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Abstract. We investigate the elastic properties and phonon dispersion of the body-
centered cubic structure vanadium (V) under pressure by using the generalized gradi-
ent approximation (GGA). Our elastic constants of V at zero pressure and zero temper-
ature are in good agreement with the available experimental data and other theoreti-
cal data. The pressure dependences of bulk modulus B and its pressure derivative B’,
shear modulus G, elastic Debye temperature ΘE, elastic anisotropy factor A, Poisson
ratios σ and Kleinmann parameter ζ are also presented. An analysis for the calculated
elastic constants has been made to reveal the mechanical unstability of V up to 100
GPa. For the phonon dispersions of V, it is easily seen that the phonon frequencies
increase as the volume decreases, the phonon mode linked to a Kohn anomaly has
softened to negative values.

PACS: 71.15.Mb, 62.20.Dc, 77.84.Bw
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1 Introduction

Vanadium (V), one of the group-VB transition metals, crystallizes in the body-centered
cubic (bcc) structure at ambient conditions. It has been attracted much more considerable
attention due to its high thermal, low compressibility, and chemical stability. Up to date,
many interesting on the fundamental physical and chemical properties of V have been
reported in high-pressure experiments and theories [1-19].

Early in 1972, Simth [7] measured the superconducting transition temperature of V
as a function of hydrostatic pressure up to 2.4 GPa and found a linear increase in Tc
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with dTC/dP=0.062 K/GPa. Later in 2000, Ishizuka et al. [8] reported a superconducting
transition temperature of 17.5 K at 120 GPa. In addition, Skriver [9], Moriarty [10], and
Grad et al. [11] predicted the stability of V in the bcc structure up to at least a couple of
hundred GPa. Takemura [12] proved the speculation by diamond-anvil cell experiment.
However, Ding et al. [13] measured a phase transition of V from the bcc structure to the
rhombohedral phase at 69 GPa by the diamond-anvil cell and synchrotron X-ray diffrac-
tion method. Furthermore, Jenei et al. [14] identified a transition pressure at 30 GPa at
room temperature through nonhydrostatic compression, which is much lower than the
value reported by Ding et al. [13].

On the other hand, several theoretical methods have been applied to investigate the
properties of V. Otani and his co-worker [5, 15] investigated the lattice dynamics of V
in the pressure range up to 1.5 Mbar using full-potential linear muffin-tin orbital (FP-
LMTO) method. They found that the transverse acoustic phonon mode shows a dra-
matic softening under pressure and becomes imaginary at pressure above 130 GPa, in-
dicating the possibility of a structural phase transition. Lee et al. [16, 17] declared two
different rhombohedral phases which differ from each other only in the angle between
the rhombohedral basis vectors. Qiu and Marcus [18] obtained three first-order phase
transitions from crossings of the Gibbs free energies functions curves. With the den-
sity functional perturbation theory (DFPT), Luo et al. [19] obtained the phase transitions
[bcc→hR1(110.5◦)→distorted hR2 (108.2◦)→bcc] with the increasing pressure. Landa et
al. [5] found that the structure transition from the bcc to rhombohedral phase at 60 GPa,
and then to the bcc phase again at 310 GPa.

As is known that, the phonon-dispersion relations of the bcc structure V could not be
determined by conventional inelastic neutron scattering techniques since its cross section
for neutron scattering is almost totally incoherent [20]. Instead, people use the thermal
diffuse scattering of X-rays to measure the phonon frequencies along principle symme-
try directions [15, 21, 22]. The experimental phonon dispersion curve of bcc V at ambient
conditions has been measured by thermal diffuse scattering and found that for the lon-
gitudinal (111) branch it exhibits a dip near the (2/3, 2/3, 2/3) site [20-22]. However,
by using the inelastic X-ray scattering (IXS), Boska et al. [23] revealed several phonon-
dispersion anomalies clearly, whereas few theoretical methods are applied to investigate
the properties of phonon dispersion.

In this work, we focus on the elastic properties and phonon dispersion of V under
pressure by the plane-wave pseudopotential density functional theory (DFT) method
through the Cambridge Serial Total Energy package (CASTEP) program [24, 25]. The rest
of the paper is organized as follows. The theoretical method and computation details are
given in Section 2. Some results and discussion are presented in Section 3. Finally, the
summary of our main results are given in Section 4.
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2 Theoretical method and computation details

2.1 Total energy electronic structure calculations

In our electronic structure calculations, we employ two types of pseudopotentials, i.e.
the norm-conserving (NC) and on-the-fly (OTF), for the interactions of the electrons with
the ion cores, together with two types of functional forms for the exchange-correlation
potential among electrons, i.e. the generalized gradient approximation (GGA) proposed
by Perdew et al. [26] and the local density approximation (LDA) proposed by Vosko
et al. [27]. The electronic wave functions are expanded in a plane wave basis set with
an energy cut-off of 400 eV. The total energy and the ground state wave functions are
calculated on a 10×10×10 k-point mesh. Pseudo-atom calculation is performed for V
3d34s2. The self-consistent convergence of total energy is 1.0×10−6 eV/atom. These pa-
rameters are carefully tested. It is found that these parameters are sufficient to lead to
a well-converged total energy. All the total energy electronic structure calculations are
implemented through the CASTEP code [24, 25].

The pressure-volume relationship can be obtained by fitting the calculated energy-
volume (E−V) data to the Vinet equation of state (EOS) [28]

ln
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3(1−x)
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where V=V0(0,T) is the zero-pressure equilibrium volume, derived by integration of the
thermodynamic definition of the thermal expansion coefficient α(T)=V−1∂V/∂T,
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where f (x)= x−2−αx(1−x).

2.2 Elastic properties

To investigate the elastic constants under pressure P, we use the symmetry dependent
strains to be non-volume conserving. The elastic constants Cijkl with respect to the finite
strain variables is defined as [29-32]

Cijkl =

(

∂σij(x)

∂ekl

)

X

(5)
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where σij and ekl are the applied stress and Eulerain strain tensors, and X and x are the
coordinates before and after the deformation, respectively. For the isotropic stress, we
have

Cijkl =Cijkl+P(2δijδkl−δilδjkδikδjl)/2 (6)

Cijkl =

(

1

V(x)

∂2E(x)

∂eij∂ekl

)

X

(7)

where Cijkl denotes the second-order derivatives with respect to the infinitesimal strain.
The fourth-rank tensor C has generally 21 independent components. However, this num-
ber is greatly reduced when taking into account the symmetry of the cubic. For a bcc
structure crystal, they are reduced to three, i.e. C11, C44, and C12.

The adiabatic bulk B and the shear modulus G for a cubic crystal structure are taken
as [33, 34]

BV =BR=(C11+2C12)/3 (8)

GV =(C11−C12+3C44)/5 (9)

GR=5(C11−C12)C44/[4C44+3(C11−C12)]. (10)

The arithmetic average of the Voigt and the Reuss bound is commonly used to estimate
the polycrystalline modulus, in the term of the Voigt-Reuss-Hill approximations [33-35]

B=(BV+BR)/2 (11)

G=(GV+GR)/2 (12)

Then, Young’s modulus E and Poisson’s ratio σ can be calculated by

D=
9BG

3B+G
, σ=

1

2

(
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E

3B

)

. (13)

The elastic Debye temperature ΘE may be estimated from the average sound velocity Vm

[36]

ΘE =
h

k

[
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)]1/3

Vm, (14)

where h is Planck’s constants, k Boltzmann’s constant, NA Avogadro’s number, n the
number of atoms per formula unit, M the molecular mass per formula unit, ρ the density,
and Vm is obtained from [36]
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where VS and VL are the shear and longitudinal sound velocities, respectively. The values
of the average shear and longitudinal sound velocities can be calculated from Navier’s
equations as follows [36]

VS =

√

G

ρ
, VL =

√

(B+ 4
3 G)

ρ
. (16)

The Kleinmann parameter is an important parameter describing the relative position of
the cation and anion sub-lattices. It is given by the following relation [37]

ζ=
C11+8C12

7C11+2C12
. (17)

By applying the method above, one has investigated successfully the elastic properties of
several materials [38-43].

2.3 Phonon calculations

The harmonic approximation is usually a typical description for the physics of phonon,
in which the equation of motion takes the form of [44]

ω2(k,l)e(k,l)=D(k)e(k,l), (18)

where ω(k,l) is the phonon frequencies, e(k,l) describing the corresponding atomic dis-
placement, D(k) is the dynamic matrix, which can be obtained from the force constant
matrix Θ

D
αβ
st (k)=

1
√

Mt Ms
∑
R

Θ
αβ
st (R)exp(−ik·R), (19)

where Ms and Mt are masses for atoms s and t, respectively, R is the Bravais lattice vec-
tors. With the frame work of harmonic approximation, keeping only the second terms in
the Taylor series of total energy E, Θ is given by

Θ
αβ
st =

∂2E

∂µ
β
s ∂µ

β
t

, (20)

where µα
s is the displacement for atom s from its equilibrium position in α direction.

Consequently the force f exerted on atom s relating the displacement of atom t is

f =−Θstµt. (21)

We perform the supercell method [45] to determine the dynamical matrix from Eq. (19),
in which the forces are calculated with respect to the atoms perturbed from their equilib-
rium positions and frozen in.
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Table 1: Equilibrium lattice parameter α, equilibrium volume V0, the isothermal bulk modulus B0, and its
pressure derivation B′

0 at P= 0 and T= 0, together with the experimental and other theoretical values.

Methods PSP
V0 α B0 B′

0

(Å3) (Å3) (GPa)

This work

GGA PAW NC 13.936 3.03196 158.68 3.5895
OTF 13.36 2.989686 192.02 4.1580

LDA CA-PZ NC 13.733 2.987579 182.11 3.2714
OTF 12.5258 2.926035 228.45 3.8076

Cal.
GGA[46] 13.49 2.94 182 3.75
GGA[5] 2.998 206 3.70

Exp.[13] 13.92 3.031 165 3.50

3 Results and discussion

3.1 Ground state structures of V

The EOS in the zero-tempera ture limit is the most fundamental characteristic describing
the behavior of condensed matter at high pressures. Knowledge of the volume V varia-
tions with pressure P for a single phase determines the equilibrium volume V0 and gives
access to the bulk modulus B and the dimensionless pressure derivative of the bulk mod-
ulus B′. In our study, we take a series of different lattice constant α to calculate the total
energy E corresponding to primitive unit cell volume V. The obtained lattice constant
α, equilibrium unit cell volume V0, bulk modulus B0 and its pressure derivative B′

0 with
GGA and LDA calculations at 0 GPa and 0 K are also listed in Table 1, together with the
available experimental and theoretical results for our comparison. It is shown that the
equilibrium unit cell volume obtained from GGA-NC 13.936 Å3 and GGA-OTF 13.36 Å3

are less than the experimental value 13.92 Å3 with the errors of 0.6% and 6.01%, respec-
tively. The equilibrium unit cell volumes from LDA-NC and LDA-OTF are 13.333 Å3 and
12.5258 Å3, the corresponding errors are 5.3% and 7.56%, respectively. Thus, our results
calculated from GGA-NC are more reliable when compared with the experimental data
13.92 Å3 [13].

The lattice constant α from GGA method is slightly higher and that from LDA method
is slightly lower (0.32% for GGA and 1.68% for LDA) than the experimental value (3.031
Å) [13]. The deviations of previous theoretical data of GGA [5, 46] are 3.33% and 1.08%,
respectively. Thus, our results seem to be a little better. The isothermal bulk modulu
B0 of V is 158.68 GPa from GGA method and 182.11 GPa from LDA method, which are
comparable to the values 206 GPa and 182 GPa calculated by other theoretical methods
[5, 46], but more closely to the experimental values (165 GPa) [13]. On the other hand,
the corresponding pressure derivative B′

0 is 3.5895 from GGA calculation and 3.3214 from
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Figure 1: Relative volume V/V0 as function of pressure at 0 K from GGA (NC, OTF) and LDA (NC, OTF)
methods.

LDA calculation are also in good agreement with the experimental result 3.50 with the
error of 2.5% and 6.53%, respectively. From the above calculations, it is obvious that
our GGA results are in better agreement with the experimental data [13] than our LDA
results.

In Fig. 1, we illustrate the dependence of the calculated normalized volume V/V0 (V0
is the zero pressure equilibrium primitive cell volume) of V on pressure P at 0 K. Our re-
sults from both LDA and GGA are slightly lower than the experimental data [13]. How-
ever, the results from GGA show good agreement with experimental data even slight
discrepancies are still exist, as may be due to the fact that the experimental data are mea-
sured at room temperature, while our calculations are performed at zero temperature.
On the other hand, each method has its own limitations related to the basic material pa-
rameters, basis sets, the precisions used, as well as the approximations of the method
itself. Since the obtained lattice parameters from GGA-NC are the best, we apply it in the
following calculations.

3.2 Elastic properties

Elastic properties of a solid are important because they are closely related to various fun-
damental solid-state phenomena, such as EOS, phonon spectra, and atomic potentials. To
further confirm the structure stability under pressure, we calculate the elastic constants
of the bcc V. The results are listed in Table 2, together with the available other calculated
[46] and experimental [47] data. It is shown that the overestimation of C11 and C12 come
from theoretical results of Koêi et al. [46] are closely to 14%, and C44 of Koêi et al. [46]
is less than half of the reported experimental findings. However, our results show that
C12 and C44 are more consistent with the experimental data of Alers et al. [47], while C11

is highly discrepant at 0 K. In contrast to C11 and C12, the C44 was found to be relatively
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Table 2: The elastic constant C11, C44, and C12 at P= 0 and T= 0, together with the experimental and other
theoretical values.

Methods C11 C44 C12

This work GGA PAW (NC) 301.08 52.08 118.83

Cal.[46] GGA (PAW) 260 17.1 135

Exp.[47] 232.4 45.95 119.36

Table 3: The elastic constants C11, C44, and C12 (GPa), aggregate elastic modulus B, B′, shear modulus G,
Young’s modulus E, B/G, elastic Debye temperature ΘE Kleinmann parameter ζ, Poisson ratio σ of the bcc V
at 0 K and various pressure P (GPa).

P C11 C44 C12 B G B/G σ ΘE A ζ

0 301.08 52.08 118.83 179.58 67.13 2.675 0.4975 541.29 5.90 0.533

10 352.45 51.67 155.21 202.95 150.26 0.444 0.4985 568.33 6.30 0.573

20 377.10 37.01 187.56 250.74 54.54 4.597 0.4981 619.09 6.67 0.622

30 393.60 12.82 222.67 279.65 30.66 9.121 0.4982 664.98 7.00 0.678

40 415.62 -20.54 254.85 308.44 -10.71 -28.79 0.4983 701.26 7.30 0.717

50 490.24 19.19 249.43 329.71 44.75 7.367 0.4985 729.27 7.58 0.62

60 563.68 40.85 263.80 363.76 71.05 5.119 0.4987 751.00 -0.850 0.59

70 630.99 54.88 287.75 402.16 88.49 4.544 0.4988 768.20 7.84 0.587

80 680.74 56.75 323.82 442.79 91.74 4.826 0.4989 782.26 8.08 0.604

90 701.09 33.87 354.62 470.11 93.78 0.640 0.4993 794.31 8.31 0.629

100 726.39 22.55 382.04 496.82 58.48 8.495 0.4990 805.31 8.73 0.646

150 834.84 -34.33 532.29 633.14 -13.75 -46.04 0.51 987.28 9.23 0.737

200 899.73 -207.09 606.21 710.71 -2935.94 -0.24 -4.93 1081.77 10.12 0.765

250 981.98 -174.08 747.67 825.78 -1554.7 -0.053 -1.28 1167.71 10.92 0.83

300 1421.55 10.94 816.58 1081.24 72.68 14.87 0.46 1256.18 11.66 0.68

350 1708.94 184.86 933.26 1191.82 248.92 4.76 0.40 1318.12 10.33 0.66

insensitive to pressure. The elastic constant C44 is greater than (C11−C12)/2, which will
lead to the degeneration of transverse branch in V, the situations are similar as the results
of Ta [48]. At this stage, the elastic constant calculations as a function of pressure can
only be used to detect the trends. Therefore, there is a need to investigate why the theo-
retical calculation of V shows such large discrepancies. To resolve this discrepancy, more
theoretical computations are needed.

In Table 3, we list the elastic constant (C11, C12, and C44) and elastic modulus B, pres-
sure derivate B′, shear modulus G, Poisson’s ratios, B/G, elastic Debye temperature ΘE,
elastic anisotropy factor A, Poisson ratios σ, and Kleinmann parameter ζ for the bcc V
under a wide range of pressures (0-350 GPa) at 0 K. It is seen that, the elastic constants
C11, C12, bulk modulus B, increase monotonically with the applied pressure. However,
when pressure increases up to 40 GPa, C44 becomes -20.54 GPa, and the shear modulus
G becomes -10.71 GPa, indicating the mechanical instability of V, which is smaller than
the experimental transition pressure 69 GPa [13]. However, Jenei et al. [14] reported the
transition pressure 30 GPa at room temperature for nonhydrostatic compression, which
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Figure 2: Elastic constants of the bcc structure V as a function of pressure (0-350 GPa), compared with those
by Koêi et al. [46].

are more approximately with our results. An obvious difference in Fig. 1 is that the C11

and C12 show a steady, increasing behavior as a function of pressure, whereas the results
from C44 are irregular. To clearly show the diversity, we plot the elastic constants of V
under pressure (30-50 GPa) in Fig. 2, which shows that the elastic constants C11 and C12

increase monotonically with pressure, and are in excellent agreement with the theoretical
data of Lee et al. [16], but the value of C44 decreases to negative when the applied pres-
sure is larger than 40 GPa, and then gradually become positive again when the pressure
increase to 50 GPa. A negative shear modulus means the material is mechanically unsta-
ble under monoclinic shear. The C44 diminishes to a negative value when the pressure is
higher than 40 GPa, which is consistent with experiment [14].

It is acknowledged that the bulk modulus or shear modulus can measure the hard-
ness in an indirect way [49]. Our results showed a very good match to the diamond-anvil
cell data with B= 185 GPa and G = 65 GPa [50], but have a little discrepancy with the
theoretical results of Luo et al. [19]. A high (low) B/G value is associated with ductility
(brittleness). The critical value, which separates ductile and brittle materials, is about
1.75 [51]. Table 3 shows that the calculated values of B/G fluctuate with increasing of
pressures, and the ductility and brittleness of V are unstable under higher pressure. Pois-
son’s ratios, σ= 0.25 and 0.5, are the lower limit and upper limit in central force solids,
respectively. In this work, Poisson’s ratios increased with applied pressure. The obtained
σ values are greater than 0.25, which indicates that the interatomic forces in the bcc V are
central forces.

The Debye temperature is an important fundamental parameter and closely related
to many physical properties of solids, such as the specific heat and melting tempera-
ture. From the elastic constants, one can obtain the elastic Debye temperature (ΘE). The
obtained elastic Debye temperatures of V under pressure are also presented in Table 3.
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Figure 3: Calculated PDOS of the bcc structure V at pressures 1 GPa, 60 GPa and 360 GPa, compared with
those by Bogdanoff et al. [52].

For V at 0 K and 0 GPa, we yield (ΘE) = 541.29 K from the elastic constants of GGA-
NC calculations, however, which is considerably higher than the values 399.3 K deter-
mined from velocity-of-sound measurement [47]. Our elastic constants B are excellent
with those of Alers et al. [47] and Bosak et al. [23], which fit the elastic moduli from the
long-wavelength dispersions.

3.3 Phonon dispersions

Fig. 3 shows the phonon density of states (PDOS) of the bcc structure vanadium as a
function of pressure. It is easily seen that the phonon frequencies increase as the volume
decreases. The lower frequency phonon mode is found to be grown and softened, and
other phonon frequencies move to higher values with the increasing pressure. At P=60
GPa, the negative frequency appears in the PDOS, however which still keeps the char-
acter of the bcc structural spectrum, whereas with the increase of pressure, the PDOS
shows a different profile of the frequency distribution, meaning the dynamic instability
of the bcc vanadium. Bogdanoff et al. [52] confirmed that the PDOS had little changed
up to 1273 K, and a large softening at 1673 K. In Fig. 3, we compare our calculated 0 K
phonon density of state at 1 GPa, 60 GPa, and 360 GPa with the experiment observed
by Bogdanoff et al. [52]. The behavior of the PDOS leads us to conclude that volume
compression and rising temperature exert equal role. With the enhanced pressure or
compressive volume, the phonon scattering are remarkable.

Using the supercell method, we have performed the GGA calculations for the 0 K
phonon dispersions of V up to 400 GPa. We measured all the phonon branches along
high symmetry direction in Fig. 4. Our results are in remarkable agreement with the
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phonon dispersions derived from IXS by Bosak et al. [23]. The phonon band structure
of V and its behavior under pressure are shown in Fig. 5, where the calculations for
the phonon dispersion curves are along the high symmetry direction G-H-P-G-N for the
bcc structure V at zero temperatures, where the high symmetry k-points H, P and N are
(1/2, -1/2, 1/2), (1/4, 1/4, 1/4) and (0, 0, 1/2), respectively. Obviously, there are two
branches, one is the LA mode and the other degenerated TA1 and TA2 modes along the
[110] direction. There exists a crossover between the LA mode and the TA2 mode at zone
boundary point N. The transverse dispersion curve for TA2 is higher than those of the
longitudinal dispersion curve near the [110] symmetry direction.

To further research the properties of the phonon dispersions of V under pressures, we
chose three pressures 60 GPa, 112 GPa, and 360 GPa, respectively. From Fig. 5, when the
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pressure is up to 60 GPa, the phonon spectra near G point is imaginary frequency. The
imaginary frequencies in the phonon dispersion indicate mechanical instabilities, which
can lead to phase transformations. Using synchrotron X-ray diffraction, Ding et al. [13]
declared a phase transition at 63-69 GPa at room temperature. The imaginary frequencies
at 60 GPa agrees reasonably well with the experimental data. When the pressure is up to
112 GPa, it is still unstable (the imaginary frequencies of the soft modes are still there).
There appears a deep dip of the LA mode in N direction, showing that the bcc structure
V is unstable under the pressure. When P= 360 GPa, the imaginary frequencies disap-
pears, but the Kohn anomaly is still there. Luo et al. [19] investigate the lattice dynamics
of V under high pressure with density functional perturbation theory (DFPT). Their cal-
culations show that the lattice dynamical instability starts at 62 GPa, which results in the
phase transition from bcc to hR1 (alpha=110.5◦). While at pressure around 130 GPa, the
rhombohedral angle of hR1 phase changed to 108.2◦. When the pressure increases to 250
GPa, the bcc structure is stable again. These results are consistent with our results.

4 Summary

The bcc structure V has been investigated with the norm-conserving pseudopotential
scheme in the frame of the generalized gradient approximation (GGA). Based on the
GGA calculations, we have obtained the lattice parameters, isothermal bulk modulus
and its pressure derivative of V at zero pressure and zero temperature. The results ob-
tained agree well with the available experimental data and other theoretical results. With
the increase of the applied pressure, the C44 becomes softening, as had been proved by the
available experimental data and other theoretical data. The pressure dependence of the
elastic constants, elastic modulus, Kleinmann parameter ζ, elastic Debye temperature,
Poisson’s ratio, and mechanical anisotropy of V has also investigated. It is found that the
bcc structure V demonstrates brittleness when the pressure is higher than 10 GPa, and
presents ductility under higher pressure. Moreover, we have performed the GGA calcu-
lations for phonon dispersions of V. It is easily seen that the phonon frequencies increase
as the volume decreases, the phonon mode linked to a Kohn anomaly has softened to
negative values, which can induce a high symmetry loss.
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