∈ Sδ,
u(0) = u0 ∈ H, s(0) = s0.

We possess now all the ingredients that we need in order to state the existence
and uniqueness of locally in time weak solutions in the sense of Definition 4.2.

Theorem 4.3. Consider Assumptions (I)-(III) be fulfilled. In this case, the
following assertions hold:
(a) There exists a δ ∈]0, T [ such that there is a unique weak solution on Sδ in the
sense of Definition 4.2;
(b) 0 ≤ ui(y, t) + λi(t) ≤ ki a.e. y ∈ [0, 1] (i ∈ I1) for all t ∈ Sδ.
(c) s ∈W 1,∞(Sδ).

The techniques developed to prove Theorem 3.4.6 in [19] can be applied to
prove Theorem 4.3. Now, we turn the attention to the semi-discrete FEM ap-
proximation. We denote by ηhΓ the approximation of the reaction rate ηΓ and let
sh ∈ W 1,4(Sδ) be an approximation of s ∈ W 1,4(Sδ). The connection between the
quantities sh and ηhΓ is given by s′h = ηhΓ(uh(sh(t), t)), where sh(0) = s(0) and uh :=
(u1h, u2h, u4h, u5h)t ∈ Vh represents an approximation of u := (u1, u2, u4, u5)t ∈ V.
Furthermore, set vh := (v1h, v2h, v4h, v5h)t ∈ Vh.

Definition 4.4 (Weak Solution to P 1,sd
Γ ). We call the couple (uh, sh) a weak solu-

tion to problem P 1,sd
Γ if and only if there is a Sδ̂ :=]0, δ̂[ with δ̂ ∈]0, δ] such that

(46) s0 < sh(δ̂) ≤ L0,

(47) sh ∈W 1,4(Sδ̂),

(48) uh ∈
[
H1(Sδ̂, Vh) ∩ L∞(Sδ̂, H)

]|I1|
sh
∑
i∈I1

(uih,t(t), ϕih) + a(sh, uh, ϕh) + e(s′h, uh + λ, ϕh) = bf (uh + λ, sh, ϕh)
+h(s′h, uh,y, ϕh)− sh

∑
i∈I1

(λi,t(t), ϕih) for all ϕh ∈ Vh, a.e. t ∈ Sδ̂,
s′h(t) = ηhΓ(1, t) a.e. t ∈ Sδ̂,
uh(0) = u0 ∈ H, sh(0) = s0.

A first result is the next theorem:

Theorem 4.5. Let Assumptions (I)-(III) be fulfilled. There exists δ̄ ∈]0,min{δ, δ̂}],
which is independent of h, such that there is a unique positive weak solution

(uh, sh) ∈
[
H1(Sδ̄, Vh) ∩ L∞(Sδ̄, H)

]|I1| ×W 1,4(Sδ̄),

in the sense of Definition 4.4.

The proof of Theorem 4.5 follows the lines of the proof of Theorem 3.4.6 from
[19]. Since here we focus only on the error analysis, we omit it. The positivity
and boundedness of the vector of concentrations uh will play an essential role in
obtaining the error estimates.
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5. Main results

The next theorems contain the main results:

Theorem 5.1 (A Priori Error Estimate). Select u0 ∈ V ∩
[
H2(0, 1)

]|I1| and con-
sider Assumptions (I)-(III). Then problems P 1

Γ and P 1,sd
Γ are uniquely solvable.

Let (u, s) and (uh, sh) be the corresponding solutions. Then the following esti-
mate holds: There exist δ1 ∈]0,max{δ, δ̄}] and the strictly positive constants ci
(i ∈ {1, 2, 3}), which are independent of h, such that

(49) ||u− uh||L2(Sδ1 ,V) ≤ c1
(
h2 + |s− sh|W 1,4(Sδ1 )

)
,

(50) |s′ − s′h|L2(Sδ1 ) ≤ c2h,
and

(51) ||u− uh||L∞(Sδ1 ,H)∩L2(Sδ1 ,V) + ||s− sh||W 1,4(Sδ1 ) ≤ c3h.

Proof. See section 6. �

Theorem 5.2 (A Posteriori Error Estimate). Let u0 ∈ V∩
[
H2(0, 1)

]|I1| and con-
sider Assumptions (I)-(III). Then problems P 1

Γ and P 1,sd
Γ are uniquely solvable.

Let (u, s) and (uh, sh) be the corresponding solutions. There exist δ2 ∈]0,max{δ, δ̄}]
and strictly positive constants ci (i ∈ {1, 2, 3}) and c, which are independent of h
and u, such that

|u− uh|2H + c1|s− sh|2 + c2

∫ t

0

||u− uh||2Vdτ

≤ c
∑
i∈Jn

h2
i {||R(uh)||2L2(Sδ2 ;L2(Ji)) + h2

i ||u0||2H2(Ji)},(52)

whereas the residual R(uh) is defined by

(53) R(uh) = fh(sh, uh)− uh,t +
s′h
sh
yuh,y + eh(s′h, uh(1)).

In (53), the quantities fh(sh, uh) and eh(s′h, uh(1)) are defined by

fh(sh, uh) := sh
∑
i∈I1

fi(uh),

eh(s′h, uh(1)) :=
∑
i∈I1

gi(s′h, uh).

Proof. See section 7. �

Remark 5.3. (i) What we have stated so far (in Theorem 5.1 and Theorem 5.2) are
error estimates for u(y, t) with y ∈ [0, 1]. They may be useful when employing front-
fixing methods to solve (2)-(11). On the other hand, if one employs front-tracking
methods, error estimates obtained for the solution in the fixed-domain formulation
are useless. In such case, we need to transform back to the initial formulation of
(2)-(11) and obtain error estimates for the original unknowns, i.e. for u(x, t) with
x ∈ [0, s(t)]. Related ideas are reported in [12]. Since (23) is affine and the solution
(uh, sh) is actually sufficiently regular (cf. Proposition 3.4.17 from [19]), the inverse
transformation x = ysh(t) can indeed be employed in order to make the estimates
(51) and (52) available for the original setting with moving boundaries.

(ii) If additional constraints on the model parameters are fulfilled (see Theorem
3.4.16 in [19], e.g.), then local weak solutions as in Definition 4.2 can be extended
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globally in time. Now, the relevant question is: Can the local semi-discrete weak
solution (cf. Definition 4.4) be extended globally in time? We expect that the tech-
niques employed in [17] for the case of a Stefan-like problem arising in subsurface
contaminant transport with remediation can provide a positive answer to this ques-
tion. In this paper, we restrict our attention to the case

(54) δ1 = δ2 = δ̄ = δ̂ = δ

and only focus on the behavior of locally in time weak solutions satisfying Definition
4.4.

6. Proof of Theorem 5.1

We denote by Sδ (with δ chosen as in (54)) the common time interval ]0, δ[ on
which the continuous and discrete solutions to (2)-(11) exist. Let e := u−uh (with
ei := ui − uih and e := (e1, e2, e4, e5)t) and s− sh be the errors of approximation.
For each test function wh ∈ Vh (wih ∈ Vh, i ∈ I1), we subtract the variational
formulation in terms of uh from that one in terms of u and obtain the following
equality:

((u+ λ),t, wh) − ((uh + λ),t, wh) +
1
s2

∑
i∈I1

(Diui,y, wih,y)

− 1
s2
h

∑
i∈I1

(Diuih,y, wih,y) +
1
s

[ηΓ + s′(u1(1) + λ1)]w1h(1)

− 1
sh

[
ηhΓ + s′h(u1h(1) + λ1)

]
w1h(1) +

s′

s
(u2(1) + λ2)w2h(1)

− s′h
sh

(u2h(1) + λ2)w2h(1)− 1
s
ηΓw5h(1) +

1
sh
ηhΓw5h(1)

(55)

= (P1(Q1(u2 + λ2)− (u1 + λ1)), w1h)
− (P1(Q1(u2h + λ2)− (u1h + λ1)), w1h)
− (P2(Q2(u2 + λ2)− (u1 + λ1)), w2h)
+ (P2(Q2(u2h + λ2)− (u1h + λ1)), w2h)

+
s′

s

∑
i∈I1

(yui,y, wih)− s′h
sh

∑
i∈I1

(yuih,y, wih).(56)

Grouping some of the terms in (55), we obtain

(e,t, wh) +
1
s2

∑
i∈I1

(Di(ui − uih),y, wih,y) =
(

1
s2
h

− 1
s2

)∑
i∈I1

(Diuih,y, wih,y)

−
(
s′

s
(u1(1) + λ1)− s′h

sh
(u1h(1) + λ1) +

ηΓ

s
− ηhΓ
sh

)
w1h(1)

−
(
s′

s
(u2(1) + λ2)− s′h

sh
(u2h(1) + λ2)

)
w2h(1)−

(
ηΓ

s
− ηhΓ
sh

)
w5h(1)

+ P1Q1(e2, w1h)− P1(e1, w1h)− P2Q2(e2, w2h) + P2(e1, w2h)

+
s′

s

∑
i∈I1

(yei,y, wih) +
(
s′

s
− s′h
sh

)∑
i∈I1

(yuih,y, wih).(57)
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Therefore, we may write

(58) (e,t, wh) +
mini∈I1 Di

s2
(e,y, wh,y) ≤

5∑
`=1

I`,

where the terms I` (` ∈ {1, . . . , 5}) are given by

I1 :=
(

1
s2
h

− 1
s2

)∑
i∈I1

(Diuih,y, wih,y),

I2 := |
(
ηΓ

s
− ηhΓ
sh

)
||w1h(1) + w5h(1)|,

I3 :=
2∑
i=1

|
(
s′

s
(ui(1) + λi)−

s′h
sh

(uih(1) + λi)|
)
|wih(1)|

I4 := P1Q1(e2, w1h)− P1(e1, w1h)− P2Q2(e2, w2h) + P2(e1, w2h)

I5 :=
s′

s

∑
i∈I1

(yei,y, wih) +
(
s′

s
− s′h
sh

)∑
i∈I1

(yuih,y, wih).

Set d := mini∈I1 Di. For any vh ∈ Vh, the following estimate holds:

1
2
d

dt
|e|2 +

d

s2
||e||2 ≤ (e,t, u− uh)

+
d

s2
(e,y, (u− uh),y) = (e,t, u− vh) +

d

s2
(e,y, (u− vh),y)

+(e,t, vh − uh) +
d

s2
(e,y, (vh − uh),y).(59)

Note that wh = vh − uh ∈ Vh decomposes into wh = (vh − u) + e. Choosing the
test function wh := vh − uh in (58), we obtain

1
2
d

dt
|e|2 +

d

s2
||e||2 ≤ (e,t, u− vh) +

d

s2
(e,y, (u− vh),y)

+
(

1
s2
h

− 1
s2

)∑
i∈I1

(Di(uih),y, (vih − uih),y)

+
(
ηΓ

s
− ηhΓ
sh

)
| (v1h(1)− u1h(1) + v5h(1)− u5h(1)) |

+ P1Q1(e2, v1h − u1h)− P1(e1, v1h − u1h)
− P2Q2(e2, v2h − u2h) + P2(e1, v2h − u2h)

+
s′

s

∑
i∈I1

(yei,y, vih − uih)

+
(
s′

s
− s′h
sh

)∑
i∈I1

(yuih,y, vih − uih).(60)

In order to simplify the writing of some of the inequalities, we introduce the strictly
positive constants c` (` ∈ {1, . . . , 7}), whose precise expression is not explicitly
written but can be derived. For each ` ∈ {1, . . . , 7}, we have c` < ∞. Before
estimating the terms I` in (58), we point out a few technical facts in Remark 6.1.
The proofs are straightforward. They rely on arguments combining the integration
by parts, the Cauchy-Schwarz inequality and also on the inequality between the
geometric and arithmetic means.
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Remark 6.1. (1) There exists a constant c1 = c1(Λ, s0) > 0 such that

ηhΓ
sh
− ηΓ

s
≤ |s− sh|

ηΓ

ssh
+

1
sh
|
(
ηΓ

s
− ηhΓ
sh

)
| ≤ c1(|s− sh|+ |s′ − s′h|).

(2) For each i ∈ {1, 2}, there exists a constant c2 = c2(Λ, s0) > 0 such that

s′h
sh

(uih(1) + λi)−
s′

s
(ui(1) + λi) = −s

′
h

sh
ei(1) + (ui(1) + λi)

(
s′h
sh
− s′

s

)
≤ c2(|ei(1)|+ |s− sh|+ |s′ − s′h|).

(3) For each i ∈ I1, we have

(yei,y, vih − uih) = (yei,y, ei) + (yei,y, vih − ui) ≤
1
2
|ei(1)|2 + ||ei|||vih − ui|.

(4) It holds

(yuih,y, vih − uih) ≤ |uih||vih − uih|+ |uih|||vih − uih||.

(5) It holds
(uih,y, (vih − uih),y) ≤ ||uih||||uih − vih||.

By Remark 6.1, (59) and (60), we have

1
2
d

dt
|e|2 +

d

s2
||e||2 ≤ |e,t||u− vh|+

d

s2
||e||||u− vh||

+ |s− sh|
s+ sh
s2s2

h

∑
i∈I1

|(Diuih,y, (uh − vh),y)dy

+ c1(|s− sh|+ |s′ − s′h|)|vh(1)− u(1) + e(1)|
+ c2(|e(1)|+ |s− sh|+ |s′ − s′h|)|vh(1)− u(1) + e(1)|
+ P1Q1|e2| (|v1h − u1|+ |e1|) + P1|e1| (|v1h − u1|+ |e1|)
+ P2Q2|e2| (|v2h − u2|+ |e2|) + P2|e1| (|v2h − u2|+ |e2|)

+
s′

2s

∑
i∈I1

[(|ei(1)|2 − |ei|2) + ||ei|||vih − uih|]

+ c3(|s− sh|+ |s′ − s′h|)
∑
i∈I1

(|uih||vih − uih|

+ |uih|||vih − uih||).(61)

After elementary manipulations, we gain the next estimates:

d

dt
|e|2 +

d

s2
||e||2 ≤ |e,t||u− vh|+

d

s2
||e||||u− vh||

+c3|s− sh|||uh||(||vh − u||+ ||e||) + c1(|s− sh|+ |s′ − s′h|)ĉ||e||θ|e|1−θ

+c4(|s− sh|+ |s′ − s′h|)ĉ||vh − u||θ|vh − u|1−θ

+c2|e(1)|2 + c2(|s− sh|+ |s′ − s′h|)ĉ||e||θ|e|1−θ

+
P1Q1

2
(
2|e2|2 + |v1h − u1|2 + |e1|2

)
+
P1

2
(
2|e1|2 + |v1h − u1|2

)
+
P2Q2

2
(
2|e2|2 + |v2h − u2|2

)
+
P2

2
(
2|e1|2 + |v2h − u2|2

)
+
s′

2s
ĉ||e||2θ|e|2(1−θ) +

s′

s
||e|||vh − u|

+c3(|s− sh|+ |s′ − s′h|)|vh − u|+ c5(||vh − u||+ ||e||).(62)
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We set vh = Rhu, re-arrange some of the terms in (62), and use Lemma 3.2 to
obtain the following estimates:

d

dt
|e|2 +

d

s2
||e||2 ≤ |e,t|γ1h

2|u|H2(0,1) +
d

s2
||e||γ2h|u|H2(0,1)

+c3|s− sh|||uh||
(
γ2h|u|H2(0,1) + ||e||

)
+(c1 + c2)(|s− sh|+ |s′ − s′h|)ĉ||e||θ|e|1−θ

+c4(|s− sh|+ |s′ − s′h|)cγθ2hθγ1−θ
1 h2(1−θ)|u|H2(0,1) + c6

(
|e1|2 + |e2|2

)
+c7γ2

1h
4
(
|u1|2H2(0,1) + |u2|2H2(0,1)

)
+
s′

2s
ĉ||e||2θ|e|2(1−θ)

+
ξ

2
||e||2

s2
+
s′

2ξ
γ2

1h
4|u|2H2(0,1)

+c5
(
γ2h|u|H2(0,1) + ||e||

)
(|s− sh|+ |s′ − s′h|) =

10∑
`=1

I`.

We have

I1 := |et|γ1h
2|u|H2(0,1) ≤

|et|2

2
h2 +

γ2
1h

2

2
|u|2H2(0,1)

I2 :=
d

s
||e||γ2h|u|H2(0,1) ≤ ξ

d

s2
||e||2 + cξdγ2h

2|u|2H2(0,1)

I3 := c3|s− sh|||uh||
(
γ2h|u|H2(0,1) + ||e||

)
≤ 2ρ|s− sh|2 + cρĉ

2
3||e||2 + cρĉ

2
3|u|2H2(0,1)

I4 := (c1 + c2)(|s− sh|+ |s′ − s′h|)ĉ||e||θ|e|1−θ = I41 + I42,

(63)

where I41 and I42 are defined by

I41 := ĉ(c1 + c2)|s− sh|
||e||θ

sθ
|e|1−θsθ,

I42 := ĉ(c1 + c2)|s′ − s′h|
||e||θ

sθ
|e|1−θsθ.

In (63), we have ρ > 0, cρ > 0, and ĉ3 := max{γ2, 1}. Since I41 and I42 are bounded
from above by

ξ̄

2
|s− sh|2 + ξcξ̄

||e||2

s2
+ cξcξ̄(ĉ(c1 + c2))2s2θ|e|2

and

ξ̄

2
|s′ − s′h|2 + ξcξ̄

||e||2

s2
+ cξcξ̄(ĉ(c1 + c2))2s2θ|e|2,

it results that

I4 ≤
ξ̄

2
(
|s− sh|2 + |s′ − s′h|2

)
+ 2ξcξ̄

||e||2

s2
+ 2cξcξ̄(ĉ(c1 + c2))2s2θ|e|2.



366 A. MUNTEAN

Furthermore, we have

I5 := cc4γ
θ
2γ

1−θ
1 cc4 (|s− sh|+ |s′ − s′h|)h2−θ|u|H2(0,1),

≤ ξ
(
|s− sh|2 + |s′ − s′h|2

)
+ cξ

(
cc4γ

θ
2γ

1−θ
1

)2
h2(2−θ)|u|2H2(0,1),

I6 := c6
(
|e1|2 + |e2|2

)
≤ c6|e|2,

I7 := c7γ
2
1h

4
(
|u1|2H2(0,1) + |u2|2H2(0,1)

)
≤ c7γ2

1 |u|2H2(0,1)h
4,

I8 :=
s′

2s
ĉ||e||2θ|e|2(1−θ) ≤ ξ ||e||

2

s2
+ cξ ĉ

1
1−θ

(
s′

2

) 1
1−θ

s
2θ−1
1−θ |e|2

= ξ
||e||2

s2
+ cξ ĉ

2

(
s′

2

)2

|e|2
(

for θ =
1
2

)
,

I9 :=
ξ

2
||e||2

s2
+
s′

2ξ
γ2

1h
4|e|2H2(0,1),

I10 := c5
(
γ2h|u|H2(0,1) + ||e||

)
(|s− sh|+ |s′ − s′h|)

≤ ξ
(
|s− sh|2 + |s′ − s′h|2

)
+ cξ(c5γ2)2|u|2H2(0,1)h

2 + ξ̂
||e||2

s2

+ cξ̂s
2
(
|s− sh|2 + |s′ − s′h|2

)
.

Finally, we obtain

(64)
d

dt
|e|2 + ρ1||e||2 ≤ ρ2h

2 + ρ3|e|2 + ρ4

(
|s− sh|2 + |s′ − s′h|2

)
.

We set u∞ := |u|H2(0,1) and ηΓ,max := |s′|L∞(Sδ). In (64), we have

ρ1 :=
d

s2
0

[
1− ξ̂ − 2ξ(1 + cξ̂)− cρĉ

2
3

]
,

ρ2 := u2
∞
[
(1 + c7)γ1 + cρĉ3 + cξcc4γ2 + c3c

2
5γ

2
2

]
,

ρ3 := 1 + c6 + 2cξcξ̄(ĉ(c1 + c2))2L2θ + cξ ĉ
2
(ηΓ,max

2

)2

,

ρ4 := 2ρ+ ξ̄ + 2ξ + cξ̂L
2.

Since s′(t)− s′h(t) ≤ ρ5(u(1, t)− uh(1, t)) = ρ5

∫ 1

0
ey(ζ, t)dζ, we obtain

(65) |s′ − s′h| ≤ ρ5||e||.

We insert (65) in (64). We choose ξ > 0, ξ̂ > 0 and cρ > 0 sufficiently small such
that (ρ1 − ρ2

5)||e||2 ≥ 0. In this case, Gronwall’s inequality applied in (64) proves
the a priori estimate (49); (49) shows that the L2-error of the concentrations vector
is governed by the W 1,2-error of the moving interface position.

By Young’s inequality (see also (46) in [6]), we derive

(66)
d

dt
(|s− sh|2) ≤ ||e||2 + ρ2

5|s− sh|2.

By (64) and (66), we have

(67)
d

dt

(
|e|2 + (ρ1 − ρ2

5)|s− sh|2
)
≤ ρ2h

2 + ρ3

(
|e|2 +

ρ4 + ρ1 − ρ2
5

ρ3
|s− sh|2

)
.

For sufficiently large ρ3 > 0 (for instance, such that ρ4 + (1 − ρ3)(ρ1 − ρ2
5) = 0),

Gronwall’s inequality applied to (67) for the quantity |e|2 + (ρ1− ρ2
5)|s− sh|2 gives

the estimate

(68) |e|2 + (ρ1 − ρ2
5)|s− sh|2 ≤ ch2.
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By integrating (64) on Sδ and by using (21) and (68), it exists a constant c > 0
such that

||e||2L2(Sδ×]0,1[) ≤ ch
2.

The latter estimate leads to (50) and (51) of the theorem by noticing that

|s′ − s′h|2 ≤ δρ2
5||e||2L2(Sδ×]0,1[) ≤ cδρ

2
5h

2.

This concludes the proof of Theorem 5.1.

7. Sketch of the proof of Theorem 5.2

The proof follows the lines of [6]. For all v ∈ V, we can write

(e,t, v) +
d

L2
0

(e,y, v,y) ≤ (u,t, v) +
1
s2

∑
i∈I1

Di(uiy, viy)

−

[
(uh,t, v) +

1
s2

∑
i∈I1

Di(uihy, vihy)

]
≤ −e(s′, u, v) + bf (s, u, v)

+ h(s′, u,y, v)−

[
(uh,t, v) +

1
s2

∑
i∈I1

Di(uihy, vihy)

]
.(69)

By (69), we obtain

(e,t, v) +
d

L2
0

(e,y, v,y) ≤ bf (s, u, v) + h(s′, u,y, v)− e(s′, u, v)

−

[
(uh,t, v) +

1
s2
h

∑
i∈I1

Di(uihy, viy) +
(

1
s2
− 1
s2
h

)∑
i∈I1

(Diuihy, v,y)

]
= bf (s, u, v) + h(s′, u,y, v)− e(s′, u, v)− bf (sh, uh, v)

− h(s′h, uh,y, v) + e(s′h, uh, v)−
(

1
s2
− 1
s2
h

)∑
i∈I1

(Diuihy, v,y)

+
∫ 1

0

R(uh)vdy − 1
s2
h

∑
i∈I1

∫ 1

0

Di(uih,y, vi,y)dy,(70)

where the residual R(uh) is defined by (53). Since for all y ∈]0, 1[ we have that
uh,yy = 0, the term ∫ 1

0

R(uh)vdy − 1
s2
h

∑
i∈I1

∫ 1

0

Di(uih,y, vi,y)dy

can be estimated from above by
(71)∑
i∈Jn

∫ yi+1

yi

R(uh)vdy − 1
s2
h

∑
i∈Jn

∑
`∈I1

max
`∈I1

D` [u`h,y(yi+1)v(yi+1)− u`h,y(yi)v(yi)] .

Owing to the structure of P 1,sd
Γ , (71) vanishes when selecting v = vh as test function.

We rely on this observation to add (71) (in which we take v := vh) to (70). Inserting
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in the result v = e ∈ V and vh := Rhe ∈ Vh, we obtain the inequality:

(e,t, e) +
d

L2
0

||e||2 ≤ bf (s, u, e)− bf (sh, uh, e) + e(s′h, uh, e)

− e(s′, u, e) + h(s′, u,y, e)− h(s′h, uh,y, e)−
(

1
s2
− 1
s2
h

)∑
i∈I1

(Diuihy, v,y)

+
∑
i∈Jn

∫ yi+1

yi

(e− Re)dy

− 1
s2
h

∑
i∈Jn

∑
`∈I1

max
`∈I1

D` [u`h,y(yi+1)(e− Rhe)(yi+1)− ujh,y(yi)(e− Rhe)(yi)]

=
5∑
`=1

I`.(72)

In (72), we have

I1 := bf (s, u, e)− bf (sh, uh, e),
I2 := e(s′h, uh, e)− e(s′, u, e),
I3 := h(s′, u,y, e)− h(s′h, uh,y, e),

I4 := −
(

1
s2
− 1
s2
h

)∑
i∈I1

(Diuihy, e,y),

I5 :=
∑
i∈Jn

∫ yi+1

yi

(e− Rhe)dy

− 1
s2
h

∑
i∈Jn

∑
`∈I1

max
`∈I1

D` [u`h,y(yi+1)(e− Rhe)(yi+1)− ujh,y(yi)(e− Rhe)(yi)] .

Manipulations of the interpolation inequality (20) together with Cauchy-Schwarz’s
and Young’s inequalities (17) and (18) lead to the following upper bounds:

|I1| ≤
P1Q1 + P2

2
(
|e1|2 + |e2|2

)
,(73)

|I2| ≤ |s− sh|2 + |s′ − s′h|2 + cξ
(
ĉ2(c̄+ c̄2)

) 1
1−θ s

2θ
1−θ |e|2

+ ξ
||e||2

s2
,(74)

|I3| ≤
s′h
2sh

∑
i∈I1

(|ei(1)|2 − |ei|2)

+
1
ssh

(sh(s′ − s′h) + s′h(sh − s))
(
||e||2 + |e|2

)
.(75)
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In (74), the constant c̄ only depends on s0 and L. In order to estimate |I4|, we
proceed as follows:

|I4| = −
(

1
s2
− 1
sh

)2 ∑
i∈I1

(Diuih,y, e,y)

≤ |s− sh|
s+ sh
s2
hs

∑
i∈I1

(|Diuih(1)e(1)|+ |Diuih|||e||)

≤ ĉ|s− sh|||e||θ|e|1−θ
s+ sh
s2
hs

∑
i∈I1

Di|uih(1)|+ |s− sh|
||e||
sh

s+ sh
ssh

∑
i∈I1

|Diuih|

≤ ξ̄|s− sh|2 + cξ̄ξ
||e||2

s2
h

+ cξcξ̄

(
ĉ
(s+ sh)

∑
i∈I1

Di|uh(1)|
s2−θ
h s

) 2
1−θ

|e|2.(76)

To bound above |I5|, we rely on the fact that Rhe is the Lagrange interpolant of e,
and hence, (e− Rh)e(yi) = 0 for all i ∈ Jn ∪ {n+ 1}. Additionally, we see that∫ yi+1

yi

R(un)(e−Rhe)dy ≤ ||R(uh)||L2(Ji)h
2
i ||e||H1(Ji).

Owing to the latter inequality and the embedding H1(Ji) ↪→ H1(0, 1) (∀i ∈ Jn),
we deduce the following bound on |I5|:

|I5| ≤
∑
i∈Jn

∫ yi+1

yi

R(uh)(e− Rhe)dy

≤
∑
i∈Jn

||R(uh)||L2(Ji)h
2
i ||e||H1(Ji)

≤ c

(∑
i∈Jn

||R(uh)||L2(Ji)h
2
i

) 1
2

||e||H1(0,1)

≤ ξ
||e||2

s2
+ cξc

2s2
∑
i∈Jn

||R(uh)||L2(Ji)h
2
i |e|2,(77)

where the strictly positive constant c only depends on |Jn|. Set Cc := ĉ2(c̄ + c̄2).
Combining (73)-(77), we obtain

1
2
d

dt
|e|2 +

d

L2
0

||e||2 ≤ P1Q1 + P2

2
(
|e1|2 + |e2|2

)
+|s− sh|2 + |s′ − s′h|2 + ξ

||e||2

s2
+ cξ(Cc)

1
1−θ |s|

2θ
1−θ |e|2

+
(

1
s
|s′ − s′h|+

s′h
ssh
|s− sh|

)
||e||2 + ξ

||e||2

s2

+
(
cξ ĉ

2
1−θ |s|

2θ
1−θ +

1
s
|s′ − s′h|+

s′h
ssh
|s− sh|

)
|e|2

+ξ
||e||2

s2
(s− sh)

s+ sh
s2
hs

max
`∈I1

D` +
1
ξ
|s− sh|

s+ sh
2s2
hs

max
`∈I1
||u||2

+ξ
||e||2

s2
+ cξc

2s2
∑
i∈Jn

||R(uh)||L2(Ji)h
2
i .(78)
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Finally, we obtain

1
2
d

dt
|e|2 +

d

s2
||e||2 ≤ A1

(
|s− sh|2 + |s′ − s′h|2

)
+A2

||e||2

s2

+ A3|e|2 +A4

∑
i∈Jn

||R(uh)||L2(Ji)h
2
i ,(79)

where M(s, s′, sh, s′h) := 1
s |s
′−s′h|+

s′h
ssh
|s−sh| and Ai (i ∈ {1, 2, 3, 4}) are positive

and uniformly bounded. They are defined by

A1 := 1,
A2 := 3ξ + cξ̄ξ,

A3 := M(s, s′, sh, s′h) +
P1Q1 + P2

2
+
(
cξC

1
1−θ
c + cξ ĉ

2
1−θ

)
|s|

2θ
1−θ

+ cξcξ̄ ĉ
2

1−θ

(
(s+ sh)

∑
i∈I1

Di

ss2−θ
h

|uh(1)|

) 2
1−θ

,

A4 := cξc
2L2.

It is worth noting that the right-hand side of (79) depends on uh but it is indepen-
dent of u. Hence, (79) keeps the a posteriori character. Gronwall’s inequality can
be applied in order to conclude the proof of Theorem 5.2. The working strategy is
very similar to that used to obtain the a priori error estimates. We omit to show
the calculation details.

8. Summary

The moving-boundary problem discussed in this paper arises in the modeling via
moving-reaction interfaces of the concrete carbonation process. The results address
the error analysis of the semi-discrete approximation with finite elements of positive
weak solutions to this problem and can be summarized as follows:

(1) The a priori estimate (51) shows that the approximation by piecewise linear
finite elements for the semi-discretization in space converges to the solution of the
continuous problem when the discretization grid becomes finer. (51) proves an order
of convergence of O(h) for the semi-discretization method. The a priori estimate
(49) indicates that the L2-error of the concentrations vector is governed by the
W 1,2-error of the moving interface position.

(2) An a posteriori error estimate has been also obtained, see (52). As soon
as the constants c, c1 and c2 entering (52) are evaluated quantitatively, the a
posteriori estimate be employed to calculate adaptively the 1D penetration of the
sharp-carbonation inteface in concrete.

Due to the use of the Landau transformation (23), this framework cannot be used
to tackle 2D formulations of the model. On the other hand, the way we obtained
the error estimates can be applied to a wealth of unidimensional moving-boundary
systems in which several internal fixed or moving boundaries may occur, provided
positivity and L∞− estimates of the weak solution are available.
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