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Received 7 June 2009; Accepted (in revised version) 28 January 2010
Available online 25 March 2010

Abstract. Discontinuous Galerkin methods as a solution technique of second or-
der elliptic problems, have been increasingly exploited by several authors in the
past ten years. It is generally claimed the alledged attractive geometrical flexibil-
ity of these methods, although they involve considerable increase of computational
effort, as compared to continuous methods. This work is aimed at proposing a
combination of DGM and non-conforming finite element methods to solve elliptic
m-harmonic equations in a bounded domain of IRn, for n = 2 or n = 3, with m≥n + 1,
as a valid and reasonable alternative to classical finite elements, or even to bound-
ary element methods.

AMS subject classifications: 65N30, 65N99, 76D07, 92C55.
Key words: Discontinuous Galerkin, finite elements, Hermite tetrahedrons, Morley triangle,
non-conforming, polyharmonic equations.

1 Introduction

Let Ω be a bounded domain of IRn for n = 2 or n = 3, with boundary Γ. For a given
f ∈ L2(Ω) we consider the model polyharmonic equation: Find u ∈ Hm

0 (Ω), such that

(−∆)mu = f , for m ≥ 2. (1.1)

In the two-dimensional case and for m = 2, this equation has several applications in
Physics and in Mechanics, while in the three-dimensional case it can be useful in Fluid
Mechanics whenever m = 2 too (see [7]). As far as the case m≥3 is concerned, appli-
cations of the polyharmonic equation (1.1) were not addressed in the litterature until
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very recently. However in the past few years triharmonic equations have been studied
as applied to fluid flow problems [5] or to image processing [11].

If we consider the solution of Eq. (1.1) with conforming finite element methods,
functions in the Sobolev spaces Hm(Ω) for m≥3 must be approximated by piecewise
polynomial functions of the Cm−1 class. Whenever n≥2 the construction of such func-
tion spaces is a matter of great algebraic complexity. Even in the case where n = 2
and m = 2 the known constructions are rather elaborated (cf. [2]), let alone the case
m≥3, where the use of such approximation methods becomes unreasonable. This fact
naturally leads to external approximations, that is, to the so-called non-conforming
methods. In this case the use of polynomials of lower degree is admissible, as long
as some conditions are fulfilled in order to ensure the quality of the approximations.
More specifically the traces of the polynomials at element interfaces should have suit-
able continuity properties. Actually for two-dimensional problems a wide spectrum of
options of this type has been proposed by several authors since the late sixties, and in
this respect we refer to the celebrated Ciarlet’s book [2]. For three-dimensional prob-
lems only a few non-conforming finite element methods are known for m = 2, such
as [8]. In the case n = m = 3 a classical non-conforming finite element solution method
was studied in [9].

Although to date there seems to be little practical use of the m-harmonic equa-
tion for high values of m, we address in this work the numerical solution of (1.1),
by a method that combines discontinuous Galerkin techniques with classical non-
conforming finite elements, for any m≥n + 1. One of the main merits of this method
is the fact that it reduces to a minimum the intrinsic complexity of solving the m-
harmonic equation in arbitrary domains, even for m = n + 1 .

In the case n = 2 and m = 3, a first solution method combining both techniques
was proposed in [10]. Here we recall this method as a starting point of a family
of methods of this type applying to the case m≥n + 1. As we should say, for two-
dimensional problems, the non conforming part of the methodology is aimed at inter-
polating derivatives of order r with m− 2≤r≤m− 1 of the numerical solution, whereas
its lower order derivatives and the solution itself are represented by completely dis-
continuous functions. As a matter of fact, the non conforming part of the approxi-
mation method is based on the well-known Morley triangle for solving biharmonic
problems (cf. [6]). The idea is extended to the three-dimensional case, in which the
non-conforming part is used to interpolate derivatives of order r with m− 3≤r≤m− 1,
while the lower order derivatives and the function itself are represented by fully dis-
continuous functions. Here the non-conforming part generalizes the non-conforming
tetrahedron introduced in [9] for the case m = 3, which in turn are related to the Morley
triangle. Indeed it was established in that work that the traces over element interfaces
of the cubic functions this finite element is built upon, are nothing but Morley trian-
gles, whenever they happen to be just quadratic. As this property remains valid in
our methodology for the natural extension of Morley triangles to the case m≥4, this
explains why we decided to call the new methods a DG-Morley family of methods.

An outline of the paper is as follows. In Section 2 we introduce some notations
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and recall the definition of the Morley triangle, together with the one of its tetrahedral
analogue [8]. Next in Section 3 we consider the general concepts that lie behind our
methodology for solving equation (1.1). In Section 4 we address the two-dimensional
case: after recalling the member of the family corresponding to the value m = 3 (cf.
[10]), we treat in detail the one corresponding to m = 4. In Section 5 we consider three-
dimensional problems, by treating the case m = 4 as well. We conclude in Section 6
with some remarks.

2 Notations and basic finite elements

Before starting our study we present some notations and conventions used through-
out this paper: We shall represent by ∇ the gradient operator, and by ∇rv the set of
partial derivatives of r-th order of a function v, arranged in the form of an r-th order
tensor over IRn. We further denote by | · |m and ‖ · ‖m the standard seminorm and
norm of Sobolev space Hm(Ω), for m ∈ IN. We denote by A · B the standard euclidean
inner product of two tensors A and B of arbitrary order and by |A| the associated
norm [A · A]1/2. In all the sequel the letters i, j, k and l denote an integer belonging to
the set {1, · · · , n + 1}. Also unless otherwise specified, whenever i, j, k and l appear
together in the same expression, notation or definition as either a subscript or a super-
script, they represent distinct numbers. In so doing we further introduce the following
notations associated with a given non degenerated n-simplex T:

1. GT denotes the barycenter of T;

2. Si is one out of the n + 1 vertices of T;

3. Fi denotes the face (or edge if n = 2) of T opposite to Si;

4. eij represents the edge of T joining Si and Sj (for n = 2 eij ≡ Fk);

5. Mi denotes the mid-point or the barycenter of Fi;

6. −→n i is the unit outer normal vector to Fi;

7. λi is the barycentric coordinate of T corresponding to vertex Si;

8. ∂r
ni

denotes the r-th order derivative in the direction of −→n i at Mi;

9. dij is the length of eij;

10. −→τ j
i is the unit vector along eij directed from Si towards Sj;

11. hi denotes the height of T corresponding to Si.

As previously stated the family of methods studied in this paper for solving Eq.
(1.1) has the Morley triangle as its member for m = n = 2. For m = 2 and n = 3 the
tetrahedron introduced by the first author in [8] plays this role. Therefore to begin
with we briefly recall the definition of both elements: The non-conforming Morley
triangle introduced in [6] is based on polynomials p of degree less than or equal to 2
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defined by the set of six degrees of freedom {Fi,F i} for i = 1, 2, 3, where

Fi(p) := p(Si), and F i(p) := ∂1
ni

p.

Its non-conforming tetrahedral counterpart [8] is also based on quadratic functions p,
defined by the set of ten degrees of freedom {Fij,F i} for i, j ∈ {1, 2, 3, 4} with i < j,
where

Fij(p) :=
1

dij

∫

eij

pde, and F i(p) := ∂1
ni

p.

Both metods are known to be first order convergent in the discrete H2-norm, when
employed to solve problem (1.1) for m = 2, recast in a suitable equivalent variational
form (cf. [2] and [8]).

3 Combining non-conforming and fully discontinuous
finite elements

Henceforth we assume that m > n. Let

α := {α1, · · · , αn},

be an integer multi-index with αj≥0 and setting

|α| :=
n

∑
i=1

αi, whenever |α| = r, for r ≥ 1,

∂α denotes the r-th order partial derivative operator ∂r/∂xα1
1 · · · ∂xαn

n . We extend the
definition of ∂α to the case where |α| = 0, by letting ∂{0,··· ,0} be the identity opera-

tor. We further introduce for i ∈ {1, 2, · · · , n + 1}, a functional ∂
βi
m−n defined upon

functions q ∈ Cm−n(T), in connection with a multi-index βi ∈ INn, i.e.,

βi := {βi
1, · · · βi

n}, where 0 ≤ βi
r ≤ m− n, for r = 1, · · · , n,

with

|βi| :=
n

∑
r=1

βi
r = m− n, ∀i,

in the following manner:

∂m−n
β1 q := ∇m−nq(S1)[◦−→τ 2

1]
β1

1 · · · [◦−→τ n+1
1 ]β1

n ,

∂m−n
βi q := ∇m−nq(Si)[◦−→τ 1

i ]
βi

1 · · · [◦−→τ i−1
i ]βi

i−1 [◦−→τ i+1
i ]βi

i · · · [◦−→τ n+1
i ]βi

n ,

∂m−n
βn+1 q := ∇m−nq(Sn+1)[◦−→τ 1

n+1]
βn+1

1 · · · [◦−→τ n
n+1]

βn+1
n ,
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where 2 ≤ i ≤ n, and A ◦ −→v represents the product of a tensor A of arbitrary or-
der over IRn with vector −→v ∈ IRn, and [◦−→v ]r means that this operation is reiterately
performed r times (from left to right) if r > 0 or not at all if r = 0.

In so doing we define the following functionals that characterize the methodology
in use, applied to a generic function p ∈ Cm(T), corresponding to three types of de-
grees of freedom (DOF) attached to an element T of functions belonging to the space
Pm, where Pr is the space of polynomials of degree less than or equal to r defined in T.
For n = 2:

DOF of type A: Fα(p) := ∂α p(GT), 0 ≤ |α| ≤ m− 3,

DOF of type B: Fβi(p) := ∂m−2
βi p, |βi| = m− 2, 1 ≤ i ≤ 3,

DOF of type N: F i(p) := ∂m−1
ni

p, 1 ≤ i ≤ 3.

As one can easily check there are (m− 1)(m− 2)/2 DOF of Type A, 3(m− 1) DOF of
Type B, and 3 DOF of Type N. Hence the total number of DOF is (m + 1)(m + 2)/2,
that is, the dimension of Pm for n = 2.
For n = 3:

Here we further represent by hj
i the height of Fi corresponding to Sj, or yet its length

whenever applicable. Moreover we denote by −→σ j
i the unit vector of the direction of

hj
i , oriented from ekl towards Sj (recall that i, j, k, l are distinct). Additionally for every

pair
{i, j} ∈ {1, 2, 3, 4}2,

we consider another integer multi-index with two components, namely

γij = {γ
ij
1 , γ

ij
2 }, satisfying 0 ≤ γ

ij
r ≤ m− 2, for r = 1, 2,

together with

γ
ij
1 + γ

ij
2 = m− 2, and γ

ij
1 = γ

ji
2 , (we recall that i and j are distinct).

We associate with γij the scalar differential operator ∂m−2
γij defined by:

∂m−2
γij q(x) :=

[∇m−2q
]
(x)

[◦−→σ j
i

]γ
ij
1
[◦−→σ i

j
]γ

ji
2 , ∀q ∈ Cm−2(T), ∀x ∈ T,

DOF of type A: Fα(p) := ∂α p(GT), 0 ≤ |α| ≤ m− 4,

DOF of type B: Fβi(p) := ∂m−3
βi

p, |βi| = m− 3, 1 ≤ i ≤ 4,

DOF of type C: Fγij(p) :=
1

dkl

( ∫

ekl

∂m−2
γij p de

)
, |γij| = m− 2, 1 ≤ i, j ≤ 4,

DOF of type N: F i(p) := ∂m−1
ni

p, 1 ≤ i ≤ 4.

Notice that due to the symmetry of partial derivatives and to the fact that

γ
ij
1 = γ

ji
2 , and Fγij ≡ Fγji ,
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Then, similarly to the case n = 2, we can easily establish that there are (m − 1)(m −
2)(m− 3)/6 DOF of Type A, 2(m− 1)(m− 2) DOF of Type B, 6(m− 1) DOF of Type C,
and 4 DOF of Type N. It follows that there are exactly (m + 1)(m + 2)(m + 3)/6 DOF,
which is the dimension of Pm for n = 3.

Henceforth we assume that Ω is a polygon if n = 2 or a polyhedron if n = 3. We con-
sider a partition Th of Ω into n-simplexes, satisfying the usual compatibility conditions
for the finite element method. Moreover, we assume that Th belongs to a quasiuniform
family of partitions P . h denotes the largest edge of all the simplexes of Th.

Our partly non-conforming and partly fully discontinuous finite element, gener-
ates a subspace Vh of

Wh := {v/v/T ∈ Pm, ∀T ∈ Th}.

Its definition is as follows:
For n = 2:

Definition 3.1. Vh is the subspace of Wh of those functions v, whose normal derivatives of
the (m − 1)-th order determined on each side of every edge common to two triangles of the
partition are the same at this edge’s mid-point, and such that the tensors resulting from the
application of operator∇m−2 to the restrictions of v to the triangles of the partition containing
a given vertex, coincide at this point.

The actual possibility of constructing such space Vh is a consequence of

Proposition 3.1. For any non degenerated triangle T the set Σ2
m of degrees of freedom, namely

Σ2
m :=

{
Fα,Fβi ,F i, i = 1, 2, 3, α, βi ∈ IN2, |α| ≤ m− 3, |βi| = m− 2

}
,

is Pm-unisolvent.

Proof. In order to prove this Proposition it suffices to establish that, if all the dimPm
functionals of Σ2

m for a triangle T applied to a function p ∈ Pm vanish then p ≡ 0.
Let us assume that

p ∈ Pm, Fα(p) = 0, Fβi(p) = 0, and F i(p) = 0,

for i = 1, 2, 3, α, βi ∈ IN2, |α| ≤ m − 3, |βi| = m − 2. First we observe that all the
components of ∇m−2 p belong to P2. Since by assumption their values at the vertices
of T vanish, their tangential derivatives along each edge of T also vanish at this edge’s
mid-point by a well-known property of quadratic functions depending on one single
variable. Since the (m− 1)−th order normal derivative of p at this mid-point also van-
ish, all the components of ∇m−1 p must vanish at this point too. Since each component
of the latter tensor is a function of P1 that vanishes at the three edge mid-points of T,
necessarily all the (m− 1)−th order derivatives of p vanish identically, which implies
that p ∈ Pm−2. It follows that all the components of∇m−2 p belong to P0. But since they
vanish at the vertices of T by assumption, all of them must vanish identically. Thus
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p is a function of Pm−3 that vanishes, together with its derivatives of order r ≤ m− 3
at the same point GT. As a consequence p vanishes identically in T and the result
follows. ¤
For n = 3:

Definition 3.2. Vh is the subspace of Wh of those functions v, whose normal derivatives of
the (m − 1)-th order determined on each side of every face common to two tetrahedra of the
partition are the same at this face’s barycenter, whose sets of mean values along an edge of all
partial derivatives of order m− 2 with respect to directions of the plane orthogonal to this edge
are the same for all the tetrahedra containing this edge, and such that the tensors resulting from
the application of ∇m−3 to the restrictions of v to the tetrahedra of the partition containing a
given vertex, coincide at this point.

The actual possibility of constructing such space Vh is a consequence of

Proposition 3.2. For any non degenerated tetrahedron T the set Σ3
m of degrees of freedom,

namely,

Σ3
m :=

{
Fα, Fβi , Fγij , F i, i, j ∈ {1, 2, 3, 4}, α, βi ∈ IN3, with |α| ≤ m− 4,

|βi| = m− 3, and γij ∈ IN2, with |γij| = m− 2, and γ
ij
1 = γ

ji
2

}
,

is Pm-unisolvent.

Proof. Here again this result holds provided any function p ∈ Pm (defined in T)
such that all the dimPm functionals of Σ3

m applied to it vanish, necessarily vanishes ev-
erywhere in T. The argument is true because a result in [8], states that any polynomial
in P2 whose mean values along the three edges of given a face of tetraheron T vanish,
then its tangential derivatives at this face’s barycenter also vanish. Indeed in view of
this result, using our assumptions on Fγij(p) and F i(p), we conclude that all the com-
ponents of ∇m−1 p are functions of P1 that vanish at the barycenters of the faces of T.
Hence all of them vanish identically and p ∈ Pm−2. Next we note that by assumption
for any edge e of T with ends Se

1, Se
2 and unit vector ~τe along it,

∣∣
∫

e

∂q
∂τe

∣∣ =
∣∣q(Se

1)− q(Se
2)

∣∣ = 0,

for every (m− 3)-th order derivative q of p; hence by assumption again the mean val-
ues along any edge of T of all the components of ∇m−2 p vanish. Since every such
component belongs to P0, it follows that ∇m−2 p vanishes identically in T and that
p∈Pm−3. The fact that every component of ∇m−3 p vanishes at the vertices of T by
assumption, implies that it vanishes everywhere in T and hence p∈Pm−4. Finally re-
calling that by assumption p vanishes together with its derivatives of order r ≤ m− 4
at the same point GT, it must vanish identically in T and the proof is complete. ¤
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The fact that both Propositions 3.1 and 3.2 hold does not help much in the practical
implementation of the methods. Indeed for this purpose it is necessary to determine
complete sets of basis functions associated with the functionals of Σ2

m and Σ3
m. Unfor-

tunately this involves very intrincate calculations for an arbitrary m. That is why we
refrain from exhibiting such sets here. Nevertheless, since the basis functions fα and f i

associated with the degrees of freedom Fα and F i respectively are not so complicated,
they are supplied below:

Denoting the cartesian coordinates of GT by (g1, · · · , gn), we first have:

fα :=
n

∏
r=1

(xr − gr)αr

αr!
, ∀α, such that |α| < m− n,

It is easy to check that Fµ( fα) = 0 for every integer multi-index µ ∈ INn with 0 ≤ |µ| <
m− n, such that µ 6= α, whereas Fα( fα) = 1. Moreover we trivially have

Fβi( fα) = 0, Fγij( fα) = 0, and F i( fα) = 0,

∀(i, j) ∈ {1, · · · , n + 1}2, βi ∈ INn, with |βi| = m− n,

and for n = 3 only,

γij ∈ IN2, with |γij| = m− 2, and γ
ij
1 = γ

ji
2 .

As for f i we first define:

f̃ i := (−1)m hm−1
i
m!

(mλm−1
i − nλm

i ).

Since the first order partial derivative of λi in the direction of −→n i equals −h−1
i , and λi

vanishes identically on Fi, one can readily derive F i( f̃ i)=1. Moreover since λi(Mj) =
1/n (recalling that i 6= j), we trivially have F j( f̃ i)=δij, with i, j not necessarily distinct.

On the other hand

∂m−n
βj f̃ i = (−1)mcij

{
m!

(n− 1)!

[
λi(Sj)

]n−1
− nm!

n!

[
λi(Sj)

]n
}

,

where

ci1 :=
n

∏
r=1

( ∂λi

∂τr+1
1

)β
j
r
,

cij :=
j−1

∏
r=1

( ∂λi

∂τr
j

)β
j
r n

∏
r=j

( ∂λi

∂τr+1
j

)β
j
r
, for 2 ≤ j ≤ n,

ci,n+1 :=
n

∏
r=1

( ∂λi

∂τr
n+1

)β
j
r
.

Then we can see that

Fβj( f̃ i) = 0, for every j ∈ {1, · · · , n + 1},

since λi(Sj) = δij, with i, j not necessarily distinct. Now for n = 3 only we have
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∂m−2
γrs f̃ i = (−1)mcirs

[
m!λi −

3m!λ2
i

2

]
, with r, s ∈ {1, · · · , n + 1},

r and s being distinct (but not necessarily r 6= i or s 6= i), where

cirs :=
( ∂λi

∂σs
r

)γrs
1
( ∂λi

∂σr
s

)γrs
2

.

It follows that, if either r or s equals i, Fγrs( f̃ i) = 0 since λi vanishes identically on
any edge of tetrahedron T that does not have Si as an end. On the other hand if
neither i = r nor i = s, Si must be an end of ekl with k, l, r and s distinct. In this case
integration of λi and λ2

i along ekl yields dkl/2 and dkl/3 respectively, and hence we
have Fγrs( f̃ i) = 0 in this case too. Finally noticing that

∂µ f̃ i(GT) 6= 0, ∀µ ∈ INn, such that 0 ≤ |µ| < m− n,

we define the basis functions f i by

f i := f̃ i − ∑
0≤|µ|<m−n

Fµ( f̃ i) fµ.

Clearly enough the so defined basis functions satisfy

F j( f i) = δij,

with i, j not necessarily distinct, together with

Fα( f i) = 0, ∀α ∈ INn, satisfying 0 ≤ |α| < m− n,

Fβi( f i) = 0, ∀βi ∈ INn, with |βi| = m− n, i = 1, · · · , n + 1,

and for n = 3 only

Fγij( f i) = 0, ∀γij ∈ IN2,

with
|γij| = m− 2, γ

ij
1 = γ

ji
2 , i, j ∈ {1, · · · , n + 1}.

Since in practical situations m cannot be very large, we prefer to exhibit the rather
complex set of basis functions fβi and fγij in Sections 4 and 5, just for small values of
m, including the minimum one, i.e., m = n + 1.

We conclude this Section by presenting our technique, together with expected con-
vegence results, applicable to any value of m.

First we consider some properties of finite element spaces Vh.

Lemma 3.1. Let n = 2 and v be an arbitrary function of Vh. For every edge e common to two
elements of Th the tensors resulting from the application of operator ∇m−1 to the restrictions
of v to both triangles, coincide at the mid-point of e.

Proof. Let T1 and T2 be the triangles of Th having e as a common edge, and Me be the
mid-point of e. Denoting by −→n e the unit vector normal to e directed in a given sense,
let−→τ e be a unit vector parallel to e, such that (−→n e,

−→τ e) form a direct orthonormal basis
of <2. In the expressions that follow the notation employed for the partial derivatives
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in connection with these two directions are self-explanatory.
By construction we have

∂m−1(v/T1)
∂nm−1

e (Me)
=

∂m−1(v/T2)
∂nm−1

e (Me)
.

Moreover the operator∇m−2 applied to v restricted to every triangle of the partition is
a quadratic tensor continuous at the ends of e by assumption. Thus from well-known
properties of quadratic functions in a single variable we have

∂
[∇m−1(v/T1)

]

∂τe(Me)
=

∂
[∇m−1(v/T2)

]

∂τe(Me)
.

This means that any partial derivative of v of order m− 1 other than the purely normal
one is also continuous at point Me, and the result follows. ¤

Lemma 3.2. Let n = 3 and v be an arbitrary function of Vh. For every face F common to two
elements of Th the tensors resulting from the application of operator ∇m−1 to the restrictions
of v to both tetrahedra coincide at the barycenter of F.

Proof. Let T1 and T2 be the tetrahedra of Th having F as a common face, and MF
be the barycenter of F. Denoting by −→n F the unit vector normal to F directed in a
given sense, let−→τ F and−→σ F be two unit vectors parallel to F, such that (−→n F,−→τ F,−→σ F)
form a direct orthonormal basis of IR3. In the expressions that follow the notation
employed for the partial derivatives in connection with these three directions are self-
explanatory.

By construction we have

∂m−1(v/T1)
∂nm−1

F (MF)
=

∂m−1(v/T2)
∂nm−1

F (MF)
.

Moreover the tensor operator ∇m−2 applied to v restricted to every tetrahedron of
the partition is a quadratic tensor whose mean values along the edges of F coincide
for both T1 and T2. Indeed, this is true by construction for the components (partial
derivatives) involving only directions of the plane orthogonal to each edge. As for
the other components, they involve at least one differentiation along a given edge.
Since the integral along this edge of such components is necessarily the difference
between partial derivatives of order m− 3 at the edge’s ends, and the former are all
continuous at such points by assumption as vertices of T, the mean value along every
edge of F of the whole tensor of partial derivatives of order m− 2 are the same for both
T1 and T2. Then recalling a result of [8] for the non-conforming tetrahedral element
whose quadratic functions are constructed in the same way as the (m − 3)-th order
partial derivatives of functions in our space Vh, the first order partial derivatives in
the direction of −→τ F or −→σ F of all the (m− 2)-th order partial derivatives of v coincide
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at MF too. This means that any partial derivative of v of order m− 1 other than the
purely normal one is also continuous at point MF, and the result follows. ¤

Next, let
Eh :=

{
T ∈ Th, ∂T ∩ Γ 6= ∅

}
,

and S denote the measure of the boundary of a generic n-simplex. We introduce the
functional [·]m,n,h on Vh given by

[v]2m,n,h := |v|2m,h +
1
h4

m−n−1

∑
i=0

[
∑

T∈Eh

∫

∂T∩Γ

∣∣∇i(v/T)
∣∣2dS

+
1
2 ∑

T∈Th

∑
T′∈Th

∫

∂T∩∂T′

∣∣∇i(v/T − v/T′)
∣∣2dS

]
, (3.1)

where ∂T represents the boundary of an n-simplex T, and |v|m,h denotes the standard
discrete Hm−seminorm, i.e.,

|v|m,h :=
[

∑
T∈Th

∣∣∇m(v/T)
∣∣2dx

] 1
2
.

Functional [·]m,n,h is clearly a seminorm for any space of piecewise polynomials. More-
over it trivially extends to Hm(Ω), for which the interelement boundary jump terms
necessarily vanish. Actually [·]m,n,h is a non standard norm of Hm(Ω) (at least as far
as Ω is a polygonal or a polyhedral domain).

Definition 3.3. V0
h is defined as the subspace of Vh consisting of functions v, such that ∀T ∈

Eh,

Fα(v/T) = 0, ∀α ∈ INn, with 0 ≤ |α| < m− n,

Fβi(v/T) = 0, ∀βi ∈ INn, with 0 ≤ |βi| = m− n,

for i = 1, · · · , n + 1, whenever the vertex Si of T belongs to Γ, F i(v/T) = 0 whenever the
face Fi of T is contained in Γ, and for n = 3 only, such that

Fγij(v/T) = 0, ∀γij ∈ IN2, with 0 ≤ |γij| = m− 2,

and
γ

ij
1 = γ

ji
2 , for i, j ∈ {1, · · · , n + 1},

whenever the edge ekl of T is contained in Γ.

Proposition 3.3. Seminorm [v]m,n,h is a norm over V0
h .

Proof. Let v ∈ V0
h and [v]m,n,h = 0. The latter condition implies that ∇m−1(v/T) is

constant in every element T of Th. From Lemmata 3.1 and 3.2 ∇m−1v is continuous at
the barycenters of the faces of the n-simplexes belonging to Th. Moreover ∇m−1(v/T)
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vanishes at the barycenter of any n-simplex face contained in Γ, as one can easily
check. Hence ∇m−1v = O everywhere in Ω. This implies in turn that ∇m−2(v/T) is
constant in every element T of Th.

Let us momentarily consider the case n = 2: The continuity of∇m−2v at the vertices
of the triangulation Th implies that this quantity is constant everywhere in Ω. Since
∇m−2v = O at every vertex of Th belonging to Γ, it must vanish everywhere in Ω too.
Then ∇m−3v must be constant in every element of the triagulation.

Next, we turn our attention to the case n = 3. Recalling an argument in the proof
of Lemma 3.2, we know that different mean values of ∇m−2(v/T) along an edge com-
mon to several tetrahedra T of the partition Th coincide and moreover, as one can
easily check, these mean values vanish if such an edge happens to be contained in Γ.
This certainly implies not only that ∇m−2v is constant everywhere in Ω, but also that
this quantity vanishes everywhere in Ω. Then ∇m−3(v/T) must be constant in every
element of Th, and since these quantities coincide at vertices common to several tetra-
hedra T ∈ Th, ∇m−3v must be constant everywhere in Ω. Since ∇m−3v vanishes at
every vertex of Th belonging to Γ, it must vanish everywhere in Ω too. It follows that
∇m−4v is constant in every tetrahedron of the partition.

Now treating again both cases n = 2 and n = 3 alltogether, from our assumptions all
the interface jump terms in (3.1) must vanish. Hence ∀ i ∈ {n + 1, · · · , m},∇m−iv must
not only be continuous everywhere in Ω, but also vanish in the elements belonging
to Eh. Since from the first part of the proof ∇m−n−1v is constant in Ω, it follows that
∇m−n−1v = O everywhere in Ω. Then it suffices to apply recursion on i to conclude
that v vanishes everywhere in Ω, and the result follows. ¤

Now we apply the finite dimensional space V0
h to approximate the polyharmonic

problem (1.1) by searching for uh ∈ V0
h such that

an
hm(uh, v) = L f (v), ∀v ∈ V0

h , (3.2)

where ∀u, v ∈ Vh + Hm(Ω), an
hm is given by

an
hm(u, v) := ∑

T∈Th

∫

T
∇m(u/T) · ∇m(v/T)dx + Jh,m−n−1(u, v), (3.3)

and for every non-negative integer r and a given f ∈ L2(Ω), we define respectively:

Jhr(u, v) :=
r

∑
i=0

1
h4

[
∑

T∈Eh

∫

∂T∩Γ
∇i(u/T) · ∇i(v/T)dS

+
1
2 ∑

T∈Th

∑
T′∈Th

∫

∂T∩∂T′
∇i(u/T − u/T′) · ∇i(v/T − v/T′)dS

]
, (3.4)

L f (v) :=
∫

Ω
f vdx, ∀v ∈ L2(Ω). (3.5)

Proposition 3.4. Problem (3.2)-(3.3)-(3.5) has a unique solution uh ∈ V0
h . Moreover, the

following error bound applies
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[u− uh]m,n,h ≤ inf
v∈V0

h

[u− v]m,n,h + sup
v∈V0

h , v 6=0

an
hm(u, v)− L f (v)

[v]m,n,h
. (3.6)

Proof. The continuity of both an
hm and L f over the finite dimensional space V0

h
equipped with any norm is obvious. Taking into account Proposition 3.3, if [·]m,n,h
is chosen as a norm, the continuity constant M for an

hm can be taken equal to 1. Indeed
an

hm(v, v) is nothing but the square of [v]m,n,h, ∀v ∈ Vh, which also implies that an
hm

is a coercive bilinear form over V0
h × V0

h for the norm [·]m,n,h with constant α = 1. It
follows that the approximate problem (3.2)-(3.3)-(3.5) has a unique solution uh ∈ V0

h .
Moreover from the celebrated second Strang’s inequality (cf. [2]), the following error
bound applies, for a constant C depending only on α and M:

[u− uh]m,n,h ≤ C
[

inf
v∈V0

h

[u− v]m,n,h + sup
v∈V0

h , v 6=0

an
hm(u, v)− L f (v)

[v]m,n,h

]
.

Since here M = α = 1, we may take C = 1, using a fine evaluation of C due to Dupire [3]
recalled in the Appendix. This completes the proof. ¤

Now exploiting and extending to the case of an arbitrary value of m, m > n, the ar-
guments developped in [10], we are able to establish the following convergence result
for problem (3.2):

Theorem 3.1. There exists a constant C independent of h such that the following estimate
holds, provided u ∈ Hm+2(Ω), and ∆iu ∈ Hm−i+1(Ω), for i = 2, · · · , m− 1,

[u− uh]m,n,h ≤ Ch
[
‖u‖m+2 +

m−1

∑
i=2

‖∆iu‖m−i+1

]
. (3.7)

Remark 3.1. An estimate sharper than (3.7) can be derived, in which powers of h
greater than one appear before the Sobolev norm of the laplacian of u to the power i.
However we discarded these details here since in any case the method remains first
order convergent. This is because we are limited by the interpolation error with poly-
nomials of Pm measured in the Hm-norm. Nevertheless in the next two sections we
treat in detail the particular case where m = 4, for n = 2 and n = 3 respectively, thereby
illustrating how to derive such finer results, though still qualitatively equivalent to
(3.7).

4 Two-dimensional problems

In order to widen the scope of the study that follows, we will treat simultaneously the
cases m = 3 and m = 4 for n = 2. We recall that the case m = 3 was the object of [10] for
n = 2.
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First, we recall that for m = 3, three types of degrees of freedom applied to a generic
function p ∈ C2(T), in the total amount of dimP3 = 10, characterize the local approxi-
mation functions in a triangle T ∈ Th, namely,

F0(p) := p(GT), (4.1a)

F j
i (p) :=

∂p

∂τ
j
i

(Si), 1 ≤ i, j ≤ 3 (i 6= j), (4.1b)

F i(p) := ∂2
ni

p, 1 ≤ i ≤ 3. (4.1c)

As for the case m = 4, four types of degrees of freedom applied to a generic function
p ∈ C3(T), in the total amount of dimP4 = 15, play this role, namely

F0(p) := p(GT), (4.2a)

Fr(p) :=
∂p
∂xr

(GT), r = 1, 2, (4.2b)

F jk
i (p) :=

∂2 p

∂τ
j
i ∂τk

i

(Si), 1 ≤ j ≤ k ≤ 3, 1 ≤ i ≤ 3, (j, k 6= i), (4.2c)

F i(p) := ∂3
ni

p, 1 ≤ i ≤ 3. (4.2d)

Next, we consider the particular versions of subspace Vh of Wh, corresponding to the
two-dimensional case for the values m = 3 and m = 4, namely, V2h3 and V2h4 defined as
follows:

Definition 4.1. V2h3 is the subspace of Wh of those functions v, whose second order normal
derivatives determined on each side of every edge common to two triangles of Th have the same
value at the edge’s mid-point, and such that the gradient of their restrictions to all the triangles
of the partition containing a given vertex coincide at this point.

Definition 4.2. V2h4 is the subspace of Wh of those functions v, whose third order normal
derivatives determined on each side of every edge common to two triangles of Th have the same
value at the edge’s mid-point, and such that the hessian of their restrictions to all the triangles
of the partition containing a given vertex coincide at this point.

The construction of the above defined space V2h3 is possible, according to a result
whose proof can be found in [10], namely:

Proposition 4.1. For any non degenerated triangle T, the set of ten functions given by

f0 := 1,

f j
i := f̃ j

i −
[
F0( f̃ j

i ) f0 +
3

∑
r=1
F r( f̃ j

i ) f r
]
, 1 ≤ i, j ≤ 3, (j 6= i),

f i :=
h2

i
6

[
3λ2

i − 2λ3
i −

7
27

]
, 1 ≤ i ≤ 3.
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where
f̃ j
i := dijλ

2
i λj, for 1 ≤ i, j ≤ 3, (j 6= i),

are canonical basis functions respectively associated with the elements of the set Σ3 of ten
degrees of freedom, namely

Σ3 :=
{
F0; F j

i , 1 ≤ i, j ≤ 3 (j 6= i); F i, 1 ≤ i ≤ 3
}

.

Remark 4.1. Quoting [10], we have

F0( f̃ j
i ) =

dij

27
, F i( f̃ j

i ) = dijh−2
i ,

F j( f̃ j
i ) = 2dijh−1

j νi
j , F k( f̃ j

i ) = dij
[
h−2

k − (νi
k)

2],

where ν
j
i denotes the (first order) derivative of λj in the direction of −→n i.

The actual possibility of constructing space V2h4 in turn is a consequence of the
following:

Proposition 4.2. For any non degenerated triangle T, the set of fifteen functions given by

f0 := 1,
fr := xr − gr, r = 1, 2,

f jk
i := f̃ jk

i −
3

∑
r=1

[
Fr−1( f̃ jk

i ) fr−1 +F r( f̃ jk
i ) f r

]
,

1 ≤ j ≤ k ≤ 3, 1 ≤ i ≤ 3, (j, k 6= i),

f i :=
−h3

i
12

(
2λ3

i − λ4
i −

5
81

)
, 1 ≤ i ≤ 3,

where:

f̃ jj
i := −

d2
ij

6
λ3

i λj, 1 ≤ i, j ≤ 3, (j 6= i),

f̃ jk
i := dijdikλ2

i λjλk, 1 ≤ j < k ≤ 3, 1 ≤ i ≤ 3, (j, k 6= i),

are the canonical basis functions respectively associated with the elements of the set Σ4 of fifteen
degrees of freedom, namely

Σ4 :=
{
F0; Fr, r = 1, 2; F jk

i , 1 ≤ j ≤ k ≤ 3 (j, k 6= i); F i, 1 ≤ i ≤ 3
}

.

Here it is useful to state again Lemma 3.1 restricted to the particular case of spaces
V2h3 and V2h4:

Lemma 4.1. Let v be an arbitrary function of V2h3. For every edge e common to two elements
of Th the hessian of the restrictions of v to both triangles coincide at the mid-point of e.
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Lemma 4.2. Let v be an arbitrary function of V2h4. For every edge e common to two elements
of Th the gradient of the hessian of the restrictions of v to both triangles coincide at the mid-
point of e.

Next, we denote the space V0
h corresponding to V2hm by V0

2hm, for m = 3 and m = 4
respectively. For convenience in this Section we also represent the semi-norm [·]m,2,h
of V2hm (which is known to be a norm of V0

2hm), by {·}m,h, for m = 3 and m = 4, i.e.,

{v}2
3,h := |v|23,h +

1
h4

[
∑

T∈Eh

∫

∂T∩Γ
v2

/TdS

+
1
2 ∑

T∈Th

∑
T′∈Th

∫

∂T∩∂T′
(v/T − v/T′)2dS

]
, (4.3)

{v}2
4,h = |v|24,h +

1
h4

{
∑

T∈Eh

∫

∂T∩Γ

[
v2

/T +
∣∣∇(v/T)

∣∣2
]
dS

+
1
2 ∑

T∈Th

∑
T′∈Th

∫

∂T∩∂T′

[
(v/T − v/T′)2 +

∣∣∇(v/T − v/T′)
∣∣2

]
dS

}
. (4.4)

Now we briefly recall the application of the method described in the previous Sec-
tion, to solve the polyharmonic equation (1.1) for m = 3 (cf. [10]), by slightly adapting
the notation.

Here we search for uh ∈ V0
2h3 satisfying (4.5) below,

a2
h3(uh, v) = L f (v), ∀v ∈ V0

2h3, (4.5)

where L f is given by (3.5) and ∀u, v ∈ [
V2h3 + H3(Ω)

]
, a2

h3 is given by

a2
h3(u, v) := ∑

T∈Th

∫

T
∇3(u/T) · ∇3(v/T)dx + Jh0(u, v), (4.6a)

Jh0(u, v) :=
1
h4

[
∑

T∈Eh

∫

∂T∩Γ
u/Tv/TdS

+
1
2 ∑

T∈Th

∑
T′∈Th

∫

∂T∩∂T′
(u/T − u/T′)(v/T − v/T′)dS

]
. (4.6b)

As pointed out in Section 3, the approximate problem (4.5)-(4.6)-(3.5) has a unique
solution uh ∈ V0

2h3, and the following error bound holds,

{u− uh}3,h ≤ inf
v∈V0

2h3

{u− v}3,h + sup
v∈V0

2h3, v 6=0

a2
h3(u, v)− L f (v)

{v}3,h
. (4.7)

In all the sequel the letter C, combined or not with other symbols, represents different
constants independent of h.

The two terms on the right hand side of (4.7) can be estimated according to the
following propositions:
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Proposition 4.3. ∃C1
3 , such that

inf
v∈V0

2h3

{u− v}3,h ≤ C1
3h||u||5,

holds for u ∈ H5(Ω).

Proof. First we recall that {u− v}2
3,h is the sum of two terms, namely, |u− v|23,h and

the summation term, which is nothing but Jh0(u − v, u − v) according to (4.6). It is
not difficult to check that for the first term it holds (cf. the proof of Proposition 4.5
hereafter):

inf
v∈V0

2h3

|u− v|23,h ≤ 2
[
||u−Πh3u||23,h + ∑

T∈Eh

∫

T

∣∣u(GT)
∣∣2dx

]
,

where Πh3w denotes the V2h3-interpolate of a function w ∈ H4(Ω) and || · ||3,h the stan
-dard discrete H3-norm. Since

card(Eh) ≤ C̄h−1,

and from the Sobolev Embedding Theorem and standard results (cf. [2]) whenever

u ∈ H5(Ω) ∩ H3
0(Ω),

∣∣u(GT)
∣∣ ≤ C̃3h3 sup

x∈Ω

∣∣∇3u(x)
∣∣, f or T ∈ Eh,

we derive:
inf

v∈V0
2h3

|u− v|23,h ≤ C
′
3

[
h2|u|24 + h7||u||25

]
.

As for the jump terms, by straightforward calculations we obtain:

inf
v∈V0

2h3

Jh0(u− v, u− v) ≤ C0
3

h4

[
∑

T∈Th

∫

∂T

∣∣(u−Πh3u)/T
∣∣2dS + ∑

T∈Eh

∫

∂T

∣∣u(GT)
∣∣2dS

]
.

Hence, using the Trace Theorem, we derive an estimate in all similar to the above one,
that is,

inf
v∈V0

2h3

Jh0(u− v, u− v) ≤ C∗3
[

h3|u|24 + h2||u||25
]
.

This completes the proof. ¤

Proposition 4.4. ∃C2
3 such that the following estimate holds, provided u∈H5(Ω) and ∆2u ∈

H2(Ω),

sup
v∈V0

2h3, v 6=0

a2
h3(u, v)− L f (v)

{v}3,h
≤ C2

3

(
h‖u‖5 + h

3
2 ‖∆2u‖2

)
. (4.8)
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Proof. First we note that the term Jh0(u, v) in the expression of a2
h3 vanishes if u ∈

H3
0(Ω). Bearing this in mind we next expand the remaining term in the numerator of

the fraction on the left hand side of (4.8) using reiterately integration by parts. For a
given T ∈ Th, let us denote by−→n T the unit outer normal vector to ∂T, and by ∂nT (·) the
first order partial derivative in the direction of−→n T. In so doing under our assumptions
on u and taking into account (4.6), we obtain:

a2
h3(u, v)− L f (v) = bh3(u, v) + ch3(u, v), (4.9a)

bh3(u, v) := ∑
T∈Th

∫

∂T

[
∂nT∇2u · ∇2(v/T)− ∂nT∇∆u · ∇(v/T)

]
dS, (4.9b)

ch3(u, v) := ∑
T∈Th

∫

∂T
∂nT ∆2u · v/TdS. (4.9c)

Thanks to Lemma 4.1, together with the continuity of the gradient of v ∈ V0
2h3 at the

vertices of the partition, we may employ the same arguments as in [9]. It follows that,

∣∣bh3(u, v)
∣∣ ≤ C3

3h
[
‖ u ‖4 + ‖ ∆u ‖3

]
{v}3,h. (4.10)

Now in order to estimate ch3(u, v), we first observe that the assumed regularity of ∆2u
implies that,

ch3(u, v) = ∑
T∈Eh

∫

∂T∩Γ
∂nT ∆2u · v/TdS

+
1
2 ∑

T∈Th

∑
T′∈Th

∫

∂T∩∂T′
∂nT ∆2u(·v/T − v/T′)dS, ∀v ∈ V0

2h3.

Hence, using the Cauchy-Schwartz inequality and our assumptions on Th, we obtain:

|ch3(u, v)| ≤ C3h2
[

∑
T∈Th

∫

∂T

∣∣∂nT ∆2u
∣∣2dS

] 1
2 [

Jh0(v, v)
] 1

2 .

Then, going to the unit reference triangle T̂ and using the Trace Theorem for H1(T̂),
together with standard estimates for quasi-uniform families of triangulations (cf. [2]),
we derive:

∫

∂T

∣∣∂nT ∆2u
∣∣2dS ≤ Ĉ3h−1

[ ∫

T

∣∣∇∆2u
∣∣2 +

∣∣∇2∆2u
∣∣2dx

]
, ∀T ∈ Th.

Recalling (4.3), this readily yields,
∣∣ch3(u, v)

∣∣ ≤ C4
3h

3
2 ‖∆2u‖2{v}3,h. (4.11)

Finally (4.8) results from the combination of (4.9), (4.10) and (4.11). ¤
As a direct consequence of Propositions 4.3 and 4.4, we have the following conver-

gence result,
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Theorem 4.1. ∃C3 such that the following error estimate holds, provided u∈H5(Ω) and
∆2u∈H2(Ω),

{u− uh}3,h ≤ C3

[
h‖u‖5 + h

3
2 ‖∆2u‖2

]
. (4.12)

Next we consider the case m = 4. In this case, we search for uh ∈ V0
2h4 satisfying

a2
h4(uh, v) = L f (v), ∀v ∈ V0

2h4, (4.13)

where ∀u, v ∈ [V2h4 + H4(Ω)], a2
h4 is given by

a2
h4(u, v) := ∑

T∈Th

[ ∫

T
∇4(u/T) · ∇4(v/T)dx + Jh1(u, v), (4.14a)

Jh1(u, v) :=
1

∑
r=0

1
h4

[
∑

T∈Eh

∫

∂T∩Γ
∇r(u/T) · ∇r(v/T)dS

+
1
2 ∑

T∈Th

∑
T′∈Th

∫

∂T∩∂T′
∇r(u/T − u/T′) · ∇r(v/T − v/T′)dS

]
. (4.14b)

Clearly enough here too approximate problem (4.13)-(4.14)-(3.5) has a unique solution
uh ∈ V0

2h4, for which, it holds,

{u− uh}4,h ≤ inf
v∈V0

2h4

{u− v}4,h + sup
v∈V0

2h4, v 6=0

a2
h4(u, v)− L f (v)

{v}4,h
. (4.15)

In order to estimate both terms on the right hand side of (4.15) we prove the fol-
lowing propositions:

Proposition 4.5. ∃C1
4 such that

inf
v∈V0

2h4

{u− v}4,h ≤ C1
4h||u||6,

holds for u ∈ H6(Ω).

Proof. First we estimate the term |u− v|4,h by

inf
v∈V0

2h4

|u− v|4,h ≤ ||u−Π0
h4u||4,h,

as usual, where Π0
h4w is the V0

2h4-interpolate of a function w∈H5(Ω) and || · ||4,h de-
notes the standard discrete H4-norm. Further denoting by Πh4w the V2h4-interpolate
of a function w∈H5(Ω) and recalling the basis functions fr for r = 0, 1, 2, we may
rewrite ∀x ∈ Ω,

(
u−Π0

h4u
)
(x) =

(
u−Πh4u

)
(x)− ∑

T∈Eh

χT(x)
[
u(GT) +∇u(GT) · (x− GT)

]
, (4.16)
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where χT is the characterisitic function of a triangle T ∈ Th. It easily follows the
existence of a constant C̄4 such that

inf
v∈V0

2h4

|u− v|4,h ≤ ||u−Πh4u||4,h + C̄4 ∑
T∈Eh

∫

T

[∣∣u(GT)
∣∣2 +

(∣∣∇u(GT)
∣∣2dx

]
.

However, ∀u ∈ H6(Ω) ∩ H4
0(Ω), we have

[∣∣u(GT)
∣∣2 +

∣∣(x− GT) · ∇u(GT)
∣∣2

] 1
2
+ h

∣∣∇u(GT)
∣∣

≤C̃4h4 sup
y∈Ω

∣∣∇4u(y)
∣∣, ∀T ∈ Eh, ∀x ∈ T. (4.17)

Then from standard estimates (cf. [2]), and recalling that card(Eh) ≤ C̄2h−1, for n = 2,
we readily derive,

inf
v∈V0

2h4

{u− v}2
4,h ≤ C

′
4

[
h2|u|25 + h7||u||26

]
.

As for the jump terms which are nothing but Jh1(u− v, u− v)1/2, taking into account
(4.16), by straightforward calculations we obtain,

inf
v∈V0

2h4

Jh1(u− v, u− v) ≤ C0
4

h4

[
∑

T∈Th

∫

∂T

∣∣(u−Πh4u)/T
∣∣2dS

+ ∑
T∈Eh

∫

∂T

[∣∣u(GT)
∣∣2 +

∣∣∇u(GT) · (x− GT)
∣∣2

]
dS

]
.

Hence thanks to (4.17), similarly to Proposition 4.3, we derive the estimate

inf
v∈V0

2h4

Jh1(u− v, u− v) ≤ C∗4
[

h3|u|25 + h2||u||26
]
,

which completes the proof.

Proposition 4.6. ∃C2
4 such that the following estimate holds, provided u ∈ H6(Ω), ∆2u ∈

H3(Ω), and ∆3u ∈ H2(Ω),

sup
v∈V0

2h4, v 6=0

a2
h4(u, v)− L f (v)

{v}4,h
≤ C2

4

[
h‖u‖6 + h

3
2

(
‖∆2u‖3 + ‖∆3u‖2

)]
. (4.18)

Proof. The jump term Jh1(u, v) in the expression of a2
h4 vanishes if u ∈ H4

0(Ω). Hen
-ce from our assumptions on u we may integrate by parts four times on the left hand
side of (4.18). Thus, using the same notation as in Proposition 4.4, we obtain,

a2
h4(u, v)− L f (v) = bh4(u, v) + ch4(u, v), (4.19a)

bh4(u, v) := ∑
T∈Th

∫

∂T

[
∂nT∇3u · ∇3(v/T)− ∂nT∇2∆u · ∇2(v/T)

]
dS, (4.19b)

ch4(u, v) := ∑
T∈Th

∫

∂T

[
∂nT∇∆2u · ∇(v/T)− ∂nT ∆3u · v/T

]
dS. (4.19c)
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Thanks to Lemma 3.1, together with the continuity of the hessian of v ∈ V0
2h4 at the

vertices of the triangulation, we can treat the term bh4(u, v) in the same manner as in
Proposition 4.4, thereby deriving,

∣∣bh4(u, v)
∣∣ ≤ C3

4h
[
‖u‖5 + ‖∆u‖4

]
{v}4,h. (4.20)

Now in order to estimate ch4(u, v), we first observe that the assumed regularity of ∆2u
and ∆3u implies that ∀v ∈ V0

2h4,

ch4(u, v) = ∑
T∈Eh

∫

∂T∩Γ

[
∂nT ∆3u · v/T + ∂nT∇∆2u · ∇(v/T)

]
dS

+
1
2 ∑

T∈Th

∑
T′∈Th

∫

∂T∩∂T′

[
∂nT ∆3u · (v/T − v/T′) + ∂nT∇∆2u · ∇(v/T − v/T′)

]
dS.

Hence, using the Cauchy-Schwartz inequality and our assumptions on Th, we obtain

∣∣ch4(u, v)
∣∣ ≤ C4h2

[
∑

T∈Th

∫

∂T

[∣∣∂nT ∆3u
∣∣2 + |∂nT∇∆2u|2dS

] 1
2 [

Jh1(v, v)
] 1

2 .

Then, going to the unit reference triangle T̂, analogously to Proposition 4.4, we obtain,
∀T ∈ Th,

∫

∂T

[∣∣∂nT ∆3u
∣∣2 +

∣∣∂nT∇∆2u
∣∣2

]
dS

≤Ĉ4h−1
∫

T

{[∣∣∇2∆2u
∣∣2 +

∣∣∇3∆2u
∣∣2

]
+

[∣∣∇∆3u
∣∣2 +

∣∣∇2∆3u
∣∣2

]}
dx.

Recalling (4.4), this readily yields,

∣∣ch4(u, v)
∣∣ ≤ C4

4h
3
2

[
‖∆2u‖3 + ‖∆3u‖2

]
{v}4,h. (4.21)

Finally (4.18) results from the combination of (4.19), (4.20) and (4.21). ¤
From Propositions 4.5 and 4.6 it follows that:

Theorem 4.2. ∃C4 such that the following error estimate holds ,if u ∈ H6(Ω), ∆2u ∈ H3(Ω)
and ∆3u ∈ H2(Ω),

{u− uh}4,h ≤ C4

[
h‖u‖6 + h

3
2

(
‖∆2u‖3 + ‖∆3u‖2

)]
. (4.22)

5 Three-dimensional problems

In this Section we consider the application of our numerical approach to three-
dimensional m-harmonic equations, by taking m = 4. Incidentally for m = 3 a related



324 V. Ruas, J. H. Carneiro de Araujo / Adv. Appl. Math. Mech., 3 (2010), pp. 303-332

method involving just standard non-conformity was introduced in [9]. In view of this,
it turns out that DG techniques are not mandatory for three-dimensional triharmonic
equations. As we should also explain, the convergence analysis for three-dimensional
problems follows the main lines of the one carried out in detail in the previous section
for two-dimensional problems. That is why we stress here some points that are really
different or new.

First we note that for m = 4 the definition of the four types of degrees of freedom
applied to a generic function p ∈ C3(T) for T ∈ Th, in the total amount of dimP4 = 35,
can be more conveniently recast in the form of five types of functionals, namely

F0(p) := p(GT), (5.1a)

F j
i (p) :=

∂p

∂τ
j
i

(Si), 1 ≤ i, j ≤ 4, (i 6= j), (5.1b)

F ii
ij (p) :=

∫

ekl

∂2 p
∂(σi

j )2
de

dkl
, 1 ≤ i, j ≤ 4, (k, l 6= i, k, l 6= j, i 6= j), (5.1c)

F ij
ij (p) :=

∫

ekl

∂2 p

∂(σi
j )∂(σ

j
i )

de

dkl
, 1 ≤ i < j ≤ 4, (k, l 6= i, k, l 6= j), (5.1d)

F i(p) := ∂3
ni

p, 1 ≤ i ≤ 4. (5.1e)

Next we denote by V3h4 the particular version of subspace Vh of Wh, corresponding to
the three-dimensional case and to the value m = 4. This space is defined as follows:

Definition 5.1. V3h4 is the subspace of Wh of those functions v, whose third order normal
derivatives determined on each side of every face common to two tetrahedra of Th have the
same value at the face’s barycenter, whose sets of mean values along an edge of all second order
partial derivatives with respect to directions of the plane orthogonal to this edge are the same
for all the tetrahedra containing this edge, and such that the gradient of their restrictions to all
the tetrahedra of the partition containing a given vertex coincide at this point.

The construction of the so-defined space V3h4 is possible indeed, according to

Proposition 5.1. For any non degenerated tetrahedron T, the set of thirty-five functions given
by

f0 := 1,

f j
i := f̃ j

i −
4

∑
r=1

[
F r( f̃ j

i ) f r +
4

∑
s=1, s 6=r

F rr
rs ( f̃ j

i ) f rr
rs +

4

∑
s=r+1

F rs
rs ( f̃ j

i ) f rr
rs +

1
256

]
, 1 ≤ i, j ≤ 4,

f ii
ij := hj

ih
i
j

(
λiλj +

3λ2
i λ2

j

2
− λ2

i λj − λiλ
2
j −

19
512

)
, 1 ≤ i, j ≤ 4, (j 6= i),

f ij
ij :=

1
2
(hi

j)
2
(

λ2
i −

2λ3
i

3
+ 2λ3

i λj − 2λ2
i λj − 11

384

)
, 1 ≤ i < j ≤ 4,
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where:

f̃ j
i := −dij

3
λ3

i λj, 1 ≤ i, j ≤ 4, (j 6= i),

are the canonical basis functions respectively associated with the elements of the set Σ5 of
thirty-five degrees of freedom, namely

Σ5 :=
{
F0;

[F j
i ; F ii

ij , 1 ≤ i, j ≤ 4 (j 6= i)
]
; F ij

ij , 1 ≤ i < j ≤ 4; F i, 1 ≤ i ≤ 4
}

.

Here we recall Lemma 3.2 restricted to the particular case of space V3h4:

Lemma 5.1. Let v be an arbitrary function of V3h4. For every face F common to two elements
of Th the tensors resulting from the application of the operator ∇3 to the restrictions of v to
both tetrahedra, coincide at the barycenter of F.

We also need the following Lemma, whose proof results from the arguments de-
velopped in the proof of Lemma 3.2 restricted to the case m = 4.

Lemma 5.2. Let v be an arbitrary function of V3h4. The mean values along every edge e of Th,
of the hessian of the restrictions of v to the tetrahedra of the partition containing e are all the
same.

Next, we denote the space V0
h corresponding to m = 4 and n = 3 by V0

3h4. Notice
that the functional [·]4,3,h is a norm of V0

3h4, rewritten here as [·]4,h, i.e.,

[v]24,h := |v|24,h +
1
h4

[
∑

T∈Eh

∫

∂T∩Γ
v2

/TdS +
1
2 ∑

T∈Th

∑
T′∈Th

∫

∂T∩∂T′
(v/T − v/T′)2dS

]
. (5.2)

Now we study the application of the method described in Section 3, to solve the
polyharmonic equation (1.1) for m = 4 and n = 3.

We wish to find uh ∈ V0
3h4 satisfying (5.3) below,

a3
h4(uh, v) = L f (v), ∀v ∈ V0

3h4, (5.3)

where L f is given by (3.5) and a3
h4 by (3.3) (with m = 4 and n = 3).

As pointed out in Section 3, the approximate problem (5.3)-(3.3)-(3.5) has a unique
solution uh ∈ V0

3h4, and the following error bound holds

[u− uh]4,h ≤ inf
v∈V0

3h4

[u− v]4,h + sup
v∈V0

3h4, v 6=0

a3
h4(u, v)− L f (v)

[v]4,h
. (5.4)

The two terms on the right hand side of (5.4) can be estimated according to the
following propositions:

Proposition 5.2. ∃C1
5 such that

inf
v∈V0

3h4

[u− v]4,h ≤ C1
5h||u||5,

for u ∈ H5(Ω).
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Proof. First we recall that [u− v]24,h is the sum of two terms, namely, |u− v|24,h and
the summation term, which is nothing but Jh0(u− v, u− v) according to (4.6). For the
first term, it holds

inf
v∈V0

3h4

|u− v|24,h ≤ 2
[
||u−Π0

3h4u||24,h + ∑
T∈Eh

∫

T
|u(GT)|2dx

]
,

where Π0
3h4w denotes the V0

3h4-interpolate of a function w ∈ H5(Ω), and || · ||4,h the
standard discrete H4-norm. Since card(Eh) ≤ C̄3h−2 for n = 3, and for T ∈ Eh,

|u(GT)| ≤ C̃5h3 sup
x∈Ω

∣∣∇3(u)(x)
∣∣,

whenever u ∈ H5(Ω) ∩ H4
0(Ω), we have

inf
v∈V0

3h4

|u− v|24,h ≤ C
′
5

[
h2|u|25 + h7||u||25

]
.

As for the jump terms, by straightforward calculations we obtain

inf
v∈V0

3h4

Jh0(u− v, u− v) ≤ C0
5

h4

[
∑

T∈Th

∫

∂T

∣∣(u−Πhu)/T
∣∣2dS + ∑

T∈Eh

∫

∂T

∣∣u(GT)
∣∣2dS

]
.

Hence, like in Proposition 4.3 we derive the estimate

inf
v∈V0

3h4

Jh0(u− v, u− v) ≤ C∗5
[

h5|u|25 + h2||u||25
]
,

and the proof is complete. ¤

Proposition 5.3. ∃C2
5 such that the following estimate holds , provided u ∈ H5(Ω), ∆u ∈

H4(Ω), ∆2u ∈ H3(Ω) and ∆3u ∈ H2(Ω),

sup
v∈V0

3h4, v 6=0

a3
h4(u, v)− L f (v)

[v]4,h

≤C2
5

[
h
(
‖u‖5 + ‖∆u‖4

)
+ h2‖∆2u‖3 + h

3
2 ‖∆3u‖2

]
. (5.5)

Proof. First we note that the term Jh0(u, v) in the expression of a3
h4 vanishes if u ∈

H4
0(Ω). Then expanding the remaining term in the numerator of the fraction on the

left hand side of (5.5) using integration by parts, under our assumptions on u and
taking into account (4.6), we obtain

a3
h4(u, v)− L f (v) = b1h(u, v) + b2h(u, v) + ch(u, v), (5.6a)

b1h(u, v) := ∑
T∈Th

∫

∂T

[
∂nT∇3u · ∇3(v/T)− ∂nT∇2∆u · ∇2(v/T)

]
dS, (5.6b)

b2h(u, v) := ∑
T∈Th

∫

∂T
∂nT∇∆2u · ∇(v/T)dS, (5.6c)

ch(u, v) := − ∑
T∈Th

∫

∂T
∂nT ∆3u · v/TdS. (5.6d)
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First we deal with bilinear form b1h, and for this purpose we associate with every
face F of tetrahedron T the operators ΠF

0 and ΠF
1 defined respectively on L2(F) and

P2(F) as follows: ΠF
0 (w) is the mean value of function w over F and ΠF

1 (w) is the
unique function in P1(F) whose values at the mid-point of each edge of T coincides
with the mean value of function w along this edge, the notation Pr(F) indicating the
space of polynomials of degree less than or equal to r defined on F. Notice that ΠF

0 (w)
coincides with w(MF) if w ∈ P1(F).

Thanks to Lemmata 5.1 and 5.2 and to the continuity properties of the traces of u
and its derivatives resulting from our assumptions, we may write (cf. [8]):

b1h(u, v) = ∑
T∈Th

∑
F⊂∂T

∫

F

{[
∂nT∇3u−ΠF

0 (∂nT∇3u)
]
·
[
∇3v/T −ΠF

0 (∇3v/T)
]

− ∂nT∇2∆u ·
[
∇2v/T −ΠF

1 (∇2v/T)
]}

dS.

Hence by standard arguments for non-conforming methods, we obtain in exactly the
same way as in [8]:

|bh1(u, v)| ≤ C3
5h

[
‖u‖5 + ‖∆u‖4

]
[v]4,h. (5.7)

The term bh2(u, v) can be handled by extending to the case m = 4 the argument em-
ployed in [9] for the case m = 3. We recall it below, since it is not so classical: Given a
tetrahedron T ∈ Th, for every face F of ∂T, we introduce a quadratic interpolant of the
trace of ∇(v/T) over F denoted by ΠT

F [∇(v/T)] defined as follows:

ΠT
F

[
∇(v/T)

]
(S) = ∇v(S), ∀ vertex S ∈ F,

∂ΠT
F

[
∇(v/T)

]

∂ρe
F

(Me) =
1

meas(e)

∫

e

∂∇(v/T)
∂ρe

F
de, ∀ edge e ⊂ F,

where Me is the mid-point of e, and the first order partial derivative means the one in
the direction of the unit vector−→ρ e

F parallel to the median of F corresponding to edge e,
oriented from e outwards F. Notice that the interpolating field ΠT

F [∇(v/T)] is uniquely
defined ∀v ∈ C2(T), and ∀F ⊂ ∂T for any non degenerated tetrahedron T, since the
six interpolation degrees of freedom on which it is based upon, are nothing but those
of the affine-equivalent element derived from the Morley element associated with the
triangle F, by replacing the (first order) normal derivative at Me with the derivative
at this point in the direction of −→ρ e

F, for every edge e of F (cf. [2] and [4]). In so doing
we recall that, according to Lemma 5.2, the mean values along any edge e of face F of
the second order derivatives of v, are the same for all the tetrahedra containing e, in
particular those with respect to directions of the plane of this face. Hence due to the
continuity of∇v at the vertices of F, for every pair of tetrahedra T and T

′
of Th having

F as a common face, we have

ΠT
F

[
∇(v/T)

]
= ΠT

′
F

[
∇(v/T′ )

]
.
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Furthermore by a similar argument ΠT
F [∇(v/T)] vanishes identically for every F con-

tained in Γ from the construction of V0
3h4.

On the other hand, the assumption ∆2u ∈ H3(Ω) implies that

∂nT (∇∆2u) + ∂n
T′

(∇∆2u) = 0,

on every face F of the partition common to two tetrahedra T and T
′
. Taking into

account both arguments above, we may rewrite bh2(u, v) in the following manner:

bh2(u, v) = ∑
T∈Th

∑
F⊂∂T

∫

F
∂nT (∇∆2u) ·

{
∇(v/T)−ΠT

F

[
∇(v/T)

]}
dS. (5.8)

Now let T̂ be the reference tetrahedron and FT be the invertible affine mapping from
T onto T̂; we define the continuous interpolation operator Π̂F̂ from [H3(T̂)]3 onto
the space of quadratic vector fields on F̂ := FT(F) through interpolation of fields of
[H3(T̂)]3 by using the same set of six degrees of freedom for F̂ as those defining ΠT

F
for F. Then setting −→̂

w := −→w ◦ F−1
T , ∀−→w ∈ [H3(T)]3,

from the affine properties of operator ΠT
F we certainly have

Π̂T
F(−→w ) = Π̂F̂(

−→̂
w ), ∀w ∈ [H3(T)]3.

Moreover we have
Π̂F̂[

−→̂
w ] =

−→̂
w ,

whenever
−→̂
w is quadratic, and thus we may apply again standard estimates for non-

conforming finite elements (cf. [9]) to bh2(u, v). More specifically taking −→w = ∇(v/T)
and using (5.8), these estimates directly leads to the existence of a constant C4

5 such
that ∣∣bh2(u, v)

∣∣ ≤ C4
5h2‖∆2u‖3[v]4,h, (5.9)

ch(u, v) in turn can be estimated as follows: First we note that ∀v ∈ V0
3h4,

ch(u, v) = − ∑
T∈Eh

[ ∫

∂T∩Γ
∂nT ∆3u · v/TdS +

1
2 ∑

T′∈Th

∫

∂T∩∂T′
∂nT ∆3u · (v/T − v/T′)

]
dS.

Hence owing to our assumptions, we have:

∣∣ch(u, v)
∣∣ ≤ C5h2

[
∑

T∈Th

∫

∂T

∣∣∂nT ∆3u|2dS
] 1

2
[

Jh0(v, v)
] 1

2
.

Since
∫

∂T

∣∣∂nT ∆3u
∣∣2dS ≤ Ĉ5h−1

∫

T

[∣∣∇∆3u
∣∣2 +

∣∣∇2∆3u
∣∣2

]
dx, ∀T ∈ Th,
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recalling (5.2), this readily yields

∣∣ch(u, v)
∣∣ ≤ C5

5h
3
2 ‖∆3u‖2[v]4,h, (5.10)

Then combining (5.6), (5.7), (5.9) and (5.10) we establish that (5.5) holds. ¤
From Propositions 5.2 and 5.3 immediately follows,

Theorem 5.1. ∃C5 such that the following error estimate holds, if u ∈ H5(Ω), ∆u ∈ H4(Ω),
∆2u ∈ H3(Ω), and ∆3u ∈ H2(Ω),

[u− uh]4,h ≤ C5

[
h
(
‖u‖5 + ‖∆u‖4

)
+ h2‖∆2u‖3 + h

3
2 ‖∆3u‖2

]
. (5.11)

6 Miscellaneous remarks

1. Though not expressed in exactly the same form, the error estimates given in
Sections 4 and 5 are qualitatively compatible with the error estimate in the norm [·]m,n,h
for arbitrary m given by (3.7).

2. The authors conjecture thatO(h2) error estimates in the L2-norm can be derived
from the estimate (3.7), using classical duality arguments. However formal proofs in
this sense lack of a rigourous basis, since to the best of their knowledge no regularity
results are known for the solution of (1.1) in case Ω is either a polygon or a polyhedron.

3. Boundary element methods could be used to solve polyharmonic equations in
two-dimension space, using the boundary integral technique proposed in [5]. In the
three-dimensional case such possibility is not known. In view of next remark too, our
method if then a good option for solving triharmonic problems in both cases.

4. At first glance the implementation of our method may seem prohibitive to solve
even triharmonic problems in IR2, as compared to boundary integral methods or to
series expansion techniques (cf. [11]). However at least in this case if one uses ef-
ficient iterative methods, such as pre-conditionned conjugate gradients, to solve the
linear system of equations resulting from our discretization procedure, the numerical
solution should not be so expensive. Indeed for a given mesh there are roughly 70%
more degrees of freedom involved with our method than with the Morley element.
Moreover a given half matrix row has no more than ten non zero entries, whereas for
the Morley triangle there are about six. This means that solving the polyharmonic
equation with our method costs barely less than three times as much, as solving a
biharmonic equation with the Morley element.

5. In the same way as the Morley triangle and its three-dimensional counterpart [8]
are the simplest possible finite elements to solve Eq. (1.1) for m = 2 using a single field
formulation, as far as we can see this is also the case of the new family for m > 2.
Furthermore, to the best of the authors’ knowledge, except for the case n = 2 and m
= 3 (in which our method is certainly competitive anyway according to the previous
remark), no other method has yet been proposed to solve this equation in arbitrary
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domains. Notice that for cartesian domains only, suitable finite difference methods
could be good solution alternatives too.

Appendix

A refined error bound for stable external approximations

The aim of this Appendix is to supply theoretical support to the error bound (3.4)
given in Proposition 3.9.

Suppose that one wishes to determine an approximation uh of a given element u
in a certain Hilbert space V with norm || · ||, in another Hilbert space Vh that is not
necessarily a subspace of V, but has the same null element 0 as V. Both Vh and V are
assumed to be equipped with a norm denoted by || · ||h. Although this is not necessary
to derive the error bound below, one may assume that ||v||h = ||v||, ∀v ∈ V, which
incidentally happens in the application in view.

As a general framework, we consider that the approximation uh of u is determined
by solving a variational problem of the form

ah(uh, v) = Lh(v), ∀v ∈ Vh,

where
ah : (Vh + V)× (Vh + V) −→ IR, and Lh : Vh −→ IR,

are respectively a continuous bilinear form and a continuous linear form with respect
to the norm || · ||h. This means that there exist two constants M and N such that:

ah(u, v) ≤ M||u||h||v||h, ∀(u, v) ∈ (Vh + V)× (Vh + V),
Lh(v) ≤ N||v||h, ∀v ∈ Vh.

According to Dupire [3] such variational problem has a unique solution uh ∈ Vh if and
only if bilinear form ah is weakly-coercive on Vh × Vh, which means that it satisfies
simultaneously the following conditions:

∃α > 0, such that ∀u ∈ Vh, sup
v∈Vh−{0}

ah(u, v)
||v||h ≥ α||u||h,

∀v ∈ Vh − {0}, ∃u ∈ Vh, such that ah(u, v) 6= 0.

Clearly enough the second condition above is a consequence of the first one if form
ah is symmetric. Moreover if ah is coercive, that is, if it satisfies,

∃α∗ > 0, such that ah(v, v) ≥ α∗||v||2h, ∀v ∈ Vh,

then both conditions above hold with α≥α∗.
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In the classical litterature the error bound known as the second Strang’s inequality
is used, in order to derive error estimates for non conforming finite element approxi-
mations with coercive bilinear forms (cf. [2]). This inequality is recalled below:

||u− uh||h ≤ 1
α∗

[
(M + α∗) inf

v∈Vh
||u− v||h + sup

v∈Vh−{0}

ah(u, v)− Lh(v)
||v||h

]
.

However on the basis of the work of Dupire [3] this result can be refined. Essentially
this refinement allows the coerciveness constant α∗ to be dropped in the above brack-
ets. Moreover it extends this improvement to the more general case of weakly coercive
bilinear forms, according to

Proposition A.1. Equipping space V + Vh with the norm || · ||h, and assuming that
bilinear form ah is continuous on (V + Vh)× (V + Vh) with constant M, and weakly-
coercive on Vh ×Vh with constant α, and that Lh is a continuous linear form on Vh with
constant N, the following error bound holds:

||u− uh||h ≤ C
[

inf
v∈Vh

||u− v||h + sup
v∈Vh−{0}

ah(u, v)− Lh(v)
||v||h

]
.

where C = 1/α max{1, M}.
Proof. Trivially enough the linear form Lu : Vh −→ IR defined by

Lu(v) := ah(u, v)− Lh(v), ∀v ∈ Vh,

is continuous with a continuity constant that may be taken equal to M||u||h + N. Let
then wh ∈ Vh be the unique solution of the well-posed linear variational problem

ah(wh, v) = Lu(v), ∀v ∈ Vh.

By the definition of uh, we have

ah(uh, v) = −ah(wh, v) + ah(u, v), ∀v ∈ Vh,

which means that
vh := uh + wh ∈ Vh,

satisfies
ah(vh, v) = ah(u, v), ∀v ∈ Vh.

Applying a result due to Dupire [3] this relation implies that

||u− vh||h ≤ M
α

inf
v∈Vh

||u− v||h,

(note that if ah is coercive this bound is simply Céa’s Lemma [2]). It follows that

||u− uh||h ≤ M
α

inf
v∈Vh

||u− v||h + ||wh||h.
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On the other hand we know that wh satisfies,

α||wh||h ≤ sup
v∈Vh−{0}

ah(wh, v)
||v||h .

Replacing in the above fraction ah(wh, v) with ah(u, v)− Lh(v), the result follows. ¤
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