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EXPLICIT HERMITE INTERPOLATION POLYNOMIALS VIA
THE CYCLE INDEX WITH APPLICATIONS

FRED J. HICKERNELL AND SHIJUN YANG

Abstract. The cycle index polynomial of a symmetric group is a basic tool

in combinatorics and especially in Pólya enumeration theory. It seems irrel-

evant to numerical analysis. Through Faá di Bruno’s formula, cycle index is

connected with numerical analysis. In this work, the Hermite interpolation

polynomial is explicitly expressed in terms of cycle index. Applications in

Gauss-Turán quadrature formula are also considered.
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1. Introduction

The cycle index polynomial of a symmetric group is a basic tool in combinatorics
and plays an important role in Pólya enumeration theory. It is seemingly irrelevant
to numerical analysis. To our best knowledge, its applications in numerical analysis
is not systematical and many of them are in its disguises, see e.g., [16, 17, 21].
Actually, it can have wide applications in numerical analysis. Using cycle index
polynomial, [19] find a closed form solution for a nonlinear system of equations,
a problem arising in constructing nonlinear best quadrature formulas for Sobolev
classes [18]. A further development and the proof of [19] are contained in [20].

As is well known, Faá di Bruno’s formula applies when explicit higher derivatives
of a composite function are sought [4]. Bell’s polynomial arises naturally in Faá
di Bruno’s formula. The former is closely related to the cycle index polynomial.
Therefore, it turns up in problems where higher derivatives of a composite function
or its variants are involved. Algebraic and combinatorial tools and techniques
can be exploited in such problems, which make analysis and computations easily
accessible.

Based on Faá di Bruno’s formula and logarithmic differentiation, the Hermite
interpolation polynomial is explicitly expressed in terms of cycle index in this pa-
per. And so are the divided differences with multiplicity. To our best knowledge,
these formulas are new. Applications of these formulas to Gauss-Turan quadrature
formulas are also included.

This work focuses on explicit Hermite interpolation polynomials via the cycle
index, aiming at stimulating more attention to applications of the cycle index in
numerical analysis.

Received by the editors November 11, 2006 and, in revised form, July 2, 2007.
2000 Mathematics Subject Classification. 05A15, 65D05, 65D32.

457



458 F. J. HICKERNELL AND S. J. YANG

2. Cycle index of symmetric group and Hermite interpolation polyno-
mial

Throughout, let [n] := {1, 2, . . . , n} and G be a permutation group of degree n.
For any permutation σ ∈ G and i ∈ [n], let ci(σ) be the number of cycles of length
of i in σ. The key result of Pólya theory is an expression for the number of orbits
in terms of the cycle index polynomial of G. This polynomial, in n variables, is
defined as follows [4, 10].

Definition 2.1.

(2.1) Z(G; x1, x2, . . . , xn) :=
1
|G|

∑

σ∈G

x
c1(σ)
1 x

c2(σ)
2 · · ·xcn(σ)

n ,

where |G| is the order of G, i.e., the number of its elements. If G =symmetric
group Sn of degree n, then its cycle index polynomial is written as

(2.2) Zn(x1, x2, . . . , xn) := Z(Sn;x1, x2, . . . , xn).

The following lemma can be easily verified (cf. [20]).

Lemma 2.2. (Recurrence relation)

Z0 = 1,

nZn(x1, x2, . . . , xn) =
n∑

k=1

xkZn−k(x1, x2, . . . , xn−k), n ≥ 1.
(2.3)

Here are first few examples of cycle index

Z1(x1) = x1,

Z2(x1, x2) =
1
2
(x2

1 + x2),

Z3(x1, x2, x3) =
1
6
(x3

1 + 3x1x2 + 2x3),

Z4(x1, x2, x3, x4) =
1
24

(x4
1 + 6x2

1x2 + 3x2
2 + 8x1x3 + 6x4).

For convenience, we write

Zn(xk) := Zn(xk | k ∈ [n]) := Zn(x1, x2, . . . , xn).

Related to cycle index is Bell’s polynomial which arises naturally in explicit expres-
sions for high-order derivatives of a composite function. The following is (exponen-
tial) complete Bell’s polynomial

(2.4) Yn(xk) := Yn(xk | k ∈ [n]) := n!Zn

( xk

(k − 1)!
| k ∈ [n]

)
,

which can also be expressed as the sum of exponential partial Bell’s polynomials
Bn,m

Yn(xk) =
n∑

m=1

Bn,m(xk).

Here

Bn,m(xk|k ∈ [n]) :=
∑

a1+2a2+···+nan=n
a1+a2+···+an=m

n!
a1!(1!)a1a2!(2!)a2 · · · an!(n!)an

xa1
1 xa2

2 · · ·xan
n .

Bell’s polynomials appear in Faá di Bruno’s formula which explicitly gives the high-
order derivatives of the composite function g ◦ f of functions g and f [4].
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Lemma 2.3. (Faá di Bruno’s Formula)

(2.5)
dn

dtn
g(f(t)) =

n∑
m=1

g(m)(f(t))Bn,m(f (k)(t)|k ∈ [n]),

in particular,

(2.6)
dn

dtn
exp(f(t)) = exp(f(t))Yn(f (k)(t) | k ∈ [n]).

From (2.4) and (2.6) follows

(2.7)
dn

dtn
exp(f(t)) = n! exp(f(t))Zn

( f (k)(t)
(k − 1)!

| k ∈ [n]
)
.

Suppose x1, x2, . . . , xn are different and we are given data f (j)(xi), i = 1, 2, . . . , n; j =
0, 1, . . . ,mi−1, where mi are natural numbers. The Hermite interpolation problem
is to find a polynomial of least degree N :=

∑n
i=1 mi − 1 satisfying

(2.8) H(j)(xi) = f (j)(xi), i = 1, 2, . . . , n; j = 0, 1, . . . ,mi − 1.

This polynomial, called Hermite interpolation polynomial, is known to be unique
and can be expressed as [2] (cf. [24], but there exist some typos.)

(2.9) H(x) =
n∑

i=1

mi−1∑

j=0

f (j)(xi)
mi−j−1∑

k=0

1
j!k!

( (x− xi)mi

Ω(x)

)(k)

x=xi

Ω(x)
(x− xi)mi−j−k

,

where

Ω(x) =
n∏

i=1

(x− xi)mi .

It seems that there is no explicit expressions available for
( (x− xi)mi

Ω(x)

)(k)

x=xi

.

The first aim here is to give a closed form for it in terms of the cycle index. This may
help us gain some insight into the structure of the Hermite interpolation polynomial.
As a consequence, an explicit expression for the divided difference with multiplicity
of a function is also derived.

Now, set

(2.10) gi(x) := log
∣∣∣∣
(x− xi)mi

Ω(x)

∣∣∣∣ .

Then we have

(2.11) gi(x) := −
∑

l 6=i

ml log |x− xl|,

and it is easy to verify

(2.12) g
(r)
i (x) := (−1)r(r − 1)!

∑

l 6=i

ml

(x− xl)r
.

This together with (2.7) yields
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Lemma 2.4. Symbols are as above.

1
k!

( (x− xi)mi

Ω(x)

)(k)

=
(x− xi)mi

Ω(x)
Zk

(
(−1)r

∑

l 6=i

ml

(x− xl)r

∣∣∣ r ∈ [k]
)
.

In particular,

1
k!

( (x− xi)mi

Ω(x)

)(k)

x=xi

=
∏

l 6=i

(xi − xl)−mlZk

(
(−1)r

∑

l 6=i

ml

(xi − xl)r

∣∣∣ r ∈ [k]
)
.

Proof. It suffices to prove the first assertion. A straightforward calculation on using
(2.7) yields

1
k!

( (x− xi)mi

Ω(x)

)(k)

=
1
k!

dk

dxk
exp(gi(x))sgn

( (x− xi)mi

Ω(x)

)

= exp(gi(x))Zk

( g
(r)
i (x)

(r − 1)!
| r ∈ [k]

)
sgn

( (x− xi)mi

Ω(x)

)

=
(x− xi)mi

Ω(x)
Zk

( g
(r)
i (x)

(r − 1)!
| r ∈ [k]

)
,

which combined with (2.12) gives the first assertion. ¤

From Lemma 2.4 and (2.8), we readily have (cf. [15])

Theorem 2.5. The Hermite interpolation polynomial solving problem (2.8) is given
by
(2.13)

H(x) =
n∑

i=1

mi−1∑

j=0

f (j)(xi)
j!

∏

l 6=i

( x− xl

xi − xl

)ml
mi−1∑

k=j

(x−xi)kZk−j

( ∑

l 6=i

ml

(xl − xi)r

∣∣∣ r ∈ [k−j]
)
.

In particular, if m1 = m2 = . . . = mn = m, then
(2.14)

H(x) =
n∑

i=1

m−1∑

j=0

f (j)(xi)
j!

`i(x)m
m−1∑

k=j

(x− xi)kZk−j

(∑

l 6=i

m

(xl − xi)r

∣∣∣ r ∈ [k − j]
)
,

where

`i(x) =
∏

l 6=i

x− xl

xi − xl

is the ith Lagrange interpolation basis function.

The case of m1 == m2 = . . . = mn = m was also addressed in [12]. By a partial
fraction expansion, (2.14) was expressed in terms of Bell’s polynomials.

If mi = 1 for any i, then k = j = 0, and the above formula reproduces the
Lagrange interpolation polynomial since in this case Z0 = 1.

Let f [xm1
1 , xm2

2 , . . . , xmn
n ] be the divided differences of the function f at points

x1, x2, . . . , xn with xi repeated mi times. It is clear that f [xm1
1 , xm2

2 , . . . , xmn
n ] is

the (highest) N degree coefficient in x contained in H(x). With this in mind and
the explicit expression (2.13) for H(x), we immediately have
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Corollary 2.6. Suppose f is sufficiently smooth and x1, x2, . . . , xn are different.

f [xm1
1 , xm2

2 , . . . , xmn
n ] =

n∑

i=1

mi−1∑

j=0

f (j)(xi)
j!

∏
l 6=i(xi − xl)ml

Zmi−j−1

(
(−1)r

∑

l 6=i

ml

(xi − xl)r

∣∣∣ r ∈ [mi − j − 1]
)
.

If, in particular, m1 = m2 = . . . = mn = m, then we have

f [xm
1 , xm

2 , . . . , xm
n ] =

n∑

i=1

m−1∑

j=0

f (j)(xi)
j!

∏
l 6=i(xi − xl)m

Zm−j−1

(
(−1)r

∑

l 6=i

m

(xi − xl)r

∣∣∣ r ∈ [m− j − 1]
)
.

An expression in terms of Bell’s polynomial for f [xm
1 , xm

2 , . . . , xm
n ] can be found

in [12]. Both of the above formulas generalize the classical result

f [x1, x2, . . . , xn] =
n∑

i=1

f(xi)∏
l 6=i(xi − xl)

.

In the case of m1 = m2 = . . . = mn = m, another alternative approach for
representing the Hermite interpolation polynomial can be described as follows. The
difference of a function and its Lagrange interpolation vanishes at the interpolation
nodes and therefore by Newton’s formula

(2.15) f(x)−
n∑

i=1

f(xi)`i(x) = f [x1, x2, . . . , xn, x]ω(x),

where ω(x) =
∏n

i=1(x − xi) is the node polynomial. Applying (2.15) to function
f [x1, x2, . . . , xn, x] in x leads to

f [x1, x2, . . . , xn, x]−
n∑

i=1

f [x1, x2, . . . , xn, xi]`i(x) = f [x2
1, x

2
2, . . . , x

2
n, x]ω(x).

Repeated applications of (2.15) to f [x2
1, x

2
2, . . . , x

2
n, x], . . . , f [xm−1

1 , xm−1
2 , . . . , xm−1

n , x]
and rearrangement finally arrive at

(2.16) H(x) =
n∑

i=1

m−1∑

j=0

f [xj
1, x

j
2, . . . , x

j
n, xi]`i(x)ω(x)j .

This can be found in [3]. The divided difference term in (2.16) can be further
expanded by Corollary 2.6, but we omit the details here.

3. Applications in Gauss-Turán quadrature

The Hermite interpolation polynomial is useful in constructing quadrature for-
mulas including derivative information. Generally, replacing an integrand by (2.13)
leads to a quadrature formula.

We now turn to consider quadrature formulas of Gauss type. More than one
hundred years after Gauss, Turán [13] considered quadrature rules of the form

(3.1)
∫ 1

−1

f(x)w(x)dx =
n∑

i=1

2s∑

j=0

λij(w)f (j)(xi,s) + R(f)
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and showed that such rules have a maximum degree of precision 2(s+1)n− 1, that
is, R(f) = 0 if f is a polynomial of degree not exceeding 2(s+1)n−1. Moreover, he
showed that xi,s are the n zeros of the monic polynomial pn(x) of degree n which
minimizes the following integral

(3.2)
∫ 1

−1

|p(x)|2s+2w(x)dx,

where
p(x) = xn + an−1x

n−1 + · · ·+ a1x + a0.

Such polynomials are known as s-orthogonal polynomials with respect to the weight
w and correspondingly (3.1) is called Gauss-Turán Quadrature formula.

By a theorem of Bernstein [1] the n-th Chebyshev polynomial of the first kind
21−nTn(x) is the solution of (3.2) with respect to the Chebyshev weight 1/

√
1− x2.

Yet despite this, little is known about the corresponding Cotes coefficients of high
order. So Turán raised the following problem in this direction [14].

Problem 26. Give an explicit formula for λij := λij(w) when w = 1/
√

1− x2

and determine its asymptotic behavior as n →∞ and s is fixed.
Micchelli and Sharma [7] solved Turán’s Problem 26. For a different approach,

see [11]. As noted in [22], the following result of a 1972 paper by Micchelli and
Rivlin [6]

(3.3)
∫ 1

−1

f(x)√
1− x2

dx =
π

n

{ n∑

i=1

f(xi) +
s∑

ν=1

1
2ν4νn

(
2ν

ν

)
f ′[x2ν

1 , x2ν
2 , . . . , x2ν

n ]
}

is in fact a solution to Turán’s Problem 26. Here, and throughout this section,
x1, x2, . . . , xn are the n zeros of Tn.

Generalizing and extending (3.3) and other related existing results, Gori and
Micchelli [5] introduced and studied a class of weight functions which admit explicit
Gauss-Turán Quadrature formulas. For every natural number n, the class, denoted
by Wn, consists of all positive integrable functions w on [−1, 1] such that

(3.4) w(x)
√

1− x2 =
∞∑

k=0

′ρkT2kn(x),

where convergence holds with respect to the weighted L1-norm
∫ 1

−1

|f(x)| dx√
1− x2

.

Here the prime on the summation indicates that the first term is halved and f is
defined and integrable on [−1, 1]. They further showed among others that Tn is the
n-th degree s-orthogonal polynomial relative to the weight function w ∈Wn.

As far as we know, apart from the weight w ∈ Wn admitting explicitly known
s-orthogonal polynomial Tn there are only three other kinds of weights whose s-
orthogonal polynomials are explicitly found (each of which depends on s), see Os-
sicini and Rosati [9] or consult [8]. As pointed out in [23], their corresponding quad-
rature formulas can be derived from the one corresponding to the weight 1/

√
1− x2,

and therefore, essentially the only interesting case w ∈Wn deserves investigation.
Now we consider any weight w ∈Wn. For f ∈ C[−1, 1] one obtains

(3.5) I(f ; w) :=
∫ 1

−1

f(x)w(x)dx =
π

2

∞∑

k=0

′ρkA2kn(f),
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where Akn(f) are the Fourier-Chebyshev coefficients

(3.6) Akn(f) =
2
π

∫ 1

−1

f(x)Tkn(x)
dx√

1− x2
, k = 0, 1, . . . .

Let N be the set of all natural numbers, N0 = N ∪ {0}. Using divided difference
functionals at the Chebyshev nodes (with multiplicity), i.e., the zeros of Tn, Gori
and Micchelli in [5] found explicit expressions for A2kn(f) and A(2k+1)n(f), k ∈ N0,
respectively.

Later, one of us [22] provided an alternative approach to I(f ; w) and Akn(f).
Also, the Cotes coefficients λij(w) were explicitly found in [22]. The approach can
be outlined as follows. Taking m = 2s + 1 in (2.16) and substituting thus obtained
Hermite interpolation polynomial H(x) based on zeros Tn, one obtains

(3.7) I(f ; w) = I(H; w) =
n∑

i=1

2s∑

j=0

αij(w)f [xj
1, x

j
2, . . . , x

j
n, xi]

has algebraic degree of exactness 2(s + 1)n− 1, where

αij(w) =
∫ 1

−1

`i(x)ω(x)jw(x)dx.

It remains to find values of αij(w). A straightforward calculation using orthogonal-
ity finally yields

αij(w) =





0, if j is odd;

π

2jnn

j/2∑

k=0

′
(

j

j/2− k

)
ρk, if j is even.

It is interesting to note that αij(w) is independent of i. Putting all together gives
(3.8)

I(f ; w) =
π

2n

{ n∑

i=1

ρ0f(xi) +
n∑

i=1

s∑

j=1

2
4jn

j∑

k=0

′
(

2j

j − k

)
ρkf [x2j

1 , x2j
2 , . . . , x2j

n , xi]
}

.

We pause to comment here the divided difference term in (3.8) can be expanded
according to Corollary 2.6 to give explicit Cotes coefficients. Another way is as the
original one in [22] on using the following fact due to [3]

n∑

i=1

jf [xj
1, x

j
2, . . . , x

j
n, xi] = f ′[xj

1, x
j
2, . . . , x

j
n].

The above arguments lead to the following result due to [5]

(3.9) I(f ;w) =
π

2n

{ n∑

i=1

ρ0f(xi) +
s∑

j=1

1
4jnj

j∑

k=0

′
(

2j

j − k

)
ρkf ′[x2j

1 , x2j
2 , . . . , x2j

n ]
}

.

Now the divided difference term in (3.9) is expanded to yield the following main
result in [22] (Now it is clear from Corollary 2.6 that (3.9) allows a direct expansion).
The following Gauss-Turán quadrature formula

(3.10) I(f ; w) =
π

2n

n∑

i=1

{
ρ0f(xi) +

2s∑

j=1

λij(w)f (j)(xi)
}
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is exact for polynomial f of degree at most 2(s + 1)n− 1, where

(3.11) λij(w) =
s∑

ν=[ j+1
2 ]

(1− x2
i )

νb2ν−j,i,2ν

(j − 1)!22ννn2ν

ν∑

k=0

′
(

2ν

ν − k

)
ρk

and

(3.12) bkij =
1
k!

(`i(x)−j)(k)
x=xi

, k = 0, 1, . . . ; i = 1, 2, . . . , n; j ∈ N.

One comment is in order. The computation of bkij is still not straightforward and
thus deserves further effort. From Lemma 2.4, it follows
(3.13)

bkij = Zk

(
(−1)r

∑

l 6=i

j

(xi − xl)r

∣∣∣ r ∈ [k]
)
, k = 0, 1, . . . ; i = 1, 2, . . . , n; j ∈ N.

Therefore, (3.11) becomes

λij(w) =
s∑

ν=[ j+1
2 ]

(1− x2
i )

ν

(j − 1)!22ννn2ν
Z2ν−j

(
(−1)r

∑

l 6=i

2ν

(xi − xl)r

∣∣∣ r ∈ [2ν − j]
)

ν∑

k=0

′
(

2ν

ν − k

)
ρk.(3.14)

This is more transparent than (3.11) with (3.12) and is more easily computed due
to the recurrence relation in Lemma 2.2.
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