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Abstract. The properties of the effective mass of polaron in semiconductor quantum
dots by influence of Rashba spin-orbit (SO) interaction are studied. The relations of
the strength of confinement ω0, the interaction energy and the effective mass of the
polaron in the electron-LO phonon strong coupling region in a parabolic quantum dot
on the vibration frequency is derived by using improved liner combination operator
method. Numerical calculations for RbCl crystal are performed and the results show
that the Rashba SO interaction makes the ground state energy and the effective mass
of polaron split into two branches; the ground splitting energy and the effective mass
will increase with the vibration frequency increasing. Whereas the interaction energy
is sharply increased until the confinement strength reaches a certain value, then it will
sharply decrease.
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1 Introduction

In recent years there has attracted great attention in spin physics in semiconductors. Most
of it is focused on spin-related optical and transport properties of low-dimensional semi-
conductor structures [1-3]. In particular, the spin-orbit (SO) interaction has attracted a
lot of interest as it plays an important role in the field of semiconductor spintronics. SO
interaction can arise in quantum dots (QDs) by various mechanisms related to electron
confinement and symmetry breaking and are generally introduced in the Hamiltonian
via the Rashba [4] and Dresselhaus terms [5]. Dresselhaus term is obtained from the elec-
tric field produced by the bulk inversion asymmetry of the material and Rashba term is
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generated due to the structural asymmetry of the heterostructure. Rashba splitting has
been observed in many experiments and it constitutes the basis of the proposed electronic
nanostructures. The strength of these interactions not only depends on the characteristics
of the material but can be controlled by an external electric field.

In the literature, most of the theoretical studies about the solution of the SO effects in
QDs are carried out by means of perturbative schemes or numerical simulations [6, 7].
Analytical solution of the problem has recently been treated by employing various tech-
niques [8-11]. For zero-magnetic field and a hard-wall confining potential the exact ana-
lytical results have been obtained by Boulgakov and Sadreev[12]. Tsitsishvili et al present
an analytic solution to Rashba coupling in a quantum dots [13]. Tapash Chakraborty
report on a theoretical approach developed to investigate the influence of the Bychkov-
Rashba interaction on a few interacting electrons confined in a quantum dot [14].

There have been much work about the influence of the Rashba SO interaction on
the electron system, the study of the effect of the Rashba SO interaction on the polaron,
however, is quite rare so far. In this paper, we find the Rashba SO will induce the splitting
of the ground state energy and the effective mass of the polaron.

2 Theoretical model

We consider a quasi-two-dimensional quantum dot normal to the z axis. Therefore, we
confine ourselves to considering only the motion of the electron in the x-y plane. The
Hamiltonian of the electron-phonon system is given by

H=
p2

2m
+V(ρ)+Hph+Hph−e+HSO, (1)

where the first term denotes the kinetic energy of the electron and the second term repre-
sents the confining potential in a single QD that is

V(ρ)=
1

2
mω2

0ρ2, (2)

where m is the bare band mass of the electron and ω0 is the confinement strength of the
quantum dot.

The Hamiltonian of the phonons Hph is given by

Hph=∑
q

h̄ωLOb+q bq, (3)

where b+q (bq) is the creation (annihilation) operator of a bulk LO phonon with wave
vector q1,q=(q//,qz).

The electron-phonon interaction term Hph−e is expressed as

Hph−e=∑
q

[Vqexp(iq·r)bq+h.c.], (4)
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where r=(ρ,z). The Fourier coefficient for the interaction are described by

Vq= i(
h̄ωLO

q
)(

h̄

2mωLO
)1/4(

4πα

v
)1/2, (5a)

α=(
e2

2h̄ωLO
)(

2mωLO

h̄
)1/2(

1

ǫ∞

− 1

ǫ0
), (5b)

where ε∞ and ε0 are the optical dielectric and the static dielectric constant. α is the
electron-LO phonon coupling strength. v is the volume of the crystal.

The contribution of the Rashba effect to the single-electron Hamiltonian can be ex-
pressed as

HSO=
α

h̄
(pxσy−pyσx) (6)

where σx, σy, are the Pauli spin matrices and the Rashba parameter αR is linearly depen-
dent on the expectation value of the electric field 〈E〉. In semiconductor structures, it is
determined by many factors such as the geometry [15]. αR = c〈E〉, there the coefficient c
is inversely proportional to the energy gap and effective mass [16,17]. The Rashba inter-
action usually dominates in quantum dots obtain in a heterostructure [6,7,18]. We have
chosen to include the Rashba term than the Dresselhaus term.

Following Tokuda [19], one also introduce the improved linear combination of the
creation operator a+j and annihilation operator aj to represent the momentum and posi-

tion of the electron in the x-y plane

pj =
(mh̄λ

2

)
1
2
(aj+a+j +p0j), (7a)

ρj = i
( h̄

2mλ

)
1
2
(aj−a+j ), (7b)

j= x,y (7c)

where λ and p0 are variational parameters. Carrying out a unitary transformation

U=exp
(

∑
q

(b+q fq−bq f *
q)
)

(8)

where fq( f *
q) is the variational parameter. The transformed Hamiltonian can be rewritten

as

H′=H′
||+

p2
Z

2m
(9)

The ground state wavefunction of the system is chosen as

|Ψ〉= |ϕ(Z)〉(aχ 1
2
+bχ− 1

2
)|0〉b|0〉a (10)

where |ϕ(Z)〉 is the normalized electron wavefunction along the z direction and |〈ϕ(Z)|
ϕ(Z)〉|2=δ(Z) since the electrons are considered to be confined in an infinitesimally nar-

row layer. χ 1
2
=

(

1
0

)

and χ− 1
2
=

(

0
1

)

label the up and down states of the z component of
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the spin, a and b are coefficients. |0〉a is the ground state of polaron, and |0〉b is the zero
phonon state, which satisfied bq|0〉b = aj|0〉a = 0. To obtain the effective mass of strong-
coupling polaron, the minimization of the energy should be performed by constraining
the total momentum operator P||T of the system parallel to the x-y plane. The total mo-
mentum of the system is parallel to the x-y plane operator can be represented as

P||T =P||+∑
q

b+q bqh̄q|| (11)

The minimization problem is now carried out by using the Lagrange multipliers, choos-
ing an arbitrary constant multiplier . Now the ground state splitting energy of the whole
system can be obtain as

E±=min⌊F±(u,p0,λ, fq)⌋ (12)

F±(u,p0,λ, fq)=a 〈0|b〈0|U−1(H||−p·u)U|0〉b|0〉a (13)

F±(u,p0,λ, fq) may be called the variational parameter function. Using the variational
method, we get the variational parameter fq( f ∗q ) and p0. Substituting fq( f ∗q ) and p0 into
F, we have

F±(u,λ)=
h̄λ

2
+

h̄ω2
0

2λ
−mu2

2
− α2

R

2h̄2
m± αR

h̄
mu− αh̄

√
λω1/2

LO√
π

(1+
1

3

u2mλ

h̄ω2
LO

) (14)

Performing the variation of F±(u,λ) with respect to λ, we obtain the expression of the
vibration frequency of strong-coupling polaron in a parabolic quantum dot

λ2−α

√

ωLO

π
λ

3
2 −ω2

0 =0 (15)

By solving equation (15) we obtain the vibration frequency of the strong-coupling po-
laron

λ=λ0 (16)

Substituting these parameters and the function in equation (14), the ground state splitting
energy of the strong-coupling polaron can be expressed as

E±=
h̄λ0

2
+

h̄ω2
0

2λ0
−mu2

2
− α2

R

2h̄2
m± αR

h̄
mu− αh̄

√
λ0ω1/2

LO√
π

(1+
1

3

u2mλ0

h̄ω2
LO

) (17)

The spin-splitting energy at zero magnetic fields can be expressed as

ESO =±αR

h̄
mu− α2

R

2h̄2
m (18)
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For the momentum expectation value of the strong-coupling polaron in a parabolic quan-
tum dot in the x-y plane, we find

P̄||=b 〈0|a〈0|U−1P||TU|0〉a|o〉b =m

[

1± 2αR

h̄u
+

2α

3
√

π

(

λ0

ωLO

)
3
2

]

u (19)

It is evident from the structure of this expression that u has the meaning of velocity which
may be regarded as the average velocity of the polaron in the x-y plane, and the factor
before u, namely

m∗
±=m

[

1± 2αR

h̄u
+

2α

3
√

π

(

λ0

ωLO

)
3
2

]

u (20)

can be interpreted as the effective mass of the strong-coupling polaron in a parabolic
quantum dot.

Finally, the effective Hamiltonian of strong-coupling polaron in a parabolic quantum
dot can be expressed as

He f f =Hkin+Hint (21)

where

Hkin =
p2

z

2m
+

P2
||

2m∗ (22)

Hint=
h̄λ0

2
+

h̄ω2
0

2λ0
− 1√

π
αh̄ωLO

(

λ0

ωLO

)
1
2

− α2
R

2h̄2
m (23)

are the kinetic energy and the interaction energy of strong-coupling in a parabolic quan-
tum dot.

From Eq. (20) one can see that the effective mass m∗
± of strong-coupling in a parabolic

quantum dot depends not only on the frequency of phonon ωLO and vibration frequency
λ0 but also on αR the strength of spin-orbit coupling. From Eq. (23) one can see that the
interaction energy Hint of strong-coupling in a parabolic quantum dot depends not only
on the frequency of phonon ωLO, the strength of confinement ω0, the vibration frequency
λ0 but also on αR the strength of spin-orbit coupling.

3 Numerical results and discussion

To show more obviously the influence of αR the strength of spin-orbit coupling, the
vibration frequency λ0 and the influence of the confinement strength ω0 on the prop-
erties of strong coupling in a parabolic quantum dot, taking in a quantum dot of the
RbCl crystal (the data for a RbCl crystal [20]: ε0 = 4.58, ε∞ = 2.20, h̄ωLO = 22.317 meV,
α=3.81, ωLO=3.39×1013S−1) for example, we perform a numerical evaluation.

Fig. 1 shows the relationships between polaron ground state energy Eb = (αR = 0,
ground state splitting energy E± of the strong coupling in a parabolic quantum dot of the
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Figure 1: The polaron ground state energy Eb =(αR = 0) and ground state splitting energy E± calculated by
using Eq. (17). Energy as a function of vibration frequency λ in the RbCl crystal. They are expressed by the
black line, dash line respectively (α=20 meV nm, u=2×104 m/s).

RbCl crystal with the vibration frequency λ0. We assume that αR=20 meV nm u=2×104

m/s. From the figure, one can see that polaron ground state energy Eb and ground state
splitting energy E± will increase strongly with increasing the vibration frequency λ0.The
Rashba SO interaction originating from the lack of inversion symmetry which causes a
local electric field perpendicular to the plane of heterostructure splits the ground state
energy of the polaron into two branches, each of them is not stand for the splitting en-
ergy of polaron spin-up (spin-down) energy, but the result of common affect of polaron
spin-up and spin-down.When the material selected, the increase αR can be attributed to
the increase in 〈E〉 by the negative gate voltage because it can not significantly charge
the energy gap and effective mass, therefore, the coefficient can be treated as a constant.
In another words, by applying a voltage to a gate the effective electric field in the con-
ducting channel and thus the Rashba coupling parameter can be controlled. The Rashba
parameter takes values in the range of 10−11−10−12 eV m [21]. When the splitting pa-
rameter αR is very small, the spin splitting takes less than 1% of the polaron ground state
energy. When the splitting parameter αR is very large such as 20 meV nmthe spin split-
ting energy is about ESO=6.05 meV. It takes about 6% of the polaron ground state energy.
With the present of the phonons, the total energy of the partial is decreased, so the state of
the polaron is much stable than electron’s. Therefore, the splitting state of the polaron is
much stable. Furthermore E state is the most stable in the splitting state of the polaron.
So we can see that Rashba effect can not be neglected.

Fig. 2 shows the relationship between the confinement strength ω0 and the vibration
frequency λ0 in RbCl crystal. We assume that αR = 20 meV nm. From the figure, one
can see that polaron the confinement strength ω0 will increase strongly with increasing
the vibration frequency λ0. This is because of the exist of confining potential ω0 limits
the moving of electrons increase with increasing of the confining potential that is the



144 X. -J. Ma and J. -L. Xiao / J. At. Mol. Sci. 4 (2013 ) 138-146

2 4 6 8 10
0

2

4

6

8

10

 

w
0
/1
0
1
4

H
z

l
0
/10

14
Hz

Figure 2: The confinement strength ω0 as a function of the vibration frequency λ0 in RbCl crystal which
calculated by using Eq. (15).

decrease of ρ, the enhancement of the energy electron thermal motion which the medium
is phonon and the interaction of electron-phonon enhance with diminishing the extent
of particle’s moving, cause the increase of the vibration frequency, so it shows the novel
quantum size effect.

Fig. 3 shows the relationship between the vibration frequency λ0 and the effective
mass m∗

±/m in RbCl crystal. We assume that αR=20 meV nm. From the figure, one can see
that polaron the effective mass m∗

±/m will increase strongly with increasing the vibration
frequency λ0. As we all know polaron is the interaction between electron and phoron,
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Figure 3: The effective mass m∗
±/m calculated by using Eq. (20). Effective mass as a function of the vibration

frequency λ0 in RbCl crystal.
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Figure 4: The interaction energy Hint calculated by using Eq. (23). Interaction energy as a function of the
vibration frequency λ0 in RbCl crystal.

which cause the effective mass of the electron changed. The Rashba SO interaction makes
the density in the material of in different spin state, that is to say, spin state splits on their
energies. This energy’s split is the result of the split of the polaron’s effective mass.

Fig. 4 shows the relationship between the interaction energy Hint and the vibration
frequency λ0 in RbCl crystal. From the figure, we can see that the interaction energy in-
creases rapidly to the maximum Hintmax=−58.06 meV at λ0=0.8×1014 Hz and decrease

rapidly with increasing the λ0. We obtain Hint = h̄λ0− 3
2 ah̄

√

wLO
π λ1/2

0 − α2
R

2h̄2 m, after insert-

ing Eq. (15) to Eq. (23). In the point of mathematical view, the increasing speed of λ is

bigger than λ
1
2 , but the coefficient of h̄ is smaller than 3

2 ah̄
√

wLO
π , so it appear the maxi-

mum. Inserting λ0 = 0.8×1014 Hz (at the maximum point) into Eq. (15), ω0 is obtained.

r0 =( h̄
2mwLO

)
1
2 is the radius of polaron and l0=( h̄

mω0
)

1
2 is the effective confinement length

of the QD. We can find that r0 = l0 = 1.3 nm. It is said that, when the polaron’s radius
is equal to the effective confinement length of the QD, the interaction energy is the max-
imum. From that, we can draw the conclusion that interaction energy has sympathetic
vibration character with the change of the confinement strength ω0, so felicitous con-
finement strength ω0 is favor of stabilization of the polaron in semiconductor quantum
dots.

4 Conclusion

In this paper, we have adopted improved liner combination operator method to inves-
tigate the ground state of a polaron which in the electron-LO phonon strong coupling
region in a parabolic quantum dot by considering the influences of the Rashba SO inter-
action. The numerical calculation is performed on RbCl crystal. We find that the spin-
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splitting energy and effective mass of polaron induced by Rashba SO interaction is sen-
sitive to αR the strength of spin-orbit coupling. The total polaronic correction is negative
and decreases the ground state energy. The vibration frequency and the effective mass
will increase with the confinement strength increasing. Whereas the interaction energy
is sharply increased until the confinement strength reaches a certain value, then it will
sharply decrease, so felicitous confinement strength ω0 is favor of stabilization of the po-
laron in semiconductor quantum dots. From this paper, we can see that the Rashba effect
plays a fundamental role in the understanding of the properties of the spin-dependent
ground state energy of the polaron in semiconductor quantum dots.
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