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AN ALTERNATING DIRECTION GALERKIN METHOD
COMBINED WITH A MODIFIED METHOD OF

CHARACTERISTICS FOR MISCIBLE DISPLACEMENT
INFLUENCED BY MOBILE AND IMMOBILE WATER
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Abstract. Numerical approximations are considered for a mathematical model

for miscible displacement influenced by mobile and immobile water. A mixed

finite element method is adopted to give a direct approximation of the velocity,

the concentration in mobile water is approximated by an alternating direc-

tion Galerkin finite element method combined with the method of character-

istics and the concentration in immobile water is approximated by a standard

Galerkin method. Optimal order L2- and H1-error estimates are derived.

Key Words. alternating direction Galerkin method, modified method of char-

acteristic, finite element methods, error estimate.

1. Introduction

In recent years, the intentional or accidental release of chemical wastes on soils
has further stimulated current interests in the movement of chemicals. Displace-
ment studies have become important tools in soil physics, particularly for predicting
the movement of pesticide, nitrates, heavy metals, and other solutes through soils.

The soil structure is complex. In aggregated media, soils are composed of slowly
and quickly conducting pore sequences, the liquid-filled and dead-end pores; or
immobile water exists. In [12] the movement of a chemical through a sorbing porous
medium with a lateral or intra-aggregated diffusion was considered. The liquid in
porous media is divided into mobile and immobile regions. Mobile water is located
inside the larger pores. The flow in mobile water is assumed to occur in this region
only. Solute transfer in mobile water occurs by both convection and longitudinal
diffusion. Immobile water is located inside aggregates and at the contact points
of aggregates and/or particles. Diffusion transfer between the two liquid regions
is assumed to be proportional to the concentration difference between the mobile
and immobile liquids. A dynamic soil region is located sufficiently close to the
mobile water phase for equilibrium between the solute in the mobile liquid and
that sorbed by this part of the soil mass. A stagnant soil region, where sorption is
diffusion limited, is located mainly around the micro-pores inside the aggregates or
along dead-end water pockets. Sorption occurs here only after the chemicals have
diffused through the liquid barrier of the immobile liquid phase. In [12] sorption
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process in both the dynamic and stagnant regions of the medium was assumed to
be instantaneous and the adsorption isotherm was assumed to be linear.

The Darcy velocity of the fluid mixture is given by [2, 3, 4]

(1.1) u = −a(c)∇p ,

where a(c) = κ(x)/ν(c), κ is the permeability of the medium, ν the concentration-
dependent viscosity, and p the pressure. Incompressibility implies

(1.2) ∇ · u = q,

where q = q(x, t) is the imposed external flow. The equation for the concentration
can be put in the form [2, 12, 14]:

(1.3) s1
∂c

∂t
+ s2

∂c′

∂t
+ u · ∇c−∇ · (D∇c) = q(c∗ − c), x ∈ Ω, t ∈ J,

(1.4)
∂c′

∂t
= α(c− c′), x ∈ Ω, t ∈ J,

where J = [0, T ], s1(x) = (θm + fρK)/θm, s2(x) = (θim + (1− f)ρK)/θim, and
α = α0/(θim + (1− f)ρK); f is the fraction adsorption in dynamic region; K the
constant in the Freundlich isotherm; θm and θim the mobile water and immobile
water content, respectively; ρ the bulk density; c and c′ denote the solute con-
centrations in the mobile water and immobile water regions, respectively; D the
dispersion coefficient, α0 the mass exchange coefficient; c∗ the concentration of the
contamination.

The boundary and initial conditions can be imposed in the following form:

(1.5) u · n = 0, D∇c · n = 0, x ∈ ∂Ω, t ∈ J,

(1.6) c(x, 0) = c0(x), c′(x, 0) = c′0(x), x ∈ Ω,

where n is the unit outward normal to the boundary ∂Ω of the domain Ω. For
compatibility one requires that∫

Ω

q(x, t)dx = 0, for all t ∈ J.

Our objective is to design and analyze a numerical method for approximating
the solution of the system (1.1)–(1.4) subject to the initial and boundary conditions
(1.5) and (1.6). Note that the pressure does not appear explicitly in the equation
(1.3) for concentration; however, velocity does. A mixed finite element method will
be adopted here to approximate the pressure p and the velocity u simultaneously.
The concentration c′ in the immobile water will be approximated using a standard
Galerkin finite element method. The concentration c in the mobile water will be
approximated by an alternating direction method combined with the method of
characteristics which combines the attractive attributes of the two methods.

In 1971, Douglas and Dupont in [9] formulated a Galerkin alternating-direction
procedures for nonlinear parabolic equations posed on a rectangular region with a
uniform grid. The alternating-direction method reduces multidimensional problems
to a collection of one-dimensional problems and the matrices that must be inverted
at each time step of the solution process are independent of time and require only
one decomposition. The storage requirements for these matrices are associated with
one-dimensional problems rather than the full multi-dimensional problem, so the
storage requirements can be quite low. The Galerkin alternating-direction method
is particularly attractive for solving large three-dimensional nonlinear problems. A
survey of some results in the use of the alternating-direction finite element methods
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for linear and nonlinear partial differential equations was presented by Ewing [11].
Dendy and Fairweather [6] extended these methods on rectangles to certain unions
of rectangles. Hayes [10] further generalized these methods to non-rectangular
regions that can be isoparametrically mapped onto a rectangle.

The modified method of characteristics is attractive for convection-diffusion
problems, which reflects the physical characters more clearly, produces much smaller
time truncation error, and therefore allows for larger time steps than those of the
standard methods.

For the sake of simplicity, we assume Ω = [0, 1]3 is the unit cube and the coeffi-
cients a, s1, s2 and D are bounded both above and blow by positive constants:

0 < a∗ ≤ a(c) ≤ a∗, 0 < D∗ ≤ D ≤ D∗,

0 < s1∗ ≤ s1(x) ≤ s∗1, 0 < s2∗ ≤ s2(x) ≤ s∗2,
where a∗, a∗, s1∗, s∗1, s2∗, s∗2, D∗, and D∗ are positive constants.

Throughout the paper, M stands for a general positive constant and has different
meanings in different places.

The organization of the paper is as follows. In Section 2, a weak form of the
problem is presented and the approximation procedure based on an alternating-
direction Galerkin method combined with a modified method of characteristics is
formulated. The convergence analysis is given in Section 3, where a-priori error
estimates in both L2- and H1- norms are derived.

2. The Approximation Procedure

We will use the standard notation for the Sobolev spaces Hm(Ω) and L2(Ω) and
their corresponding norms ‖ · ‖m and ‖ · ‖. The inner product in L2(Ω) is denoted
by

(f, g) =
∫

Ω

fgdx.

We also define the following vector-valued function space:

H(div; Ω) = {v : v ∈ L2(Ω)3, ∇ · v ∈ L2(Ω)}
equipped with the norm

‖v‖H(div;Ω) =
(‖v‖2 + ‖∇ · v‖2)1/2

and let
V = {v ∈ H(div; Ω) : v · n = 0 on ∂Ω}

and
W = L2(Ω)/ {ϕ : ϕ is contant on Ω} .

The finite element discretization of the problem (1.1)–(1.4) is based on the fol-
lowing weak formulation: Find {u, p, c, c′} ∈ V ×W ×H1(Ω)× L2(Ω) such that:

(2.1) (a(c)−1u, v)− (∇ · v, p) = 0, ∀ v ∈ V,

(2.2) (∇ · u, ϕ) = (q, ϕ), ∀ ϕ ∈ W,

(
s1

∂c

∂t
, z

)
+

(
s2

∂c′

∂t
, z

)
+ (u · ∇c, z) + (D∇c,∇z)(2.3)

= (q(c∗ − c), z), ∀ z ∈ H1(Ω), 0 < t ≤ T,

(2.4)
(

∂c′

∂t
, z′

)
= (α(c− c′), z′), ∀ z′ ∈ L2(Ω), 0 < t ≤ T,
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and c(x, 0) = c0(x) and c′(x, 0) = c′0(x).
Let Jhc

, Jhc′ and Jhp
denote three rectangular partitions of Ω with their re-

spective mesh sizes hc, hc′ , and hp. To discretize equations (2.1), (2.2), (2.3) and
(2.4), we introduce the following finite element spaces:

Mh = {z ∈ H1(Ω) : z|e ∈ Q` for any e ∈ Jhc
},

Nh = {z′ ∈ L2(Ω) : z′|e ∈ Qr for any e ∈ Jhc′},
Vh = Ṽh ∩V, Wh = W̃h/{ϕ : ϕ is constant on Ω}.

Here Qm (m > 0) is the set of all polynomials whose degree in each variable is
no more than m, and (Ṽh, W̃h) denotes the pair of the Raviart-Thomas spaces of
order k ≥ 0 defined on the mesh Jhp

[1, 7, 8, 15].
We now collect the following well-known approximation properties for the spaces

Mh, Nh, Vh and Wh.

(2.5) inf
zh∈Mh

‖z − zh‖j ≤ M‖z‖`+1h
`+1−j
c , ∀ z ∈ H`+1(Ω) and j = 0, 1,

(2.6) inf
z′h∈Nh

‖z′ − z′h‖ ≤ M‖z′‖r+1h
r+1
c′ , ∀ z′ ∈ H1+r(Ω),

(2.7) inf
vh∈Vh

‖v − vh‖L2(Ω)3 ≤ M‖v‖Hk+1(Ω)3h
k+1
p , ∀ v ∈ V,

(2.8) inf
vh∈Vh

‖v−vh‖H(div;Ω) ≤ M{‖v‖Hk+1(Ω)3 +‖∇·v‖Hk+1(Ω)}hk+1
p , ∀ v ∈ V,

(2.9) inf
wh∈Wh

‖w − wh‖W ≤ M‖w‖Hk+1(Ω)h
k+1
p , ∀ w ∈ W.

By a standard inverse property and the approximation property (2.5), we have

(2.10) inf
z∈Mh

∑

e∈Jhc

∥∥∥∥
∂m(u− z)

∂xm1
1 ∂xm2

2 ∂xm3
3

∥∥∥∥
L2(e)

≤ M‖u‖`+1h
`+1−m
c

for m = m1 + m2 + m3, m1 ≥ 0, m2 ≥ 0 and m3 ≥ 0.
In order to define the alternating-direction Galerkin method, we write

Mh = Mx1
h ⊗Mx2

h ⊗Mx3
h ,

where ⊗ denotes the tensor product. Let {Φ1
α(x1)}N1

α=1, {Φ2
β(x2)}N2

β=1, {Φ3
γ(x3)}N3

γ=1

be the bases for Mx1
h , Mx2

h and Mx3
h , respectively. Then any C ∈ Mh can be

written as

(2.11) C =
N1∑

α=1

N2∑

β=1

N3∑
γ=1

Cα,β,γΦ1
α(x1)Φ2

β(x2)Φ3
γ(x3).

For any continuous function s(x), its patch approximation s̄ is defined as follows: If
Ψj (j = 1, · · · , N1N2N3) are the bases of Mh and eij = supp(Ψi) ∩ supp(Ψj), we
define s̄ =

√
s(xi) ·

√
s(xj) on eij , where xi ∈ supp(Ψi). In practice, xi is chosen

to be the node point associated with the basis function Ψi. It can be shown that
for such a choice of s̄ and for sufficiently small h we have

(2.12) sup
x∈Ωi

|s̄1(xi)− s1(xi)| = o(1).

For the time discretization, we partition the time interval [0, T ] into the following
time steps:

0 = t0 < t1 < · · · < tN = T

with ∆t = T/N and ti = ti−1 + ∆t (i = 1, · · · , N).
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The modified method of characteristics is a time-stepping procedure that can be
combined with any spatial discretization. To apply this method to our problem,
let τ denote the unit vector in the characteristic direction and ψ = (s2

1 + |u|2)1/2;
then it follows

ψ
∂c

∂τ
= s1

∂c

∂t
+ u · ∇c,

and (2.3) becomes:

(2.13)
(

ψ
∂c

∂τ
, z

)
+

(
s2

∂c′

∂t
, z

)
+ (D∇c,∇z) = (q(c∗ − c), z), ∀ z ∈ H1(Ω).

For a function ϕ = ϕ(x, t), let ϕn = ϕ(x, tn). We approximate the directional deriv-

ative
∂cn+1

∂τ
(x) =

∂c

∂τ
(x, tn+1) by a backward difference quotient in the τ−direction:

∂cn+1

∂τ
(x) ≈ s1

ψ

cn+1(x)− ĉn(x)
∆t

where

ĉn(x) = cn(x̂), x̂ = x− un(x)
s1(x)

∆t.

For (1.3)–(1.6) the characteristic–alternating direction finite element schemes
are: assuming {un

h, pn
h, Cn, C ′n} are known, find {un+1

h , pn+1
h , Cn+1, C ′n+1} ∈ Vh ×

Wh ×Mh ×Nh such that:

(
s̄1

Cn+1 − Cn

∆t
, z

)
+ (s2

C ′n+1 − C ′n

∆t
, z)(2.14)

+λ
(
s̄1∇(Cn+1 − Cn),∇z

)

+λ2∆t

3∑

i 6=j,i,j=1

(
s̄1

∂2(Cn+1 − Cn)
∂xi∂xj

,
∂2z

∂xi∂xj

)

+λ3∆t2
(

s̄1
∂3(Cn+1 − Cn)

∂x1∂x2∂x3
,

∂3z

∂x1∂x2∂x3

)

= (q(C∗n − Cn), z) + ((s̄1 − s1)
Cn − Cn−1

∆t
, z)

−(D∇Cn,∇z)− (s1
Cn − Ĉn

4t
, z), ∀ z ∈ Mh,

(2.15)
(

C ′n+1 − C ′n

∆t
, z′

)
= (α(Cn − C ′n+1), z′), ∀ z′ ∈ Nh,

(2.16) (a(Cn+1)−1un+1
h ,v)− (∇ · v, pn+1

h ) = 0, ∀ v ∈ Vh,

(2.17) (∇ · un+1
h , ϕ) = (q, ϕ), ∀ ϕ ∈ Wh.

Here the initial values C(0) ∈ Mh and C ′(0) ∈ Nh are chosen as approximations of
c0(x) and c′0(x), respectively; λ is a constant such that λ > 1

2
D∗
s1∗

; s̄1 is the patch
approximation of s1(x).

According to the structure of the basis functions in Mh, the approximation C of
the concentration has a representation (2.11) in terms of the one-dimensional basis
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functions in each axis direction. We have the following equation:

(Dn)
1
2 (Bx1 + λ∆tAx1)⊗ (Bx2 + λ∆tAx2)(2.18)

⊗(Bx3 + λ∆tAx3)(Dn)
1
2 (Cn+1 − Cn) = ∆tFn,

where Bx1 , Ax1 , Bx2 , Ax2 , Bx3 and Ax3 are matrices whose entries are given by

Bx1
α1,α2

=
∫ 1

0

Φ1
α1

Φ1
α2

dx1, Ax1
α1,α2

=
∫ 1

0

dΦ1
α1

dx1

dΦ1
α2

dx1
dx1,

Bx2
β1,β2

=
∫ 1

0

Φ2
β1

Φ2
β2

dx2, Ax2
β1,β2

=
∫ 1

0

dΦ2
β1

dx2

Φ2
β2

dx2
dx2,

Bx3
γ1,γ2

=
∫ 1

0

Φ3
γ1

Φ3
γ2

dx3, Ax3
γ1,γ2

=
∫ 1

0

dΦ3
γ1

dx3

dΦ3
γ2

dx3
dx3,

Dn is the diagonal matrix

Dn = diag
(
s̄1(x1), s̄1(x2) · · · , s̄1(xM )

)
, M = N1N2N3,

and Fn is the vector

Fn = (Fn
α,β,γ , α = 1, · · · , N1, β = 1, · · · , N2, γ = 1, · · · , N3)

with

Fn
α,β,γ = −(D∇Cn,∇(Φ1

α ⊗ Φ2
β ⊗ Φ3

γ))

−((s1 − s̄1)
Cn − Cn−1

∆t
, Φ1

α ⊗ Φ2
β ⊗ Φ3

γ)−
(

s1
Cn − C̄n

∆t
, Φ1

α ⊗ Φ2
β ⊗ Φ3

γ

)

−(s2
C
′n+1 − C

′n

∆t
,Φ1

α ⊗ Φ2
β ⊗ Φ3

γ) + (q(C∗n − Cn),Φ1
α ⊗ Φ2

β ⊗ Φ3
γ).

We point out that (2.18) can be solved by the alternating-direction Galerkin
method.

3. Convergence analysis

In this section, we prove error estimates for the finite element approximations
introduced in the previous section. Before we state our results, we introduce some
notation. For each t ∈ [0, T ], let (ũ, p̃, c̃, c̃′) ∈ Vh ×Wh ×Mh ×Nh be a projection
of (u, p, c, c′) defined through the following equations:

(3.1) (a(c)−1ũ,v)− (∇ · v, p̃) = 0, ∀ v ∈ Vh,

(3.2) (∇ · ũ, ϕ) = (q, ϕ), ∀ ϕ ∈ Wh,

(3.3) (D∇(c̃− c),∇z) + (µ(c̃− c), z) = 0, ∀ z ∈ Mh,

(3.4) (c̃′, z′) = (c′, z′), ∀ z′ ∈ Nh.

The function µ > 0 in (3.3) is to assure the coercivity of the form.
In view of (2.1), (2.2), (3.1) and (3.2), (ũ, p̃) is the mixed finite element approx-

imation of (u, p). According to the well-known error estimates for the mixed finite
element method [7], we have

(3.5) ‖u− ũ‖H(div;Ω) + ‖p− p̃‖W ≤ M‖p‖k+3h
k+1
p .

Since c̃ is the Galerkin projection of c and c̃′ is the L2 projection of c′, we have the
following error estimates [1, 16]:

(3.6) ‖c− c̃‖+ hc‖c− c̃‖1 ≤ M‖c‖l+1h
l+1
c ,
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(3.7)
∥∥∥∥

∂

∂t
(c− c̃)

∥∥∥∥ ≤ M

{
‖c‖l+1 +

∥∥∥∥
∂c

∂t

∥∥∥∥
l+1

}
hl+1

c ,

(3.8) ‖c′ − c̃′‖ ≤ M‖c′‖r+1h
r+1
c′ ,

(3.9)
∥∥∥∥

∂

∂t
(c′ − c̃′)

∥∥∥∥ ≤ M

∥∥∥∥
∂c′

∂t

∥∥∥∥
r+1

hr+1
c′ .

We split the errors into two terms:

C − c = ξ − η, C ′ − c′ = ρ− ζ,

where
ξ = C − c̃, η = c− c̃,

ρ = C ′ − c̃′, ζ = c′ − c̃′.
Our main results are stated in the following theorem.

Theorem 3.1. Suppose that the exact solution of problem (1.3) and (1.4) is suffi-
ciently smooth and the time and space discretization are such that

∆t = O(h2
p), h

− 3
2

p (hl+1
c + h′r+1

c ) → 0, as h → 0,(3.10)

and ∆t = O(h2
c) and λ > D∗

2s1∗
, k ≥ 1, l ≥ 1. If the initial approximations satisfy

‖ρ0‖2 + ‖ρ1‖2 + ‖ξ0‖21 + ‖ξ1‖21 + ∆t‖dtξ
0‖2

≤M{(∆t)2 + h2k+2
p + h2l+2

c + h′2r+2
c },(3.11)

then the following error estimate holds:

max
n
{‖c′n − C

′n‖2 + ‖cn − Cn‖2 + hc‖cn − Cn‖21

+
n∑

k=0

‖dt(ck − Ck)‖2∆t + ‖pn
h − pn

h‖2W + ‖un − un
h‖2V }

≤ M{h2l+2
c + h2r+2

c′ + h2k+2
p + (∆t)2},

(3.12)

where M > 0 is a constant independent of hp, hc, hc′ and ∆t

Proof. From (2.1), (2.2), (2.16) and (2.17), as well as the definitions of ũ and p̃, we
have

(a(Cn+1)−1(un+1
h − ũn+1),v)− (∇ · v, pn+1

h − p̃n+1)(3.13)

= (a(cn+1)−1ũn+1,v)− (a(Cn+1)−1ũn+1,v), v ∈ Vh,

and

(3.14) (∇ · (un+1
h − ũn+1), ϕ) = 0, ϕ ∈ Wh.

From [8] we obtain:

(3.15) ‖un+1
h − ũn+1‖

H(div;Ω)
+ ‖pn+1

h − p̃n+1‖W ≤ M‖cn+1 − Cn+1‖.
Combining (2.4), (2.15) and (3.4) leads to the following error equation for c′ and
C ′:

(3.16) (dtρ
n, z′) = (α(ξn−ηn)−α(ρn+1−ζn+1), z′)+

(
∂c

′n+1

∂t
− c′n+1 − c′n

∆t
, z′

)
.

Choosing z′ = ρn and then z′ = dtρ
n in (3.16), we obtain

(3.17)
1

∆t
(‖ρn+1‖2 − ‖ρn‖2) ≤ M

{‖ξn‖2 + ‖ρn+1‖2 + h2l+2
c + h2r+2

c′ + (∆t)2
}
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and

(3.18) ‖dtρ
n‖2 ≤ M

{‖ξn‖2 + ‖ρn+1‖2 + h2l+2
c + h2r+2

c′ + (∆t)2
}

.

Next, we turn to the error equation for c and C. In fact, by a simple manipulation,
the equations (2.3), (2.14) and (3.4) imply

(s1dtξ
n, z) + ((s̄1 − s1)(dtξ

n − dtξ
n−1), z) + (D∇ξn,∇z)(3.19)

+λ∆t (s1∇dtξ
n,∇z) + (λ∆t)2

3∑

i 6=j,i,j=1

(
s̄1

∂2dtξ
n

∂xi∂xj
,

∂2z

∂xi∂xj

)

+(λ∆t)3
(

sn
1

∂3dtξ
n

∂x1∂x2∂x3
,

∂3z

∂x1∂x2∂x3

)

= λ4t((s1 − s̄1)∇dtξ
n,∇z) + ((sn

1 − s̄n
1 )(dtc̃

n − dtc̃
n−1), z)

−λ∆t (s̄1∇dtc̃
n,∇z) +

(
s1

∂cn+1

∂t
+ un

h · ∇cn+1 − s1
cn+1 − c̄n

∆t
, z

)

+
(

s1
ξ̄n − ξn

∆t
, z

)
+

(
s1

ηn+1 − η̄n

∆t
, z

)

+
(

s2

(
∂c′n+1

∂t
− C ′n+1 − C ′n

∆t

)
, z

)
− µ(ηn, z)

+((un+1 − un
h) · ∇cn, z)− (λ∆t)2

3∑

i 6=j,i,j=1

(
s̄1

∂2dtc̃
n

∂xi∂xj
,

∂2z

∂xi∂xj

)

−(λ∆t)3
(

s̄1
∂3dtc̃

n

∂x1∂x2∂x3
,

∂3z

∂x1∂x2∂x3

)

+(q(C∗n − Cn)− q(c∗n+1 − cn+1), z).

We now take z = 2∆tdtξ
n in (3.19), sum over 1 ≤ n ≤ N − 1 and then estimate

each term of the resulting equation. For the first two terms on the left-hand side
of (3.19), one has

2∆t
N−1∑
n=1

[(s1dtξ
n, dtξ

n) + ((s̄1 − s1)(dtξ
n − dtξ

n−1), dtξ
n)](3.20)

≥ M∆t

N−1∑
n=1

‖dtξ
n‖2 − ε∆t‖dtξ

0‖2.

Here, in (3.20) and the rest of the proof, ε > 0 is a constant to be chosen sufficiently
small later. For the third and fourth terms on the left-hand side of (3.19), we deduce
that

N−1∑
n=1

[(D∇ξn,∇dtξ
n) + λ∆t(s1∇dtξ

n,∇dtξ
n)]∆t(3.21)

=
N−1∑
n=1

{ 1
2∆t

[(D∇ξn+1,∇ξn+1)− (D∇ξn,∇ξn)]

+∆t((λs1 − 1
2
D)∇dtξ

n,∇dtξ
n)}∆t

≥ D∗‖∇ξN‖2 −D∗‖∇ξ1‖2 + (λs1∗ − 1
2
D∗)

N−1∑
n=1

‖∇dtξ
n‖2∆t.



AN ALTERNATING DIRECTION CHARACTERISTIC-GALERKIN METHOD 667

By the assumption that λ > D∗/(2s1∗), the coefficient of the last term of (3.21) is
positive. The last two terms on the left-hand side of (1.3) can be bounded from
below as follows:

(3.22) (λ∆t)2
3∑

i6=j,i,j=1

∣∣∣∣
(

s̄1
∂2dtξ

n

∂xi∂xj
,
∂2dtξ

n

∂xi∂xj

)∣∣∣∣ ≥ M(λ∆t)2
3∑

i 6=j,i,j=1

∥∥∥∥
∂2dtξ

n

∂xi∂xj

∥∥∥∥
2

,

(3.23) (λ∆t)3
∣∣∣∣
(

s̄1
∂3dtξ

n

∂x1∂x2∂x3
,

∂3dtξ
n

∂x1∂x2∂x3

)∣∣∣∣ ≥ M(λ∆t)3
∥∥∥∥

∂3dtξ
n

∂x1∂x2∂x3

∥∥∥∥
2

.

It remains to estimate terms on the right-hand side of (3.19). We will bound these
terms from above. We start with the first term on the right-hand side of (3.19). In
view of (2.12), we have for sufficiently small h

(3.24) |∆t

N−1∑
n=1

((sn
1 − s̄n

1 )∇dtξ
n,∇dtξ

n)| ≤ ε

N−1∑
n=1

‖dtξ
n‖2∆t.

For the second term, the standard error estimates for difference quotients and the
approximation property (2.17) for c̃ yield

(3.25) 2∆t

N−1∑
n=1

|((sn
1 − s̄n

1 )(dtc̃
n − dtc̃

n−1), dtξ
n)| ≤ ε

N−1∑
n=1

‖dtξ
n‖2∆t + M(∆t)2.

To estimate the third term on the right-hand side of (3.19), let Fn = λ∆ts̄1∇dtc̃
n.

We have the identity

2∆t

N−1∑
n=1

(Fn,∇dtξ
n)(3.26)

= 2(FN−1,∇ξN )− 2(F 1,∇ξ1)− 2∆t

N−2∑
n=1

(dtF
n,∇ξn+1).

The terms on the right-hand side of (3.19) can be bounded by the Cauchy-Schwarz
inequality and the approximation property (2.17) as follows:

|(FN−1,∇ξN )− (F 1,∇ξ1)|(3.27)

≤ ε‖ξN‖21 + M{‖FN−1‖2 + ‖F 1‖2 + ‖ξ1‖21}
≤ ε‖ξN‖21 + M{(∆t)2‖dtc̃

N−1‖21 + (∆t)2‖dtc̃
1‖21 + ‖ξ1‖21}

≤ ε‖ξN‖21 + M{(∆t)2 + ‖ξ1‖21},

2∆t

N−2∑
n=1

(dtF
n,∇ξn+1) ≤ ε∆t

N−2∑
n=1

‖dtF
n‖2 + M∆t

N−2∑
n=1

‖ξn+1‖21(3.28)

≤ M

{
N−1∑
n=2

‖ξn‖21∆t + (∆t)2
}

.

The identity (3.26) and the inequalities (3.27) and (3.28) give us the following upper
bound for the third term on the right-hand side of (3.19):

2∆t

N−1∑
n=1

(λ∆ts̄1∇dtc̃
n,∇dtξ

n)(3.29)

≤ ε‖ξN‖21 + M

(
(∆t)2 + ‖ξ1‖21 + ∆t

N−1∑
n=2

‖ξn‖21
)

.
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We now turn to the next term, the fourth term on the right-hand side of (3.19).
Recall that

s1
∂cn+1

∂t
+ un

h · ∇cn+1 = ψ(x,un
h)

∂cn+1

∂τ
,

where ψ(x,un
h) = (s2

1(x) + |un
h|2)1/2. Let us make the induction hypothesis that

(3.30) sup
n
‖un−1

h − ũn−1‖0,∞ ≤ M.

By the induction hypothesis (3.30) we know that un
h is bounded, so is ψ(x,un

h). For
∆t small enough, we have

∥∥∥∥s1
∂cn+1

∂t
+ un

h · ∇cn+1 − s1
cn+1 − c̄n

∆t

∥∥∥∥
2

=
∥∥∥∥ψ(x,un

h)
∂cn+1

∂τ
− s1

cn+1 − c̄n

∆t

∥∥∥∥
2

≤
∫

Ω

(
s1(x)
∆t

)2 (
ψ∆t

s1(x)

)3
∣∣∣∣∣
∫ (x,tn+1)

(x̄,tn)

∂2c

∂τ2
dτ

∣∣∣∣∣

2

dx

≤∆t

∥∥∥∥
ψ3

s1

∥∥∥∥
0,∞

∫

Ω

∫ tn+1

tn

∣∣∣∣
∂2c

∂τ2

∣∣∣∣
2

dtdx

≤M(∆t)
∥∥∥∥

∂2c

∂τ2

∥∥∥∥
2

L2(Jn;L2)

.

Thus ∣∣∣∣
(

s1
∂cn+1

∂t
+ un

h · ∇cn+1 − s1
cn+1 − c̄n

∆t
, dtξ

n

)∣∣∣∣

≤ ε

N−1∑
n=1

‖dtξ
n‖2∆t + M(∆t)2,

(3.31)

(3.32) 2∆t

N−1∑
n=1

(
s1

ξ̄n − ξn

∆t
, dtξ

n

)
≤ ε

N−1∑
n=1

‖dtξ
n‖2∆t + M∆t

N−1∑
n=1

‖∇ξn‖2.

Note that∣∣∣∣
(

s1
ηn+1 − η̄n

∆t
, dtξ

n

)∣∣∣∣ ≤
∣∣∣∣
(

s1
ηn+1 − ηn

∆t
, dtξ

n

)∣∣∣∣ +
∣∣∣∣
(

s1
ηn − η̄n

∆t
, dtξ

n

)∣∣∣∣ .

It is easy to estimate the first term in the above equality. We will take diligent
efforts on the following term:

∆t
N−1∑
n=1

(
s1

ηn − η̄n

∆t
, dtξ

n

)
=

(
s1

ηN−1 − η̄N−1

∆t
, ξN

)
(3.33)

−
(

s1
η0 − η̄0

∆t
, ξ1

)
−

N−1∑
n=1

(
s1

(
ηn − η̄n

∆t
− ηn−1 − η̄n−1

∆t

)
, ξn

)
.

It is easy to obtain:
∣∣∣∣
(

s1
ηN−1 − η̄N−1

∆t
, ξN

)∣∣∣∣ ≤ ε‖ξN‖21 + M‖ηN−1‖2,
∣∣∣∣
(

s1
η0 − η̄0

∆t
, ξ1)

)∣∣∣∣ ≤ M

∥∥∥∥
η0 − η̄0

∆t

∥∥∥∥
−1

‖ξ1‖1 ≤ M{h2l+2
s + ‖ξ1‖21}.
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For the term
ηn − η̄n

∆t
− ηn−1 − η̄n−1

∆t

=
1

∆t

[
η(x, tn)− η(x, tn−1)− (η(x̄n, tn)− η(x̄n, tn−1))

]

− 1
∆t

[
η(x̄n, tn)− η(x̄n−1, tn−1)

]
= I1 − I2,

(3.34)

using a Taylor expansion, we have I1 =
∫ 1

0

[
∂η
∂t (x, tα)− ∂η

∂t (x̄n, tα)
]
dα, where tα =

αtn + (1− α)tn−1. Note that
∥∥∥∥

∂η

∂t
(x, tα)− ∂η

∂t
(x̄n, tα)

∥∥∥∥
−1

=
1

‖φ‖1 sup
φ∈H1(Ω)

∫

Ω

[
∂η

∂t
(x, tα)− ∂η

∂t
(x̄n, tα)

]
φdx.

We introduce the space variant transformation Z = F (x) = x̄n = x− un
h

s1(x)
∆t,

where DF represents the Jacobi matrix for transformation Z = F (x) and |det(DF )|
be the Jacobi determinant for this transformation. For sufficiently small ∆t, we
have |det(DF )| ≤ M∆t and |det(DF )−1| ≤ M∆t. Similarly to the procedure in [6]
we have the estimate:∥∥∥∥

∂η

∂t
(x, tα)− ∂η

∂t
(x̄n, tα)

∥∥∥∥
−1

≤ M

∥∥∥∥
∂η

∂t
(tα)

∥∥∥∥ ∆t.

Thus we have

(3.35) ‖I1‖−1 ≤ M∆t

∫ 1

0

∥∥∥∥
∂η

∂t
(tα)

∥∥∥∥ dα.

To estimate I2, we introduce the space variant transformation Y = G(x) =

x̄n−1 = x− un−1
h

s1(x)
∆t to have

I2 =
1

∆t
[η(x̄n, tn)− η(x̄n−1, tn−1)]

=
1

∆t

1
‖φ‖1 sup

φ∈H1(Ω)

∫

Ω

φ(x)[η(F (x), tn−1)− η(G(x), tn−1)]dx

=
1

∆t

1
‖φ‖1 sup

φ∈H1(Ω)

∫

Ω

φ(x)[η(Z, tn−1)− η(Y, tn−1)]dx

=
1

∆t

1
‖φ‖1 sup

φ∈H1(Ω)

{
∫

Ω

φ(F−1(Z))η(Z, tn−1)det(DF )−1(Z)dZ

−
∫

Ω

φ(G−1(Y ))η(Y, tn−1)det(DG)−1(Y )dY },

(3.36)

where

η(Z, tn−1)[φ(F−1(Z))det(DF )−1 − φ(G−1(Z))det(DG)−1]

= η(Z, tn−1){φ(F−1(Z))[det(DF )−1 − det(DG)−1]

+ det(DG)−1[φ(F−1(Z))− φ(G−1(Z))]} = A1 + A2.

(3.37)

Note that ‖φ(F−1(Z))‖ ≤ M‖φ‖ and |det(DF )−1−det(DG)−1| ≤ M(∆t). Then
we have

(3.38) A1 ≤ M‖ηn−1‖∆t,
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|φ(F−1(Z))− φ(G−1(Z))| =
∫ F−1(Z)

G−1(Z)

∂φ

∂β
(β)dβ

=
∫ 1

0

∂φ

∂β
[G−1(Z) + (F−1(Z)−G−1(Z))θ](F−1(Z)−G−1(Z))dθ

=
∫ 1

0

∂φ

∂β
(θ)(F−1(Z)−G−1(Z))dθ.

(3.39)

Since |F−1(Z) − G−1(Z)| = |G−1(Y ) − G−1(Z)| ≤ |Y − Z| ≤ M(∆t) and
|det(DG)−1| ≤ 1 + M∆t, we see that

(3.40) A2 ≤ M‖ηn−1‖∆t.

From (3.34) and (3.36) we obtain

(3.41) ‖I2‖−1 ≤ M‖ηn−1‖∆t.

Combining (3.30), (3.31) and (3.37), we have
N−1∑
n=1

(
s1

(
ηn − η̄n

∆t
− ηn−1 − η̄n−1

∆t

)
, ξn

)

≤ M(∆t)−1
N−1∑
n=1

(‖I1‖2−1 + ‖I2‖2−1) + M∆t

N−1∑
n=1

‖ξn‖21

≤ M

N−1∑
n=1

{
∥∥ηn−1

∥∥2
+

∫ 1

0

∥∥∥∥
∂η

∂t
(tα)

∥∥∥∥
2

dα

}
∆t + M∆t

N−1∑
n=1

‖ξn‖21

≤ M

{
h2l+2

s + (∆t)2 + ∆t

N−1∑
n=1

‖ξn‖21
}

.

(3.42)

For the other terms on the right-hand side of (3.17), when l ≥ 1, we have∣∣∣∣∣∣

3∑

i 6=j,i,j=1

(
s1

∂2dtc̃
n

∂xi∂xj
,
∂2ξn+1

∂xi∂xj

)∣∣∣∣∣∣
≤ M(∆t)2 + ε(λ4t)2

3∑

i 6=j,i,j=1

∥∥∥∥
∂2ξn+1

∂xi∂xj

∥∥∥∥
2

and when l ≥ 1,∆t = O(h2
c), we get

∣∣∣∣
(

s1
∂3dtc̃

n

∂x1∂x2∂x3
,

∂3ξn+1

∂x1∂x2∂x3

)∣∣∣∣ ≤ M(∆t)2 + ε(λ4t)3
∥∥∥∥

∂3ξn+1

∂x1∂x2∂x3

∥∥∥∥
2

.

The other terms can be estimated easily:

N−1∑
n=1

‖dtξ
n‖2∆t + ‖ξN‖21

≤ M

{
N−1∑
n=1

‖ξn‖21(∆t) + (∆t)2 + h2k+2
p + h2l+2

s + h2r+2
c

}
+ ‖ξ1‖21.

(3.43)

We next combine (3.15) and (3.39), and choose ε sufficiently small to obtain

‖ρN‖2 + ‖ξN‖21 +
N−1∑
n=1

‖dtξ
n‖2∆t

≤ M{(∆t)2 + h2k+2
p + h2l+2

c + h′2r+2
c }+

N−1∑
n=0

(‖ξn‖21 + ‖ρn+1‖2)∆t.

(3.44)
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If condition (3.9) holds, an application of a discrete version of Gronwall’s lemma
shows that

‖ξN‖21 + ‖ρN‖2 +
N−1∑
n=0

‖dtξ
n‖2∆t

≤ M{(∆t)2 + h2k+2
p + h2l+2

c + h′2r+2
c }.

(3.45)

Now, check the induction hypothesis (3.26) and suppose k ≥ 1, l ≥ 1; then, under
the constraint (3.8), the induction hypothesis (3.26) holds.

We can summarize our results by combining (3.3), (3.5), (3.7) and (3.41). ¤

4. Start-up procedure

For the three-level method (2.12), one must obtain C0, C1 and C ′0, C ′1 such
that (3.9) holds. Ideally, we choose C0 = c̃(0), C ′0 = c̃′(0). If the linear system
associated with c̃(0) or c̃′(0) cannot be solved exactly, an iterative procedure such
as a preconditioned conjugate-gradient method may be used to obtain C0 and C ′0

close to c̃(0) and c̃′(0) separately.
We obtain u0

h by solving the following equations:

(a(C0)−1u0
h,v)− (∇ · v, p0

h) = 0, v ∈ Vh,

(∇ · u0
h, ϕ) = (q, ϕ), ϕ ∈ Wh.

We can obtain C ′1 by solving (2.13). There are several possible methods for
obtaining C1. We can define C1 with one iteration by

(s1
C1 − C̄0

4t
, z) + (D∇C1,∇z) + (s2

C ′1 − C ′0

4t
, z) = (q(C∗0 − C0), z), z ∈ Mh,

where C̄0 = C(x− u0
h

s1(x)
4t).

One can also obtain C1 by defining the following iterative procedure, whose
matrix factors into the alternating-direction form

Y 0 = C0 = c̃(0),
(

s̄1
Y i+1 − C0

∆t
, z

)
+ (s2dtC

′n, z) + (D∇C0,∇z)

+λ
(
s̄1(∇(Y i+1 − C0)),∇z

)
+ λ2∆t

3∑
i 6=j,i,j=1

(
s̄1

∂2(Y i+1 − C0)
∂xi∂xj

,
∂2z

∂xi∂xj

)

+λ3∆t2
(

s̄1
∂3(Y i+1 − C0)

∂x1∂x2∂x3
,

∂3z

∂x1∂x2∂x3

)

= (q(C∗0 − C0), z) + ((s̄1 − s1)
Y i+1 − C0

4t
, z)− (s1

C0 − C̄0

4t
, z), z ∈ Mh.

It is straightforward to verify that this choice of C0, C1 and C ′0, C ′1 satisfies
the hypothesis of Theorem 3.1.
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