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Abstract. High-order quantum correlation provides powerful methods to reveal the
quantum many-body behavior of ultracold atomic gases. In this work, the second-
order quantum correlation is adopted to study the many-body behavior of ultracold
Bose gases in the presence of both a two-dimensional optical lattice and weak disorder.
According to investigations, it is found that even a weak disorder plays a significant
role in the quantum many-body behavior, which manifests itself through the second-
order quantum correlation. With the Bogoliubov theory, our studies show that both
interatomic interactions and weak disorder would destroy the first-order quantum co-
herence of the condensate because of the depletion, and the resulting depletion has
significant characteristic in the second-order correlation of the system.

PACS: 03.75.Hh, 03.75.Kk, 64.60.Cn
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1 Introduction

The high-order correlation was first used by Hanbury Brown and Twiss (HBT) to mea-
sure the size of a distant binary star [1]. Their pioneering experiment reveals that in-
tensity fluctuations and resulting correlations contain information about the coherence
and quantum statistics of probed system. This principle has found applications in many
fields such as astronomy, high-energy physics, atomic physics, and condensed matter
physics [2–5]. Recently, advances in atom cooling and detection have led to the observa-
tion of the atomic analog of the HBT effect [6, 7]. Henceforth the high-order correlation
analysis becomes an increasingly important method for studies on complex quantum
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phases of ultracold atoms. Correlation techniques have been successfully employed in
recent experiments such as the atomic analog of the HBT effect [8], density-density cor-
relation for degenerate bosonic and fermionic atomic gases in an optical lattice [9–11],
second-order correlation of an atom laser [12], and the observation of pair-correlated
fermionic atoms based on second-order correlation [13].

The high-order correlation for ultracold atomic gases released from an optical lattice
has been intensively studied both experimentally and theoretically. Relevant experiments
show that ultracold atoms, being prepared in a optical lattice and in a Mott-insulator
state, display sharp peaks in their spatial correlation when released from the optical lat-
tice [9, 11]. These spatial correlation reveals the quantum statistics and the underlying
order of bosonic or fermionic atoms in the optical lattices. In addition, the formalisms
for describing the correlations observed between ultracold bosons released from an op-
tical lattice have also been theoretically studied [14]. These formalisms, including the
Bogoliubov method, the mean-field decoupling approach, and the particle-hole pertur-
bative solution about the perfect Mott-insulator state are applicable for a broad range of
behaviors in the lattice system and present numerous avenues for the future theoretical
development.

On the other hand, physical effects driven by disorder in ultracold atom systems have
become an active research field for many years [15]. As disorder is ubiquitous in nature
and even only a weak disorder in quantum systems can have dramatic impact on the
properties of the physical systems. Along this line, we theoretically investigate the prob-
lem of how weak disorder affects the second-order correlation of the ultracold Bose gas
released from an optical lattice in the present paper. In the investigation, we mainly fo-
cus on the situation that the atoms are initially confined in a 2D optical lattice with weak
quenched impurities and in a superfluid state. As is well known that the presence of ex-
ternal disorder leads to depletion in the ultracold Bose system [19, 20]. Our results prove
that the depletion due to the external disorder produces correlation and pairing lines in
the (normalized) second-order correlation due to the classical correlation of the disor-
der. The correlation of disorder by itself is resulted from classical interference between
random scattering routes, which is generally very complex and unusual [17]. According
to our investigation, it is shown that the classical correlation of the disorder, even being
switched off, can be displayed by the second-order correlation of the released ultracold
atoms.

This paper is organized as follows. In Section II we give a general description of
the Bose system in a 2D optical lattice with the presence of weak disorder. Section III
derives the second-order correlation function for a simplified problem in which atoms are
prepared in a 2D optical lattice with the presence of disorder and then freely expand. The
details in the correlation function are examined in this section. A summary is provided
in Section IV.
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2 An ultracold Bose system in the presence of both a 2-D optical

lattice and weak disorder

The many-body Hamiltonian for an ultracold Bose system in the presence of both a 2D
optical lattice and weak disorder can be described as [16]

H−µN =
∫

drψ†(r)[− h̄2

2m
▽2−µ+V0

2

∑
j=1

sin2(kxj)+Vran(r)

+
g

2
ψ†(r)ψ(r)]ψ(r), (1)

where m and µ refer to the mass and the chemical potential of the bosons, respectively.
ψ(r) denotes the field operator for the Bose system, and N =

∫
drψ† (r)ψ(r) represents

the number operator of the Bose system. g is the coupling constant between the bosons.
The lattice is taken to be simple square with d=π/k and b= 2k the length of the direct
and reciprocal lattice vectors along each direction, where k is the wavelength of light
used to produce the lattice. This lattice is of separable form, of the type produced in
experiments with two sets of orthogonal counterpropagating light beams. The depth
along each direction (i.e. V0) is assumed to be the same.

In the above Hamiltonian, Vran(r) denotes the external disorder potential that brings
disorder to the Bose system. The external disorder potential is here idealized as random
distributions of hard-sphere potentials, which can be produced by a random potential
associated with quenched impurities [18]

Vran(r)=
Nimp

∑
i=1

v(r−ri), (2)

where ri

(
i=1,2,··· ,Nimp

)
stand for the randomly distributed positions of the impurities

over the 2D optical lattice, and v(r−ri) represents the two-body interaction between the
bosons and the impurity located at ri. Nimp denotes the total number of the quenched
impurities. Regarding a dilute Bose system and small concentrations of the impurities,

the potential v(r−ri) can be expressed by a pseudo-potential v(r−ri)=
∼
gimpδ(r−ri), here

∼
gimp is the effective coupling constant between the bosons and the quenched impurities.

Thus, the Fourier transform of Vran(r) can be directly given by

Vk=
1

V

∫
eik·rVran(r)dr=

∼
gimp

V

Nimp

∑
j=1

eik·rj , (3)

where V is the total volume of the system. If the randomness is uniformly distributed
with the density nimp=Nimp/V and Gaussian correlated, the three basic statistical prop-
erties of the disorder are given by
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V0= g̃impnimp, (4)

VkV−k= g̃2
impnimp/V, (5)

VkV−kVpV−p=
(

g̃2
impnimp/V

)2
+
(

g̃2
impnimp/V

)2
δk,p

+
(

g̃2
impnimp/V

)2
δk,−p. (6)

Here the notation ··· refers to the ensemble average over all disorder configurations [17].
Eqs. (5) and (6) represent the first-order correlation and the second-order correlation of
the disordered impurities, respectively. In order to calculate their values averaged over
the realizations of the random potential, that is, over the positions of the scatterers, it
is useful to note that most of the expanded terms in Eqs. (5) and (6) average to zero.
The terms which contribute to the correlations are the ones for which the phases vanish.
Specially, Eq. (6) is the result of the superpositions of two pairs of identical trajectories,
those which have the same sequence of scattering events, either in the same or in the
opposite directions. Later, we will prove that these correlations have impacts on the
second-order correlation of the released bosonic gases.

Here, we restrict ourself to the condition that the chemical potential µ is smaller than
the inter-band gap. Thereby, we can only consider the lowest band of the system. In the
tight-binding approximation, the lowest Bloch band of the BEC system can be expressed
in terms of Wannier functions as φkx

(x)φky
(y), where φkx

(x)=∑l e
ilkx w0(x−ld). Here the

Wannier state w0(x) of the ground band can be approximated as a harmonic oscillator
ground state

w0(x)≈ 1

π1/4σ1/2
exp

(
− x2

2σ2

)
, (7)

where σ denotes the oscillator length. The field operator can be expanded by the expres-
sion Ψ(r)=∑k âkφkx

(x)φky
(y), where the annihilation operator âk represents eliminating

a boson in the quasi-momentum basis h̄k= h̄
(
kx,ky

)
state.

On the basis of the above assumptions, the Bogoliubov approximation is still applica-
ble and the Bogoliubov canonical transformation can be acquired as [16]

âk =ukĉk−vk ĉ†
−k−

√
N0(uk−vk)

2

Ek
Vk, (k 6=0) (8)

with

u2
k =

1

2

(
ε0

k+n0U

Ek
+1

)
, v2

k =
1

2

(
Ek+n0U

Ek
−1

)
,

Ek =

√(
ε0

k

)2
+2n0Uε0

k, ε0
k =2J

[
2−cos(kxd)−cos

(
kyd
)]

. (9)
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Here the Bogoliubov quasiparticle operators ĉk is introduced, and N0 denotes the total
number of the particles in the condensate. J represents the tunnelling rate between
neighboring wells, and U is an effective coupling constant. n0 = N0/(M×M) (M×M
is total number of the 2D lattice sites) is the average number of condensed atoms per
lattice site. Specially, the last term in the Bogoliubov transformation (Eq. (8)) arises from
the disorder, which corresponds to the physical process in which the disorder potential
scatters a particle in the quasi-momentum state k into the condensate.

When both the optical lattice and the external disorder potential are suddenly switched
off, the atoms expand freely in the 2D space. In the far-field limit, after a free evolution
of time t, the expanded field operator evolves to [14]

Ψ(r,t)=∑
k

âk A(r,t)F(Q(r)−k), (10)

where Q(r)=mr/(h̄t) =(Qx,Qy) relates the 2D in situ momentum h̄Q of the field to the
final observation position r=(x, y).

A(r,t)=
exp

{
− r·r

2[W(t)]2

}
exp

{
i

h̄Q(r)·Q(r)t
2m

}
eiθ

(
π1/4 [W (t)]1/2

)2
(11)

is the common (complex) amplitude of all Wannier states. W (t)=σ

√
1+(h̄t/(mσ2))2

is

the spatial width of the wave packets at time t and θ = 1
2 arctan

(
th̄/
(
mσ2

))
. FM (Q) is

defined as

FM (Q)=
sin
(

1
2 MQxd

)
√

Msin
(

1
2 Qxd

)
sin
(

1
2 MQyd

)
√

Msin
(

1
2 Qyd

) , (12)

which is a peaked and periodic function. For M large enough , FM (Q) is sharply peaked
at Q=

(
Qx, Qy

)
=(nb, mb) (m,n=0,±1,±2,···) with peak height M.

For compactness of the following equations, we abbreviate our notation according to

FM (Q(r1)−q)=FQ1−q, (13)

FM (Q(r2)−q)=FQ2−q, (14)

and so on.
The normalized second-order correlation function for the released atoms is defined

as

g(2) (r1,r2,t)=
G(2)(r1,r2,t)

〈n(r1,t)〉〈n(r2,t)〉 . (15)

Here G(2) (r1,r2,t)=
〈
Ψ† (r1,t)Ψ† (r2,t)Ψ(r2,t)Ψ(r1,t)

〉
represents the second-order corre-

lation and n(r,t)=Ψ† (r,t)Ψ(r,t) is the density operator. g(2) (r1,r2,t) represents the joint
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probability of detecting one particle at location r1 and another particle at location r2 at the
same time t. g(2) (r1,r2)>1 (<1) indicates a tendency of particle bunching (antibunching),
typically for bosons (fermions).

Obviously, the first-order and the second-order correlation of the disorder (Eqs. (5
and 6)) should appear in the expansion of the second-order spatial correlation function
for the released ultracold atoms. In Section IV, we will investigate the impact of the
disorder on the second-order correlation for the released ultracold bosons in detail.

3 Depletion and second-order correlation for the released ultra-

cold bosons

3.1 Depletion of the ultracold Bose system

When a Bose system is subject to the action of an external spatially random field, the
condensate fraction reduces. Huang and Meng treated a Bose-condensed system in the
case of asymptotically weak interatomic interaction and asymptotically weak disorder
[20], and they suggested that there can exist the so-called Bose glass phase.

We consider the case of T=0 in our further investigations. In this case, the ground state
of the system is the quasi-particle vacuum state, i.e., ĉk |vac〉= 0. Thus the condensate
population is reduced from the total number of atoms because of the depletion, i.e., N0=

N−Ñ , where Ñ=∑
q

v2
q+∑

q
N0

(
uq−vq

)4
VqV−q/E2

q is the number of the depleted atoms.

Here the first term and the second term of Ñ represent the quantum depletion due to the
inter-atomic interaction and the depletion due to the scattering of condensed particles
with the disorder potential, which are referred to the normal uncondensed and glassy
component [19, 20], respectively.

For the convenience of the following numerical calculations and analyses, the disor-
der strength and the interaction strength are characterized by two dimensionless param-
eters:

α=
VkV−k

(2J)2
=

g̃2
impnimp

V (2J)2
, (16)

and

β=
U

2J
, (17)

respectively. The density of the released ultracold atomic gas ρ(r,t) = 〈Ψ†(r,t)Ψ(r,t)〉
consists of two parts

ρ(r,t)=ρ0(r,t)+ρ1(r,t) , (18)

the first term of which is the density of the condensed atoms
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ρ0(r,t)=N0 |A(r,t)|2 F2
Q, (19)

and the second term is the density of the condensate depletion, which can be divided into
two parts: ρ1(r,t)=ρN (r,t)+ρG (r,t) . Here

ρN (r,t)= |A(r,t)|2 ∑
q 6=0

v2
qF2

Q−q (20)

and
ρG (r,t)= |A(r,t)|2 ∑

q 6=0

RqF2
Q−q (21)

represent the density of the normal uncondensed and the glassy component, respectively,

where Rq=N0

(
uq−vq

)4
VqV−q/E2

q. Fig. 1 (a-d) show the whole density profile of the ul-
tracold bosonic gas, the density profile of the condensed atoms, the density profile of the
normal uncondensed atoms and the density profile of the glassy component according
to Eq. (19-21), respectively. In computing these density distributions, we consider 10,000

Figure 1: The density distribution of the released ultracold Bose gas: (a) The whole density of the ultracold
Bose gas, (b) the density of the condensed atoms, (c) the density of the normal uncondensed atoms, and (d)
the density of the glassy component. Here

(
Qx,Qy

)
=(mx/(h̄t),my/(h̄t)) are in units of b=2π/d (the length

of the reciprocal lattice vector). Parameters: N0 =10,000 (the number of the condensed atoms), d=425 nm)
(the spatial period of the optical lattice), σ=78 nm (the oscillator length), M=25 ( M×M=625 is the total
number of the 2D lattice sites), and W (t) = 465 µm (the spatial width of the wave packets). The disorder
strength and the interaction strength related parameters are set as α= 1 and β= 2 (which corresponds to a
depletion fraction of 16% for the above paramaters). Either the density of the depletion due to the inter-atomic
interaction or the density of the depletion due to the disorder show splitting structure, which can be identified
as a diffuse background in the time-of-flight images in practical experiments [21,22].
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Na atoms in the condensate and use d = 425 nm. Other related parameters are σ = 78
nm, M=25, and W (t)=465 µm. And the disorder strength and the interaction strength
related parameters are set as α=1 and β=2 (which corresponds to a depletion fraction of
16%), respectively. Fig. 1 (c) and 1 (d) show that the density of the depletion, either due to
the inter-atomic interaction or due to the disorder, has splitting structure. The condensed
atoms compose the main part of the whole density, and the depletion is much smaller
compared to the whole density for our parameters. Nevertheless the depleted fraction
of a gaseous Bose-Einstein condensate in the optical lattice was directly observed as a
diffuse background in the time-of-flight images [21, 22]. Those experimental measure-
ments also prove that Bogoliubov theory provides a semiquantitative description even
the depleted fractions is in excess of 50%.

3.2 Second-order correlation between the released Bosons

We now proceed to derive the second-order correlation function of the released atomic
cloud. After being released from the combined potential of the optical lattice and the
disorder potential, the second-order correlation of the ultracold atomic gas at time t can
be easily calculated by applying the quasiparticle vacuum state to Eq. (15) and perform-
ing the ensemble average over all disorder configurations. According to the standard
procedure and Eq. (4-6), it is obtained

G(2) (r1,r2,t) = |A(r1,t)|2 |A(r2,t)|2
{[

N2
0 −N0

]
F2

Q1
F2

Q2

+∑
q 6=0

[
N0

(
v2

q+Rq

)](
F2

Q1−qF2
Q2

+F2
Q1

F2
Q2−q

)

+ ∑
q 6=0, k 6=0

[
v2

qv2
k+v2

qRk+v2
kRq+RkRq

]
F2

Q1−kF2
Q2−q

+∑
q 6=0

[
v4

q+2v2
qRq+R2

q

]
F2

Q1−qF2
Q2−q

+∑
q 6=0

[
u2

qv2
q+2uqvqRq+R2

q

]
F2

Q1−q F2
Q2+q

}
. (22)

∑
q

FM (Q1−q)FM (Q2±q)=
√

MFM (Q1±Q2) and FM (Q−q)FM

(
Q−q/

)
≈ FM (Q−q)2 δq,q/ are

used in the above derivation, which can be easily derived and verified.

In the four-field correlation function, there are two terms that we should pay attention

to: 1) ∑
q 6=0

[
v4

q+2v2
qRq+R2

q

]
F2

Q1−qF2
Q2−q arises from the additional fluctuations due to the

depletion, which has the same form as the depletion for the finite temperature ideal gas.
Here, v4

q arises from the quantum depletion due to the inter-atomic interaction, which is

resulted from quantum many-body effect. Besides, R2
q is the direct result of the second
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term of Eq. (6), which represents additional fluctuation of the glassy component. In ad-
dition, 2v2

qRq arises from the joint effect of the disorder and the inter-atomic interaction.

2) ∑
q 6=0

[
u2

qv2
q+2uqvqRq+R2

q

]
F2

Q1−qF2
Q2+q arises from the process of physical scattering

(both inter-atomic interaction and the disorder potential are the scatterers) and indicates
the pairing between the particles with the opposite momentum owing to momentum
conservations. u2

qv2
q results from the quantum depletion because of the inter-atomic in-

teraction. Similar to the first term, R2
q is the direct result of the third term of Eq. (6), and

the joint effect of the external disorder and the inter-atomic interaction accounts for the
second term in the square bracket.

If there is no inter-atomic interaction, it is easy to deduce the second-order correlation
for the released atoms with the sole effect of the disorder from Eq. (22)

G(2) (r1,r2,t) = |A(r1,t)|2 |A(r2,t)|2
{[

N2
0 −N0

]
F2

Q1
F2

Q2

+∑
q 6=0

N0Rq

(
F2

Q1−qF2
Q2

+F2
Q1

F2
Q2−q

)

+ ∑
q 6=0, k 6=0

RkRqF2
Q1−kF2

Q2−q+ ∑
q 6=0

R2
qF2

Q1−qF2
Q2−q

+∑
q 6=0

R2
qF2

Q1−q F2
Q2+q

}
. (23)

According to Eq. (23), it is shown that only the external disorder, even being switched
off, can also lead to the depletion and pairing effect in the second-order correlation for
the expanded ultracold atoms. Both Eq. (22) and Eq. (23) clearly show that the special
classical correlations of the external disorder potential can be reflected by the second-
order correlation of the released ultracold atoms.

In the following analyes, the correlation between two diagonal points will be dis-
cussed, i.e., g(2) (Q1,Q2) with Qi =mri/(h̄t)= (Qi,Qi) (i=1,2). Since FM (Q) is sharply
peaked at Q=(nb, mb) (m,n=0,±1,±2,···), inspections of Eq. (18) and Eq. (22) generate

g(2) (Q1,Q1) |Q1=0≃1− 1

N0
, (24)

g(2) (Q1,Q1) |Q1 6=0≃2, (25)

g(2) (Q1,−Q1)|Q1 6=0≃1+

(
uQ1

vQ1
+RQ1

v2
Q1

+RQ1

)2

, (26)

g(2) (Q1,Q2) |Q1 6=Q2,Q1 6=−Q2
≃1. (27)

Here Eq. (25) and Eq. (26) are the manifestations of the correlation and the pairing terms
in the four-field correlation. Besides these two special cases g(2) (Q1,Q2)≃1.
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Figure 2: g(2) (Q1,Q2) with Qi =mri/(h̄t)=(Qi,Qi) denotes a 2D diagonal vector. Qi is in units of b=2π/d
(the length of reciprocal lattice vector). All the parameters are kept the same as those in Fig. 1.

With the help of Eq. (18) and Eq. (23), g(2) (Q1,Q2) with the sole effect of disorder can
be achieved, which is shown as follows

g(2)(Q1,Q1)|Q1=0≃1− 1

N0
, (28)

g(2)(Q1,Q1)|Q1 6=0≃2, (29)

g(2)(Q1,−Q1)|Q1 6=0≃2, (30)

g(2)(Q1,Q2)|Q1 6=Q2,Q1 6=−Q2
≃1. (31)

By carefully comparing Eq. (24-27) and Eq. (28-31), it is noted that the only difference
of the normalized second-order correlations between these two different cases (one case
with the combined effect of the inter-atomic interaction and the external disorder and the
other case with the sole effect of the external disorder) lies in the correlations between
atoms at opposite positions, i.e. g(2) (Q1,−Q1).

g(2) (Q1,Q2) is plotted in Fig. 2 with the disorder strength and the inter-atomic in-
teraction strength related parameters set as α= 1 and β= 2 , respectively. Other related
parameters are the same as those in the calculations of Fig. 1. In Fig. 2, the depletion and
the pairing effects can be seen. The weak diagonal line (e.g. along Q1 =Q2) arises from
the depletion, while the other diagonal line (e.g. along Q1=−Q2 ) arises from the pairing
between particles with opposite momentums. Additionally, it is found that the depletion
line is weaker than the pairing line for our parameters.

Fig. 3 plots g(2) (Q1,Q2) with the sole effect of the disorder, i.e. with α 6=0 and β=0.
Other parameters are the same as the ones used in the above case. Fig. 3 clearly shows
that both the depletion and the pairing line persist in this special case. Even the disorder
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Figure 3: g(2) (Q1,Q2) without the effect of the inter-atomic interaction (i.e. β=0), and the disorder parameter
α is set as (a) 1×10−6, (b) 1×10−7, (c) 1×10−8, (d) 1×10−9. Here Qi =mri/(h̄t)= (Qi,Qi) denotes a 2D
diagonal vector. Qi is in units of b=2π/d (the length of the reciprocal lattice vector). Other parameters are
the same as those in Fig. 1.

parameter α decreases to the level of 10−9, the pairing and the depletion lines still exist.
On the other hand, Fig. 3 also shows that the pairing line and the depletion line are
approximately the same size in this situation.

Besides, according to Fig. 3, we observe that the bright spot along the correlation
(pairing) line shrinks with the decrease of the disorder strength, which is disadvanta-
geous to the experimental detection. Next, we will consider the effect of finite resolution
of the detector on the measurement of density distribution. It is supposed that the finite

-15 -10 -5 0
1

1.2

1.4

1.6

1.8

log(α)

g
(2
)

Figure 4: The second-order correlation g(2) (Q1,Q2) for Q1 =Q2 = 13/25 with the consideration of the finite
resolution of the detector vs. the variation of the strength of the disorder. Here Qi=mri/(h̄t)=(Qi,Qi) denotes
a 2D diagonal vector. Qi is in units of b=2π/d (the length of the reciprocal lattice vector). It is assumed that
the finite width of the detector’s pixel point is 5 µm. Other related parameters are the same as those in Fig. 3.
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Figure 5: g(2) (Q1,Q1) (solid line) and g(2) (Q1,−Q1) (dashed line) for Q1 = 13/25. Here Qi = mri/(h̄t) =
(Qi,Qi) denotes a 2D diagonal vector. Qi is in units of b=2π/d (the length of the reciprocal lattice vector).
During the numerical calculation, the interaction parameter β is fixed as 0.1 and the disorder parameter α ranges
from 1×10−6 to 1×10−4. Other related parameters are the same as those in Fig. 1.

width of the detector’s pixel point is 5 µm. By averaging the density over each whole
pixel point of the detector, we can access the finite resolution effect on the second-order
correlation. Fig. 4 presents the second-order correlation g(2) (Q1,Q2) for Q1=Q2=13/25
(in units of b) with the consideration of the finite resolution of the detector. According to
our evaluations, this special correlation becomes less observable as the disorder param-
eter decreases. Obviously in the practical experimental measurements, there is a limit
to the strength of the disorder below which the correlation effect and the pairing effects
caused by the weak disorder can not be observed.

On the contrary, when both the interaction parameter and the disorder parameter are
zero, g(2) (Q1,Q2) reduces to 1− 1

N0
for any Q1 and Q2. Clearly, there is no depletion

or pairing effect developed when both the inter-atomic interaction and the disorder are
suppressed. In the absence of both the inter-atomic interaction and the disorder, all of
the atoms remain in the quasi-momentum state h̄k=0 and form a coherent condensate.
Therefore the depletion and pairing line can not form in the spatial second-order correla-
tion without the scattering between the ultracold atoms.

In Fig. 5, when the interaction parameter β is fixed as 0.1 and the disorder parameter
α ranges from 10−7 to 10−4, we compares closely g(2) (Q1,Q2) for Q1=Q2=13/25 (along
the diagonal line Q1 =Q2, in units of b) with g(2)(Q1,Q2) for Q1 =−Q2 = 13/25 (along
the diagonal line Q1 =−Q2, in units of b). Other parameters are kept the same as the
ones used in the numerical calculation of Fig. 2. This figure shows that the value of
the normalized second-order correlation along the depletion line always equals to 2 even
when the disorder parameter varies, which can be verified by Eq. (25). However the
value of the normalized second-order correlation along the pairing line is observed to
decease as strength of the disorder increases, which can also be understood with the help
of Eq. (26).
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4 Conclusions

In summary, the second-order correlation of the ultracold atoms released from a 2D op-
tical lattice potential in the presence of weak disorder is analytically investigated within
the framework of Bogoliubov theory. A general description of the ultracold Bose system
and the Bogoliubov transformation for the bosons in the 2D optical lattice with weak
disorder are first outlined. Then we applied the Bogoliubov transformation to the inves-
tigation of the second-order correlation function for the released ultracold atoms. When
the atoms are initially confined in the combined potential (the optical lattice and the addi-
tional disorder potential) and in a superfluid state, the quantum tunneling between two
consecutive wells can still ensure full coherence even in the presence of weak disorder
and the separated wells created by the optical lattice. As a result, the Bogoliubov approx-
imation is still applicable in this situation [16], and the Bogoliubov method provides us
with a concise context, in which we can discuss the second-order correlation of the sys-
tem. Thereby the role the disorder plays in the second-order correlation is distinct in our
analyses.

Being similar to the role that the inter-atomic interaction plays in the second-order
correlation for the released bosonic gases [14], the disorder produce pairing and corre-
lation effects in the second-order correlation of the ultra-cold atoms when released from
the optical lattice. Even with the inter-atomic interaction being excepted, the depletion
and the pairing effects persist with the sole effect of the external disorder potential. By
contrast, the depletion and the pairing structure cannot form when both the inter-atomic
interaction and the disorder are absent. We derived the properties of the depletion and
the pairing effects in detail, where different settings of the strength of the inter-atomic
interaction and the disorder were specially considered in the investigations.

From our investigations, it is also noticed that the form of the second-order correlation
due to the disorder is somewhat similar to the form of the second-order correlation due
to the inter-atomic interaction. However they are the consequences of different physical
process: The second-order correlation due to the disorder is caused by special interfer-
ence of certain random scattering routes, while the second-order correlation due to the
inter-atomic interaction is the result of quantum many-body effect. Although these two
effects show similar functional behaviors in the second-order correlation for the released
ultracold atoms, they display pure classical effect and quantum effect, respectively.
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