# Theoretical study of the spectroscopic constant and anharmonic force field of $PO_2^-$

Pengfei Wang, Chonghai Qi, Meishan Wang<sup>\*</sup>, Chuanlu Yang, and Jing Li

School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People's Republic of China

Received 3 April 2015; Accepted (in revised version) 4 May 2015 Published Online 6 June 2015

Abstract. The equilibrium structure, spectroscopy constants and anharmonic force field of  $PO_2^-$  anion have been investigated at MP2, B3LYP, B3P86, B3PW91 methods employing three basis sets, 6-311++G(2d,2p), 6-311++G(3df,3pd) and cc-pVQZ, respectively. The computed geometries, rotational constants, vibration-rotation interaction constants, quartic centrifugal distortion constants, and coriolis coupling constants of  $PO_2^-$  are compared with the available experimental or theoretical data. The fundamental frequencies, rotational constants of  $PO_2^-$  are firstly predicted. The calculated results show that the B3P86/6-311++G(3df, 3pd) results are in excellent agreement with experiment and represent a substantial improvement over the results obtained from MP2. The other DFT methods are also advisable choices to study the anharmonic force field of  $PO_2^-$ .

**PACS**: 82.20.Fd, 71.15.Pd

Key words: PO<sub>2</sub><sup>-</sup> anion; *ab initio* calculations; spectroscopic constants; anharmonic force field.

## 1 Introduction

The oxidation of phosphorus has received an increasing interest over centuries. In order to satisfy the need of destroying chemical warfare agents, involving organophosphorus agents, a good understanding about the combustion of organophosphorus compounds appears to be of great importance [1-3]. What is more, the phosphorus-oxygen chemistry is quite complicated due to the abound species formed in the phosphorus-oxidation. As

http://www.global-sci.org/jams

©2015 Global-Science Press

<sup>\*</sup>Corresponding author. *Email address:* mswang1971@163.com (M.-S. Wang)

93

far as we know, both  $PO_2$  free radical and  $PO_2^-$  anion are two major reactants occurring in oxidations of phosphorous compounds [1-5].

The  $PO_2$  radical is a key intermediate in phosphorus combustion chemistry. In order to study the spectroscopic properties of  $PO_2$ , the microwave, electronic absorption, far infrared laser magnetic resonance and diode laser absorption spectroscopies were observed [6-10]. Meanwhile, a series of high-level *ab initio* calculation of  $PO_2$  were finished [11-16] and the spectroscopic constants of  $PO_2$ , such as the equilibrium geometries, vibrational frequencies, and force constants were obtained.

Considerably  $PO_2^-$  anion is also one of the possible anionic species occurring in oxidations of phosphorus compounds [13, 15, 17-20]. In 1979, Hunter et al. [17] performed the optical and vibrational spectra of  $PO_2^-$  anion trapped substitutionally in alkali halide lattices and obtained the vibrtional frequencies  $\omega_1 = 1097 \text{cm}^{-1}$ ,  $\omega_2 = 501 \text{cm}^{-1}$ and  $\omega_3 = 1207 \text{ cm}^{-1}$ , which was used to calculate the P-O bond length  $r_{PO} = 1.65$  Å and the OPO angle  $\theta_{OPO}$ =110°. However, the above calculation was considered to be incomplete. Five years later, the geometries and vibrational frequencies of  $PO_2^-$  were calculated at the level of HF/6-31G\* by Lohr et al. [11]. In 1995, Xu et al. [13] reported the first gas phase experiment for  $PO_2^-$  and determined the geometric parameters:  $r_{PO}=1.50\pm0.01$  Å,  $\theta_{OPO}$ =120.0±0.1° using the FG matrix method. In addition, the geometries and vibrational frequencies on the  $X^1A_1$  state of  $PO_2^-$  were calculated at MP2 level. In 1996, Pak et al. [18] carried out the spectroscopic parameters including the equilibrium geometries, rotational constants, vibration-rotation interaction constants, quartic centrifugal distortion constants, and so on at the CCSD(T)/ cc-pVQZ level. In 2002, Francisco et al. [15] investigated the geometric parameters, rotational constants and vibrational frequencies using the CCSD(T) method with cc-pvNz(N=D, T, Q) and aug-cc-pvNz(N=D, T, Q) basis sets. In 2008, Zhang et al. [19] gave the geometry optimization and harmonic vibrational frequency calculations on the  $X^1A_1$  state of  $PO_2^-$ . The equilibrium geometry parameters,  $r_{PO}=1.504\pm0.005$  Å and  $\theta_{OPO}=119.0\pm0.2^{\circ}$  on the X<sup>1</sup>A<sub>1</sub> state of  $PO_2^-$  are derived by employing an iterative Franck-Condon analysis procedure. In 2013, Liang et al. [20] developed the three-dimensional Franck-Condon overlap integrals to produce a more accurate calculation of the equilibrium structure and harmonic vibrational frequencies on the X<sup>1</sup>A<sub>1</sub> state of  $PO_2^-$ . They took into account the mode mixing and hot band effects which were ignored by Zhang *et al.*[19]. The equilibrium geometry parameters,  $r_{PO}$ =1.495±0.005 Å and  $\theta_{OPO}=119.5\pm0.5^{\circ}$  on the X<sup>1</sup>A<sub>1</sub> state of  $PO_2^-$  were derived. In conclusion, the force constants, the sextic centrifugal distortion constants and the rotational constants of the ground state are absent in all the previous calculations and the experiment, yet they are necessary to accurately calculate the rovibrational spectra of molecules. On the other hand, the *ab initio* methods have been quite successful and accurate in calculating the spectroscopic constants and anharmonic force field for other AB<sub>2</sub> type molecules [21-23], and it is reasonably confident in their use to calculate the corresponding results for  $PO_2^-$ .

In this work, the spectroscopic constants and the anharmonic force field of  $PO_2^-$  are performed using MP2, B3LYP, B3P86 and B3PW91 methods with 6-311++G(2d, 2p), 6-311++G(3df,3pd) and cc-pVQZ basis sets, respectively. We investigate the geometry

constants, rotational constants, vibration-rotation interaction constants, quartic and sextic centrifugal distortion constants, anharmonic constants, harmonic and fundamental frequencies, coriolis coupling constants, third-order and fourth-order force constants of  $PO_2^-$ . In addition, they are compared with the available experimental or previous theoretical data. The paper is organized as follows: In Section 2 we briefly describe the computational methods. The results and discussion are given in Section 3. Finally, the conclusions are summarized in Section 4.

#### 2 Computational methods

Quantum-chemical calculations are carried out at the correlated levels of second-order MØller-plesset perturbation theory (MP2) [24] and density functional methods (B3LYP [25, 26-27], B3P86 [25, 28], B3PW91 [25, 29] ). All the calculations are performed with the GAUSSIAN03 program [30]. There are three basis sets are employed in the present work: the first basis set is the correlation consistent polarized valence quadruple-zeta basis (cc-pVQZ [31] ). The basis of O is [5s4p3d2f1g] contraction of a [12s6p3d2f1g] primitive set. The basis of P is the [6s5p3d2f1g] contraction of a [16s11p3d2f1g] primitive set. The second basis set is 6-311++G(2d,2p) which corresponds to a [5s4p2d/7s6p2d] contraction of a [12s6p2d/14s10p2d] primitive set for O/P. The third basis set is 6-311++G(3df,3pd) corresponding to a [5s4p3d1f/7s6p3d1f] contraction of a [12s6p3d1f/ 14s10p3d1f] primitive set for O/P.

Spherical harmonics are used throughout. Unless stated otherwise, all elections are correlated. The geometry of  $PO_2^-$  is optimized within the constraint of  $C_{2v}$  point group symmetry, which can be found in Fig. 1. The anharmonic force fields are calculated at all the levels. The optimized geometry was firstly calculated. Then, the associated harmonic force field was evaluated analytically in Cartesian coordinates at the optimized geometry. The cubic and semi-diagonal quartic normal coordinate force constants are determined with the use of a finite difference procedure involving displacements along the reduced normal coordinates and the analytic second derivatives are calculated at these displaced geometries. The anharmonic spectroscopic constants were derived from the theoretical normal coordinate force fields applying the standard formulas based on second-order rovibrational perturbation theory [32, 33].

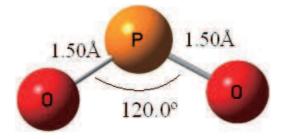



Figure 1: The geometrical parameters of  $PO_2^-$  anion.

### 3 Result and discussions

The calculated results of the molecular geometries, the spectroscopic constants, and the full quartic force fields of  $PO_2^-$  using MP2, B3LYP, B3P86, B3PW91 methods are given in Tables 1-8. They are compared with the corresponding experimental [13, 17] or calculated data [13, 15, 18, 19] whenever these are available.

The calculated and experimentally derived equilibrium structures of the X<sup>1</sup>A<sub>1</sub> state of  $PO_2^-$  are listed in Table 1. The OP bond length of  $PO_2^-$  is overestimated by MP2 about 0.0108-0.0194 Å, while the DFT methods with the basis of cc-pVQZ and 6-311++G(3df, 3pd) reproduce the experimental values to within 0.0077 Å (with slightly larger deviation for the 6-311++G(2d,2p) basis, up to 0.0109 Å). The angle  $\angle$ OPO of  $PO_2^-$  is underestimated by almost all theoretical levels. It is also obvious that the theoretical value of the angle  $\angle$ OPO increases in the range of cc-pVQZ, 6-311++G(2d,2p) and 6-311++G(3df,3pd). This indicates that the addition of a *f*-polarized and diffuse functions produces a substantial improvement in the geometry structure. Within the experimental uncertainty, The B3P86/6-311++G(3df, 3pd) level provides the best overall agreement between theory and experiment results.

| Method                        | $r_{OP}(\text{\AA})$ | $\theta_{OPO}(^{\circ})$ | $\omega_1$ | $\omega_2$ | $\omega_3$ | $v_1$    | $v_2$   | $v_3$    |
|-------------------------------|----------------------|--------------------------|------------|------------|------------|----------|---------|----------|
| MP2/6-311++G(3df,3pd)         | 1.5108               | 120.0022                 | 1035.532   | 442.390    | 1196.868   | 1023.547 | 438.722 | 1181.434 |
| Mp2/6-311++G(2d,2p)           | 1.5194               | 119.9039                 | 1011.887   | 442.143    | 1168.381   | 999.918  | 438.433 | 1152.894 |
| MP2/cc-pVQZ                   | 1.5125               | 119.2495                 | 1048.259   | 452.167    | 1208.473   | 1036.507 | 448.818 | 1193.732 |
| B3LYP/6-311++G(3df,3pd)       | 1.5039               | 119.3479                 | 1060.025   | 453.959    | 1211.577   | 1047.640 | 450.588 | 1194.897 |
| B3LYP/6-311++G(2d,2p)         | 1.5109               | 119.1787                 | 1042.256   | 448.954    | 1187.235   | 1029.595 | 445.620 | 1170.271 |
| B3LYP/ cc-pVQZ                | 1.5077               | 118.5186                 | 1064.870   | 461.805    | 1210.202   | 1052.761 | 458.693 | 119.321  |
| B3P86/6-311++G(3df,3pd)       | 1.4994               | 119.2307                 | 1075.756   | 457.610    | 1230.156   | 1064.065 | 454.387 | 1214.520 |
| B3P86/6-311++G(2d,2p)         | 1.508                | 119.0306                 | 1059.613   | 453.169    | 1207.507   | 1047.558 | 449.983 | 1191.468 |
| B3P86/ cc-pVQZ                | 1.5033               | 118.4848                 | 1079.349   | 464.350    | 1227.680   | 1067.858 | 461.416 | 1212.720 |
| B3PW91/6-311++G(3df,3pd)      | 1.5012               | 119.2493                 | 1070.759   | 456.793    | 1224.651   | 1059.206 | 453.544 | 1209.190 |
| B3PW91/6-311++G(2d,2p)        | 1.508                | 119.0811                 | 1053.897   | 452.168    | 1201.316   | 1042.066 | 449.045 | 1185.638 |
| B3PW91/ cc-pVQZ               | 1.5052               | 118.4747                 | 1074.516   | 464.050    | 1221.897   | 1063.213 | 461.119 | 1207.206 |
| $\operatorname{Ref.}^{[13]a}$ | 1.5048               | 119.381                  | 1135.1     | 497.5      | 1303.0     |          |         |          |
| $\operatorname{Ref.}^{[18]b}$ | 1.5063               | 118.86                   | 1071.9     | 463.6      | 1227.9     | 1059.6   | 460.3   | 1212.6   |
| $\operatorname{Ref.}^{[19]c}$ | 1.5193               | 119.8453                 | 1012.5     | 442.3      | 1168.7     |          |         |          |
| $\operatorname{Ref.}^{[19]d}$ | 1.5038               | 119.4375                 | 1075.4     | 467.8      | 1225.8     |          |         |          |
| $\operatorname{Ref.}^{[19]e}$ | 1.5108               | 119.1474                 | 1042.6     | 449.1      | 1187.4     |          |         |          |
| Exp. <sup>[13]</sup>          | 1.500.01             | 120.00.1                 | 1000       | 470        | -          |          |         |          |
| Exp. <sup>[17]</sup>          | 1.65                 | 110                      | 1097       | 501        | 1207       |          |         |          |

Table 1: The geometrical parameters and harmonic and fundamental frequencies of  $PO_2^{-}(\text{cm}^{-1})$ .

<sup>a</sup> CISD/6-31G\*.

<sup>b</sup> CCSD(T)/cc-pVQZ.

<sup>c</sup> MP2/6-311+G(2d,p).

<sup>d</sup> CCSD/6-311+G(2d,p).

<sup>e</sup> B3LYP/6-311+G(2d,p).

Table 2: Rotational constants of equilibrium and ground states of  $PO_2^{-}(cm^{-1})$ .

| Method                        | Ae        | Be        | Ce        | A <sub>0</sub> | B <sub>0</sub> | C <sub>0</sub> |
|-------------------------------|-----------|-----------|-----------|----------------|----------------|----------------|
| MP2/6-311++G(3df,3pd)         | 1.8774446 | 0.3078302 | 0.2644675 | 1.8898849      | 0.3066514      | 0.2631818      |
| MP2/6-311++G(2d,2p)           | 1.8507364 | 0.3046557 | 0.2615939 | 1.8619404      | 0.3034744      | 0.2602962      |
| MP2/cc-pVQZ                   | 1.8312768 | 0.3094753 | 0.2647364 | 1.8427354      | 0.3082960      | 0.2634639      |
| B3LYP/6-311++G(3df,3pd)       | 1.8578296 | 0.3127278 | 0.2676709 | 1.8687831      | 0.3116411      | 0.2664388      |
| B3LYP/6-311++G(2d,2p)         | 1.8313741 | 0.3103687 | 0.2653919 | 1.8423859      | 0.3092243      | 0.2641270      |
| B3LYP/ cc-pVQZ                | 1.8036642 | 0.3138212 | 0.2673114 | 1.8137144      | 0.3127073      | 0.2660733      |
| B3P86/6-311++G(3df,3pd)       | 1.8623945 | 0.3149710 | 0.2694082 | 1.8734640      | 0.3139093      | 0.2681976      |
| B3P86/6-311++G(2d,2p)         | 1.8352491 | 0.3128709 | 0.2673017 | 1.8462441      | 0.3117646      | 0.2660658      |
| B3P86/ cc-pVQZ                | 1.8125065 | 0.3157835 | 0.2689293 | 1.8227535      | 0.3146971      | 0.2677132      |
| B3PW91/6-311++G(3df,3pd)      | 1.8589043 | 0.3141469 | 0.2687323 | 1.8699947      | 0.3130743      | 0.2675155      |
| B3PW/6-311++G(2d,2p)          | 1.8330505 | 0.3118671 | 0.2665222 | 1.8441183      | 0.3107503      | 0.2652810      |
| B3PW91/ cc-pVQZ               | 1.8073910 | 0.3150186 | 0.2682619 | 1.8176186      | 0.3139228      | 0.2670411      |
| $\operatorname{Ref.}^{[18]a}$ | 1.8250287 | 0.3132800 | 0.2673816 |                |                | ]              |
| Ref. <sup>[15]b</sup>         | 1.8272302 | 0.3121492 | 0.2666177 |                |                |                |

<sup>*a*</sup> CCSD(T)/ cc-pVQZ.

<sup>b</sup> CCSD(T)/aug-cc-pVQZ.

Table 1 also includes the calculated harmonic and fundamental vibrational frequencies of  $PO_2^-$ . The theoretical fundamental frequencies are derived from the corresponding harmonic frequencies and anharmonic constants. For comparison, the corresponding experimental harmonic frequencies are also listed whenever available, whereas the fundamental frequencies of  $PO_2^-$  have not yet been deduced experimentally up to now. As expected, the MP2 results underestimated the harmonic frequencies. The DFT results are much closer to the experiment results. For the symmetric stretching frequency  $\omega_1$ , the result of DFT method is within  $1042 \text{cm}^{-1} \sim 1079 \text{cm}^{-1}$ . Therefore, we think the result from Ref. [17] is more reliable than the one from Ref. [13]. However, for the bending frequency  $\omega_2$ , we think the result from Ref. [13] is more reliable than the one from Ref. [17]. The three calculated harmonic frequencies by the B3P86/cc-pVQZ level are reproduced within the relative error 1.7%, the relative error is within 2.6% for B3P86/6-311++G(3df, 3pd) level. It can be seen from Table 1 that the B3P86/cc-pVQZ and B3P86/6-311++G(3df, 3pd) levels are well reproduced the geometrical parameters and harmonic frequencies of  $PO_2^-$  anion. Besides, they provide the good theoretical prediction for the fundamental frequencies of  $PO_2^-$ .

The rotational constants of equilibrium and ground states of the  $PO_2^-$  anion are shown in the Table 2. The theoretical ground state rotational constants(A<sub>0</sub>, B<sub>0</sub>, C<sub>0</sub>) are obtained from the associated equilibrium constants (A<sub>e</sub>, B<sub>e</sub>, C<sub>e</sub>) by considering the effects of vibrationrotation coupling via the perturbation theory[32,33]. The experimental rotational constants of equilibrium and ground states of  $PO_2^-$  have not been reported so far, the previous calculated equilibrium results were given by CCSD(T)/ cc-pVQZ and CCSD(T)/augcc-pVQZ levels[15,18]. One can find from Table 2 that the B3P86/cc-pVQZ results are much closer to the corresponding CCSD(T)/aug-cc-pVQZ ones. Therefore, the calculated rotational constants of ground state of the  $PO_2^-$  by the B3P86/cc-pVQZ level can be

Table 3: Vibration-rotation interaction constants of  $PO_2^-(cm^{-1})$ .

| Method                        | $\alpha_1^A$ | $\alpha_2^A$ | $\alpha_3^A$ | $\alpha_1^B$ | $\alpha_2^B$ | $\alpha_3^B$ | $\alpha_1^C$ | $\alpha_2^C$ | $\alpha_3^C$ |
|-------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| MP2/6-311++G(3df,3pd)         | -0.00520     | -0.03952     | 0.01984      | 0.00155      | -0.00017     | 0.00097      | 0.00127      | 0.00047      | 0.00090      |
| MP2/6-311++G(2d,2p)           | -0.00491     | -0.03656     | 0.01906      | 0.00156      | -0.00023     | 0.00103      | 0.00129      | 0.00039      | 0.00092      |
| MP2/cc-pVQZ                   | -0.00472     | -0.03589     | 0.01769      | 0.00154      | -0.00016     | 0.00098      | 0.00127      | 0.00042      | 0.00086      |
| B3LYP/6-311++G(3df,3pd)       | -0.00474     | -0.03707     | 0.01991      | 0.00150      | -0.00021     | 0.00089      | 0.00124      | 0.00039      | 0.00084      |
| B3LYP/6-311++G(2d,2p)         | -0.00497     | -0.03604     | 0.01898      | 0.00154      | -0.00021     | 0.00096      | 0.00127      | 0.00040      | 0.00086      |
| B3LYP/ cc-pVQZ                | -0.00424     | -0.03368     | 0.01782      | 0.00150      | -0.00019     | 0.00092      | 0.00125      | 5 0.00041    | 0.00081      |
| B3P86/6-311++G(3df,3pd)       | -0.00493     | -0.03683     | 0.01962      | 0.00149      | -0.00023     | 0.00086      | 0.00122      | 2 0.00038    | 0.00081      |
| B3P86/6-311++G(2d,2p)         | -0.00508     | -0.03566     | 0.01875      | 0.00152      | -0.00022     | 0.00092      | 0.00125      | 5 0.00039    | 0.00083      |
| B3P86/ cc-pVQZ                | -0.00448     | -0.03376     | 0.01774      | 0.00149      | -0.00020     | 0.00089      | 0.00124      | 0.00040      | 0.00079      |
| B3PW91/6-311++G(3df,3pd)      | -0.00495     | -0.03670     | 0.01947      | 0.00149      | -0.00022     | 0.00088      | 0.00122      | 2 0.00039    | 0.00082      |
| B3PW91/6-311++G(2d,2p)        | -0.00515     | -0.03558     | 0.01859      | 0.00152      | -0.00022     | 0.00094      | 0.00125      | 5 0.00039    | 0.00084      |
| B3PW91/ cc-pVQZ               | -0.00450     | -0.03347     | 0.01752      | 0.00149      | -0.00020     | 0.00091      | 0.00124      | 0.00041      | 0.00080      |
| Ref. <sup>[18]</sup> <i>a</i> | -0.00409     | -0.03541     | 0.01797      | 0.00151      | -0.00012     | 0.00094      | 0.00126      | 5 0.00043    | 0.00084      |

<sup>a</sup> CCSD(T)/cc-pVQZ.

Table 4: Anharmonic constants of  $PO_2^{-}(cm^{-1})$ .

| Method                        | V        | V.a       | V.a      | X <sub>22</sub> | V        | Y        |
|-------------------------------|----------|-----------|----------|-----------------|----------|----------|
|                               | 11       | 12        | 10       |                 | 10       | 00       |
| MP2/6-311++G(3df,3pd)         | -2.82912 | -2.292550 | -10.3626 | -0.553951       | -2.82743 | -4.41918 |
| MP2/6-311++G(2d,2p)           | -2.82988 | -2.24852  | -10.3704 | -0.566632       | -2.90489 | -4.42460 |
| MP2/cc-pVQZ                   | -2.79969 | -2.34649  | -9.95823 | -0.358816       | -2.91389 | -4.15154 |
| B3LYP/6-311++G(3df,3pd)       | -2.81826 | -2.21106  | -11.2862 | -0.389511       | -2.97443 | -4.77509 |
| B3LYP/6-311++G(2d,2p)         | -2.86905 | -2.26811  | -11.5775 | -0.342732       | -3.02768 | -4.83049 |
| B3LYP/ cc-pVQZ                | -2.76731 | -2.30525  | -10.8425 | -0.214426       | -3.06209 | -4.46425 |
| B3P86/6-311++G(3df,3pd)       | -2.69158 | -2.11987  | -10.4947 | -0.372127       | -2.83832 | -4.48499 |
| B3P86/6-311++G(2d,2p)         | -2.76395 | -2.16888  | -10.8862 | -0.326716       | -2.89468 | -4.57458 |
| B3P86/ cc-pVQZ                | -2.66111 | -2.16948  | -10.1690 | -0.206213       | -2.87435 | -4.21908 |
| B3PW91/6-311++G(3df,3pd)      | -2.65821 | -2.11757  | -10.3568 | -0.384247       | -2.84442 | -4.43008 |
| B3PW91/6-311++G(2d,2p)        | -2.72332 | -2.11113  | -10.6574 | -0.325840       | -2.83175 | -4.46666 |
| B3PW91/ cc-pVQZ               | -2.61865 | -2.15052  | -9.98004 | -0.210761       | -2.86922 | -4.13341 |
| Ref. <sup>[18]</sup> <i>a</i> | -2.89    | -2.48     | -10.52   | -0.26           | -3.07    | -4.26    |

<sup>*a*</sup> CCSD(T)/cc-pVQZ.

treated as the predicted values.

Theoretical results of the vibration-rotation interaction constants  $\alpha_i^X$  (X=A, B, C; i=1-3) of  $PO_2^-$  are collected in Table 3. These constants can be used to calculate the ground state rotational constants. So far there are no experimental results on these constants. The only previous theoretical research was finished at the CCSD(T)/cc-pVQZ levels[18]. Comparing with the CCSD(T)/ cc-pVQZ levels, it is easy to find that the calculated vibration-rotation interaction constants by our theory levels have the correct sign and reasonable magnitude, which indicates that the methods and basis sets chosen by us are appropriate for  $PO_2^-$ .

Table 4 gives the calculated anharmonic constants  $(X_{ij})$  of the  $PO_2^-$  anion. The experimental anharmonic constants of  $PO_2^-$  have not been reported to date. The previous

Table 5: Equilibrium quartic centrifugal distortion constants of  $PO_2^{-}(cm^{-1})$ .

|                               |                        |                           |                        | -                      |                        |
|-------------------------------|------------------------|---------------------------|------------------------|------------------------|------------------------|
| Method                        | $\Delta_J \times 10^4$ | $\Delta_{JK} \times 10^4$ | $\Delta_K \times 10^4$ | $\delta_J \times 10^4$ | $\delta_K \times 10^4$ |
| MP2/6-311++G(3df,3pd)         | 0.00209                | -0.04183                  | 0.91886                | 0.00054                | 0.00753                |
| Mp2/6-311++G(2d,2p)           | 0.00208                | -0.03956                  | 0.87830                | 0.00053                | 0.00752                |
| MP2/cc-pVQZ                   | 0.00209                | -0.03889                  | 0.80366                | 0.00054                | 0.00728                |
| B3LYP/6-311++G(3df,3pd)       | 0.00209                | -0.03967                  | 0.84448                | 0.00055                | 0.00739                |
| B3LYP/6-311++G(2d,2p)         | 0.00211                | -0.03918                  | 0.82140                | 0.00055                | 0.00746                |
| B3LYP/ cc-pVQZ                | 0.00209                | -0.03667                  | 0.73550                | 0.00055                | 0.00720                |
| B3P86/6-311++G(3df,3pd)       | 0.00209                | -0.03995                  | 0.83497                | 0.00055                | 0.00733                |
| B3P86/6-311++G(2d,2p)         | 0.00212                | -0.03940                  | 0.80911                | 0.00056                | 0.00739                |
| B3P86/ cc-pVQZ                | 0.00210                | -0.03722                  | 0.73740                | 0.00056                | 0.00717                |
| B3PW91/6-311++G(3df,3pd)      | 0.00209                | -0.03969                  | 0.83390                | 0.00055                | 0.00733                |
| B3PW91/6-311++G(2d,2p)        | 0.00211                | -0.03918                  | 0.81033                | 0.00055                | 0.00740                |
| B3PW91/ cc-pVQZ               | 0.00209                | -0.03683                  | 0.73215                | 0.00055                | 0.00716                |
| $\operatorname{Ref.}^{[18]a}$ | 0.00207                | -0.03719                  | 0.75682                | 0.00053                | 0.00714                |

<sup>*a*</sup> CCSD(T)/cc-pVQZ.

Table 6: Sextic centrifugal distortion constants of  $PO_2^{-}(\text{cm}^{-1})$ .

| Method                   | $\phi_I 	imes 10^{12}$ | $\phi_{IK} \times 10^9$ | $\phi_{KI} \times 10^7$ | $\phi_K 	imes 10^{11}$ | $\phi_I 	imes 10^{12}$ | $\phi_{IK} \times 10^{12}$ | $\phi_K \times 10^9$ |
|--------------------------|------------------------|-------------------------|-------------------------|------------------------|------------------------|----------------------------|----------------------|
| MP2/6-311++G(3df,3pd)    | 0.4337042602           | -0.7600697387           | 0.1521708805            | -0.07796872887         | 0.2056376716           | 0.3071883727               | 0.5817236647         |
| Mp2/6-311++G(2d,2p)      | 0.4317390142           | -0.6872559246           | 0.1389457913            | -0.1789465005          | 0.2047706211           | 0.3442661695               | 0.5600134887         |
| MP2/cc-pVQZ              | 0.4222161966           | -0.6373693851           | 0.1189104805            | -0.07383954558         | 0.2003503991           | 0.3044615038               | 0.4982376678         |
| B3LYP/6-311++G(3df,3pd)  | 0.4411886037           | -0.6657986173           | 0.1293277377            | -0.1319433015          | 0.2080252642           | 0.4249060292               | 0.5276189737         |
| B3LYP/6-311++G(2d,2p)    | 0.4476606838           | -0.6513538786           | 0.1240404278            | -0.1383122371          | 0.2117777296           | 0.3824001544               | 0.5213046804         |
| B3LYP/ cc-pVQZ           | 0.4289357765           | -0.5603425486           | 0.1008260760            | -0.1134571952          | 0.2029298641           | 0.3830845170               | 0.4526350969         |
| B3P86/6-311++G(3df,3pd)  | 0.4472354979           | -0.6563767458           | 0.1260793417            | -0.1297002884          | 0.2104980248           | 0.4512981951               | 0.519780323          |
| B3P86/6-311++G(2d,2p)    | 0.4552159147           | -0.6379351192           | 0.1199755595            | -0.1393767016          | 0.2147692027           | 0.4263988156               | 0.5112706188         |
| B3P86/ cc-pVQZ           | 0.4367850580           | -0.5618851407           | 0.1008381434            | -0.1161167882          | 0.2061729061           | 0.4145017620               | 0.4531178964         |
| B3PW91/6-311++G(3df,3pd) | 0.4431376463           | -0.6528457894           | 0.1258723751            | -0.1329112161          | 0.2088008054           | 0.4319333008               | 0.5190168616         |
| B3PW91/6-311++G(2d,2p)   | 0.4509444891           | -0.6363297785           | 0.1203755914            | -0.1434693405          | 0.2129217460           | 0.4092602033               | 0.5120983449         |
| B3PW91/ cc-pVQZ          | 0.4322431831           | -0.5540928779           | 0.09956135951           | -0.1195916518          | 0.2042210826           | 0.3977342336               | 0.4495272702         |

calculated values can be found in Ref. [18]. The anharmonic constants depend on the quadratic, cubic, and quartic force fields. Strong anharmonic interactions between fundamentals and overtones or combination states may lead to a breakdown of the corresponding perturbational formulas. It is then necessary to define the effective constants by excluding the respective contributions from the perturbational summations. One can easily find that our calculated anharmonic constants of  $PO_2^-$  anion are in good agreement with the previous calculated results [18]. The corresponding value has the same sign and reasonable magnitude. The calculated anharmonic constants of  $PO_2^-$  anion at the B3LYP/cc-pVQZ level can serve as predictions.

The theoretical results of the equilibrium quartic centrifugal distortion constants of  $PO_2^-$  are shown in the Table 5. But no experimental results are available for the quartic centrifugal distortion constants. The calculated centrifugal distortion constants,  $\Delta_J$ ,  $\Delta_{JK}$ ,  $\Delta_K$ ,  $\delta_J$  and  $\delta_K$ , are numerically close for each theoretical level. The calculated values at the B3P86/cc-pVQZ level are in the excellent agreement with the previous values [18] and can provide the good prediction for the experimental observation of the quartic centrifugal distortion constants of  $PO_2^-$ .

Table 7: Coriolis coupling constants of  $PO_2^{-}(cm^{-1})$ .

| Method                        | ζ31     | ζ32     |
|-------------------------------|---------|---------|
| MP2/6-311++G(3df,3pd)         | 0.32287 | 0.94644 |
| Mp2/6-311++G(2d,2p)           | 0.32852 | 0.94450 |
| MP2/cc-pVQZ                   | 0.33337 | 0.94280 |
| B3LYP/6-311++G(3df,3pd)       | 0.32094 | 0.94710 |
| B3LYP/6-311++G(2d,2p)         | 0.32657 | 0.94517 |
| B3LYP/ cc-pVQZ                | 0.33116 | 0.94358 |
| B3P86/6-311++G(3df,3pd)       | 0.32159 | 0.94688 |
| B3P86/6-311++G(2d,2p)         | 0.32703 | 0.94502 |
| B3P86/ cc-pVQZ                | 0.33067 | 0.94375 |
| B3PW91/6-311++G(3df,3pd)      | 0.32147 | 0.94692 |
| B3PW91/6-311++G(2d,2p)        | 0.32719 | 0.94496 |
| B3PW91/cc-pVQZ                | 0.33117 | 0.94357 |
| Ref. <sup>[18]</sup> <i>a</i> | 0.3314  | -0.9435 |
| a CCSD(T) / cc-pVOZ           |         |         |

<sup>*a*</sup> CCSD(T)/cc-pVQZ.

Table 8: Cubic force constants of  $PO_2^{-}(\text{cm}^{-1})$ .

| Method                   | F <sub>111</sub> | F <sub>211</sub> | F <sub>221</sub> | F <sub>222</sub> | F <sub>331</sub> | F333      |
|--------------------------|------------------|------------------|------------------|------------------|------------------|-----------|
| MP2/6-311++G(3df,3pd)    | -216.08255       | 40.23290         | 32.97180         | 33.26217         | -277.60340       | -8.42839  |
| Mp2/6-311++G(2d,2p)      | -213.99203       | 40.60824         | 29.16938         | 28.36149         | -275.05648       | -5.14581  |
| MP2/cc-pVQZ              | -216.04619       | 40.70544         | 29.82897         | 33.58312         | -273.64276       | -4.61841  |
| B3LYP/6-311++G(3df,3pd)  | -214.23578       | 39.08194         | 34.18457         | 31.43897         | -278.68586       | -12.13134 |
| B3LYP/6-311++G(2d,2p)    | -212.98423       | 40.53247         | 32.18499         | 31.22425         | -278.02404       | -8.22893  |
| B3LYP/ cc-pVQZ           | -214.33576       | 39.65194         | 30.11327         | 32.48885         | -275.74615       | -7.90451  |
| B3P86/6-311++G(3df,3pd)  | -213.77154       | 39.34357         | 35.26270         | 31.27416         | -278.00698       | -12.44259 |
| B3P86/6-311++G(2d,2p)    | -212.41178       | 40.49930         | 33.36730         | 30.80469         | -276.93506       | -9.04644  |
| B3P86/ cc-pVQZ           | -213.77328       | 39.87282         | 31.64805         | 32.09653         | -275.38853       | -8.59941  |
| B3PW91/6-311++G(3df,3pd) | -213.33711       | 39.51540         | 34.55761         | 31.07641         | -277.82334       | -11.68968 |
| B3PW91/6-311++G(2d,2p)   | -211.64530       | 40.72966         | 32.71619         | 30.56926         | -276.40272       | -8.18379  |
| B3PW91/ cc-pVQZ          | -213.00169       | 40.06240         | 30.75670         | 31.86781         | -274.81580       | -7.66016  |

The calculated sextic centrifugal distortion constants of  $PO_2^-$  anion are listed in the Table 6. It is clearly that they have the same sign and the right order of the magnitude. Further, there is a very small difference among these seven values from the various different calculations. Unfortunately, the experimental and theoretical sextic centrifugal distortion constants of  $PO_2^-$  have not been reported so far. Therefore, our calculated results can be treated as the predictions of sextic centrifugal distortion constants of  $PO_2^-$ .

The computed coriolis coupling constants of  $PO_2^-$  anion are presented in the Table 7. The coriolis coupling constants for  $PO_2^-$  have no corresponding experimental data and only a previous calculation at CCSD(T)/cc-pVQZ level [18]. As far as we know, coriolis coupling constant connects the  $\omega_i$  mode and the  $\omega_j$  mode. It is then obvious that  $\zeta_{31}$ stands the coupling of the asymmetric stretching mode and the symmetric stretching mode  $\omega_1$ ;  $\zeta_{32}$  is the constant connecting  $\omega_3$  and the bending mode  $\omega_2$ . Surprisingly, our calculated  $\zeta_{32}$  from our methods is positive, however, the  $\zeta_{32}$  from Ref. [18] is negative.

Table 9: Quartic force constants of  $PO_2^{-}(cm^{-1})$ .

| Method                   | F <sub>1111</sub> | F <sub>2111</sub> | F <sub>2211</sub> | F <sub>2221</sub> | F <sub>2222</sub> | F <sub>3311</sub> | F <sub>3321</sub> | F <sub>3322</sub> | F <sub>3333</sub> |
|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| MP2/6-311++G(3df,3pd)    | 37.02635          | -15.38466         | -15.52887         | -1.71744          | 1.29339           | 55.09293          | -0.44698          | -23.66564         | 61.31377          |
| Mp2/6-311++G(2d,2p)      | 37.41869          | -15.88881         | -14.81192         | -1.34121          | -0.79390          | 55.83472          | -0.97856          | -22.68676         | 61.60283          |
| MP2/cc-pVQZ              | 36.56692          | -15.54583         | -14.54481         | -1.52377          | 3.43259           | 54.07076          | -1.37006          | -22.65593         | 59.98386          |
| B3LYP/6-311++G(3df,3pd)  | 33.63873          | -13.17717         | -15.83586         | -1.31161          | 3.73975           | 49.54865          | 2.68258           | -24.58530         | 53.43160          |
| B3LYP/6-311++G(2d,2p)    | 33.77450          | -13.40706         | -15.32510         | -1.09800          | 3.97847           | 49.85508          | 2.48916           | -24.10537         | 53.63606          |
| B3LYP/ cc-pVQZ           | 34.26648          | -13.56572         | -14.69963         | -1.07988          | 5.51947           | 50.17126          | 1.33703           | -23.43350         | 54.50712          |
| B3P86/6-311++G(3df,3pd)  | 34.33995          | -13.79840         | -15.60200         | -1.38528          | 4.10513           | 50.81078          | 1.62780           | -24.20811         | 55.61291          |
| B3P86/6-311++G(2d,2p)    | 33.80949          | -13.93331         | -15.14912         | -1.21147          | 4.27861           | 50.25759          | 1.58634           | -23.78188         | 54.66253          |
| B3P86/ cc-pVQZ           | 34.66939          | -14.15532         | -14.49265         | -1.08978          | 5.82779           | 51.17639          | 0.37191           | -23.03080         | 56.50445          |
| B3PW91/6-311++G(3df,3pd) | 34.98423          | -13.82858         | -15.40148         | -1.34665          | 3.70630           | 51.64979          | 1.41174           | -24.02516         | 56.84474          |
| B3PW91/6-311++G(2d,2p)   | 34.42571          | -14.16561         | -14.74105         | -1.16042          | 4.11380           | 51.28425          | 0.96261           | -23.31922         | 56.53602          |
| B3PW91/ cc-pVQZ          | 35.22209          | -14.24205         | -14.15866         | -1.06653          | 5.50263           | 51.96893          | -                 | -22.72267         | 57.84120          |

The difference in sign may be due to the typing error.

Tables 8-9 provide the calculated cubic and quartic force constants of the  $PO_2^-$  anion. By definition, the quadratic normal coordinate constants correspond to the harmonic frequencies  $\omega_i$ (i=1, 2, 3). They have been discussed in Table 1. we think that the B3P86/ccpVQZ level gives the good results for the cubic and quartic force constants of  $PO_2^-$ . In fact, the results calculated by the DFT method are close to each other including the same sign and order of magnitude.

### 4 Conclusions

The spectroscopic constants and anharmonic force field of  $PO_2^-$  are investigated employing MP2, B3LYP, B3P86, B3PW91 methods with 6-311++G(3df,3pd), 6-311++G(2d,2p)Aand cc-pVQZ basis sets. The DFT results, especially the B3P86 method, are in the good agreement with the previous available experimental or theoretical data. The predictions for experimentally unknown spectroscopic constants are expected to guide the future highresolution experimental work of  $PO_2^-$ . Our calculations are also shown that the adding polarized functions produce a substantial improvement in the predicted structure.

All the spectroscopic constants depend on the cubic and quartic force field of  $PO_2^-$ . Therefore, the formula of these spectroscopic constants in terms of the potential energy derivatives will be followed.

$$\begin{split} E(v,J) = G(v) + F_v(J) &= \sum_i \omega_i \left( v_i + \frac{1}{2} \right) + \sum_{i \le j} X_{ij} \left( v_i + \frac{1}{2} \right) \left( v_j + \frac{1}{2} \right) + AJ_z^2 + BJ_x^2 + CJ_y^2 \\ &- \Delta_J J^4 - \Delta_{JK} J^2 J_z^2 - \Delta_K J_z^4 - 2\delta_J J^2 (J_x^2 - J_y^2) - \delta_K [J_z^2 (J_x^2 - J_y^2) \\ &+ (J_x^2 - J_y^2) J_z^2] + \phi_J J^6 + \phi_{JK} J^4 J_z^2 + \phi_{KJ} J^2 J_z^4 + \phi_K J_z^6 + 2\varphi_J J^4 (J_x^2 - J_y^2) \\ &+ \varphi_{JK} J^2 [J_z^2 (J_x^2 - J_y^2) + (J_x^2 - J_y^2) J_z^2] + \varphi_K [J_z^4 (J_x^2 - J_y^2) + (J_x^2 - J_y^2) J_z^2] \end{split}$$

In the above equation, G(v) is the vibrational term and  $F_v(J)$  is the rotational term. Submitting the parameters in Tables 1, 2, 5, 6, and 7 into the above equation, one can obtain the calculated rotational energy of  $PO_2^-$ .

Acknowledgments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11 074103, 10974078, and 11174117) and Discipline Construction Fund of Ludong University. All calculations were carried out in the Shuguang Super Computer Computer Center (SSCC) of Ludong University.

#### References

- [1] Zegers E.J.P.; Fisher E.M. Combust. Flame 1998, 115, 230-240.
- [2] Korobeinichev O.P.; Ilyin S.B.; Shvartsberg V.M.; Chernov A.A. Combust. Flame ,118, 718-726.
- [3] Korobeinichev O.P.; Ilyin S.B.; Bolshova T.A.; V Shvartsberg.M.; Chernov A.A.; Combust. Flame 2000, 121, 593-609.
- [4] Twarowoki A. Combust. Flame 1998, 115, 230-240.
- [5] MacDonald M.A.; Jayaweera T.M.; Fisher E.M.; Gauldin F.C. Combust. Flame 1999, 116, 166-176.
- [6] Kawaguchi K.; Saito S.; Hirota E.; Ohashi N. J. Chem. Phys. 1985, 82, 4893-4902.
- [7] H Qian.B.; Davies P.B.; I Ahmad.K.; Hamilton P.A. Chem. Phys. Lett. 1995, 235, 255-259.
- [8] Qian H.B.; Davies P.B.; Hamilton P.A. J. Chem. Soc., Faraday Trans. 1995, 91, 2993-2998.
- [9] Liu Y.Y.; Liu X.Y.; Liu H.P.; Guo Y.Q.; Huang G.M.; Lin J.L.; Gao H.; Duan C.X. Chin. Phys. 2000, 9, 652-655.
- [10] Lawson M.A.; Hoffman K.J.; P Davies.B. J. Mol. Spectr. 2011, 269, 61-76.
- [11] Lohr L.L. J. Phys. Chem. 1984, 88, 5569-5574.
- [12] Kabbadj Y.; Lievin J. Phys. Scripta 1989, 40, 259-269.
- [13] Xu C.; de Beer E.; Neumark D.M. J. Chem. Phys. 1996, 104, 2749-2751.
- [14] Cai Z.L.; Hirsch G.; Buenker R.J.; Chem. Phys. Lett. 1996, 255, 350-356.
- [15] Francisco J.S. J. Chem. Phys. 2002, 117, 3190-3195.
- [16] Zeng H.; Zhao J. Chin. Phys. B 2012, 21, 078202 (1-6).
- [17] Hunter S.J.; Hipps K.W.; Francis A.H. Chem. Phys. 1979, 39, 209-220.
- [18] Park Y.S.; Woods R.C. J. Chem. Phys. 1996, 104, 5547-5554.
- [19] Zhang X.; J Wu.; Wang F.; Cui Z. J. Mol. Struct. (THEOCHEM) 2008, 851, 40-45.
- [20] Liang J.; Cui F.; R Wang.; Huang W.; Cui Z.F. J. Mol. Spectr. 2013, 286, 12-20.
- [21] Pang W.X.; Wang M.S.; Yang C.L.; Zhang Y.F. J. Chem. Phys. 2007, 126, 194301(1-5).
- [22] Guo Y.R.; Wang M.S.; C Yang.L.; Sun Y.T.; Zhu Z.L. J. Theor. Comput. Chem. 2011, 10, 849-860.
- [23] Zhu Z.L.; Wang M.S.; Yang C.L.; Ma M.Z.; Liu W.W. J. Theor. Comput. Chem. 2013, 12, 1250117(1-12).
- [24] Moller C.; Plesset M.S. Phys. Rev. 1934, 46, 618-622.
- [25] Becke A.D. J. Chem. Phys. 1993, 98, 5648-5653.
- [26] Lee C.; Yang W.; Parr R.G. Phys. Rev. B 1988, 37, 785-789.
- [27] Miehlich B.; Savin A.; Stoll H.; Preuss H. Chem. Phys. Lett. 1989, 157, 200-206.
- [28] Perdew J.P. Phys. Rev. B 1986, 33, 8822-8824.
- [29] Perdew J.P.; Chevary J.A.; Vosko S.H.; Jackson K.A.; Pederson M.R.; Fiolhais C. Phys. Rev. B 1992, 46, 6671-6687.

- [30] Frisch M.J.; Trucks G.W.; Schlegel H.B. et al, Gaussian 03, Gaussian Inc., Pittsburgh, PA, 2003.
- [31] Dunning Jr. T.H. J. Chem. Phys. 1989, 90, 1007-1023.
- [32] Clabo Jr. D.A.; Allen W.D.; Remington R.B.; Yamaguchi Y.; H chaefer .F. S. Chem. Phys. 1988, 123, 187-239.
- [33] Mills I.M. Molecular Spectroscopy: Modern Research, Vol. 1, Academic Press, New York, 1972 P.115-140.