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Abstract. A 2D lattice Boltzmann model for inviscid compressible flows was pro-
posed in this paper. Finite volume method was implemented on 2D curvilinear
structural grids to solve the lattice BGK-Boltzmann equations. MUSCL scheme was
used to perform interpolation. The obtained results agree excellently well with ex-
perimental and previous numerical results.
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1 Introduction

As a promising method, the lattice Boltzmann method (LBM) has been widely studied
in the last decades. Although LBM was derived from the lattice gas automata (LGA), it
can also be derived from the continuous Boltzmann equation and it is a special finite
difference form of the discrete velocity Boltzmann equation (DVBE). DVBE can be
solved with finite difference method, finite volume method or finite element method.
The solution of DVBE by the FVM was first conducted by Nannelli and Succi [1, 2].

FVM is a method based on the weak solution of PDE and it has the feature of
keeping conservation laws of physics. Due to this feature, it is a primary approach in
simulations of compressible flows with discontinuities, such as shock waves and con-
tact discontinuities. Many FVM schemes were proposed and widely used to capture
discontinuities, such as TVD, MUSCL, ENO/WENO. So it is natural to use such FVM
schemes to solve DVBE to simulate compressible flows with discontinuities.
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However, in the history of LBM, its applications were limited to incompressible
flows. This is because LB models were derived based on low Mach number expan-
sion of Maxwellian function [3–6]. Although some compressible LB models were pro-
posed [7–10], the Mach number range of them is small and no supersonic numerical
results were published. At the same time, some of them have many free parameters.
To overcome these difficulties, we proposed a 2D model for inviscid compressible
flows, D2Q13L2 (L2 means two energy-levels) in [12] from a circular function. Based
on this model, we solved DVBE with the 2nd order TVD FVM on uniform rectangu-
lar grids to simulate several cases of compressible flows [11,12]. Our simulations have
shown that it can simulate supersonic flows with high Mach number and strong shock
waves. Based on our research, Li et al. [13] and Wang et al. [14] proposed their double
ditribution function LB models for viscous compressiblel flows.

In this work, we extended the application of the D2Q13L2 model to cuvilinear
structural grids to simulate flow fields with irregular boundaries. The MUSCL scheme
with the smooth limiter was used to capture discontinuities. The implementation of
boundary conditions for compressible flows was discussed. In order to validate the
method, we simulated several test problems and compared the results with experi-
mental data or previous results. Excellent agreement was obtained. The rest of this
paper was organized as follows. Section 2 will introduce our D2Q13L2 model. Section
3 will present the FVM discretization of DVBE. Section 4 is about implementations of
boundary conditions. Numerical applications will be presented in Section 5. Finally,
Section 6 concludes the present work.

2 D2Q13L2 model for 2D inviscid compressible flows

The detailed derivation of the D2Q13L2 model was presented in [11,12]. Here, we only
briefly describe it. First, our derivation is not based on Maxwellian function which is
complicate and difficult to mathematically mannipulate. Alternatively, we proposed
a simplified function. For 2D problems, the form of the simplified function is

g =





ρ

2πc
, if ‖ξ − u‖ = c ≡ √

D (γ− 1) e

and λ = ep =
[
1− D

2
(γ− 1)

]
e,

0, else,

(2.1)

where ξ is particle velocity, λ is rest energy of particles, c is an effective peculiar ve-
locity, u is the mean flow velocity, e is the mean internal energy, γ is the specific heat
ratio of the gas, D is the space dimension. This function means that all mass, spe-
cific momentum and energy concentrate on a circle located in a 3D space of ξx-ξy-λ (as
shown in Fig. 1). Although this function is very simple, it satisfies all needed statistical
relations to make BGK DVBE recover the compressible NS equations.

Second, based on this circular function, we discretized it onto some fixed points in
the 3D space of ξx-ξy-λ to construct a LB model. We adopted the Lagrangian interpo-
lation to assign the circular function onto a set of discrete points without small Mach
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Figure 1: The schematic of the circular function gs. It is located on a plane λ = ep in the ξx-ξy-λ space.
u is the mean velocity and c is the effective peculiar velocity.

number assumption. In the ξx-ξy-λ space, there are α = 1, · · · , N discrete points, eα.
We will discretize the circular function onto all eα. For any dρ on the circle, we assign
dρ onto every eα with a weight function ϕα (ξ, λ). Thus, the accumulated density on
eα is

ρα =
ρ

2πc

∮
ϕα(ξ, λ)ds. (2.2)

Here, we have a question. If ρα were used as f eq
α , what conditions do ϕα(ξ, λ) have

to satisfy? By analyzing the statistical relations needed to make BGK DVBE recover
the compressible Euler equations, we can obtain that ϕα(ξ, λ) is a set of Lagrangian
interpolation polynomials of 3rd order in ξ and 1st order in λ. A 3rd order Lagrangian
interpolation stencil ϕα(ξ) in 2D space was first constructed. The configuration of
the stencil is the same as D2Q13 lattice velocity model. After the locations of the
nodes in velocity space are known, the complete lattice can be constructed by splitting
the 13 nodes onto two energy-level (λ0 and λ1).Thus a 26-nodes stencil and the base

Figure 2: The scheme of D2Q13 lattice.
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Figure 3: D2Q13L2 lattice.
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polynomials
{

ϕα1(ξ, λ) = (1− λ)ϕα(ξ), for energy level λ1 = 0,
ϕα2(ξ, λ) = λϕα(ξ), for energy level λ2 > ep,

(2.3)

are obtained. With the assigning function ϕα(ξ, λ), the equilibrium functions, f eq
αv, can

be given by

f eq
αv =

ρ

2πc

∮
ϕαv(ξ, λ)ds, (2.4)

where v = 1, 2. Due to the simplicity of the circular function, Eq. (2.4) can be integrated
analytically. The procedure of the above derivation can be done with a short Maple
script. The formulars of f eq

α are presented in [12].

3 FVM formulations

Since we use FVM to solve DVBE in curvilinear grids, we write BGK DVBE as the
conservative form in 2D general coordinates

∂ f̂ k
∂t

+
∂ F̂k

∂ξ
+

∂ Ĝk

∂η
= Ω̂k, (3.1)

note that ξ and η are the generalized coordinates of the curvilinear grid. k is the index
of the distribution function. And

f̂ k =
fk

J
, F̂k =

fkekξ

J
, Ĝk =

fkekη

J
, Ω̂k = − fk − f eq

k
τ J

, (3.2)

where

J =

∣∣∣∣∣∣∣∣

∂ξ

∂x
∂ξ

∂y
∂η

∂x
∂η

∂y

∣∣∣∣∣∣∣∣
,

{
ekξ = ξxekx + ξyeky,
ekη = ηxekx + ηyeky,





ξx = Jyη ,
ξy = −Jxη ,
ηx = −Jyξ ,
ηy = Jxξ .

(3.3)

The semi-discretized form of Eq. (3.1) is

1
J

∂ fk,i,j

∂t
= −

[
F̂

k,i+ 1
2 ,j
− F̂

k,i− 1
2 ,j

]
−

[
Ĝ

k,i,j+ 1
2
− Ĝ

k,i,j− 1
2

]
− Ω̂k,i,j, (3.4)

where i and j are indices of a cell, F̂k,i±1/2,j and Ĝk,i,j±1/2 are numerical fluxes on the
interfaces of a cell (i, j). They can be computed with a Riemann solver. For Eq. (3.1),
the exact Riemann solver is available and cheap since the convective terms are linear.
F̂k,i+1/2,j for instance, can be given as

F̂
k,i+ 1

2 ,j
=





( fL)k,i+ 1
2 ,j

(
ekξ

J

)

i+ 1
2 ,j

if ekξ ≥ 0

( fR)
k,i+ 1

2 ,j

(
ekξ

J

)

i+ 1
2 ,j

if ekξ ≤ 0
(3.5)
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where fL and fR are the distribution functions just on the left and right side of the
interface (i + 1/2, j) . In this work, they are determined by the third order MUSCL
with the smooth limiter to extrapolate the value of f n

α on the two sides of an interface





( fL)k,i+ 1
2 ,j

= fα,i,j +
{ s

4
[(1− κs) ∆− + (1 + κs) ∆+]

}
i

,

( fR)
k,i+ 1

2 ,j
= fα,i+1,j −

{ s
4

[(1− κs) ∆+ + (1 + κs) ∆−]
}

i+1
,

(3.6)

where κ = 1/3 and s is the Van Albada limiter [15]

s =
2∆+∆− + ε2

∆2
+ + ∆2− + ε

.

Here ε is a small number (we set ε=10−6) preventing division by zero in region of null
gradient and

(∆+)i = fk,i+1,j − fk,i,j, (∆−)i = fk,i,j − fk,i−1,j.

With ( fL)i+1/2 and ( fR)i+1/2 , the numerical flux on the interface i + 1/2 can be com-
puted according to the exact Riemann solver, Eq. (3.5). Computing Ω̂k,i,j is easy when
a full explicit time scheme is applied for time advancement. However, in order to re-
solve the dimensionless relaxation time τ, the time step ∆t should be small enough as
compared to τ value.

In this work, the Euler forward scheme is applied for the temporal discretization.
Although it is a first order explicit scheme, it is good enough not only for steady flows
but also for many unsteady problems since the time step ∆t is limited by τ, making
the CFL number very small.

As the lattice of the LB model is fixed, the problems to be simulated should be
normalized to the scale of the lattice. So, dimensionless equations should be used.
There are three independent reference variables, reference density ρre f , length Lre f
and internal energy ere f (note that, this ere f is not a discrete velocity vector). The other
reference and dimensionless variables are defined as follows

Ure f =
√

ere f , tre f =
Lre f

Ure f
, t̆ =

t
tre f

,

x̆ =
x

Lre f
, ρ̆ =

ρ

ρre f
, ĕ =

e
ere f

,

τ̆ =
τ

t0
, λ̆2 =

λ2

ere f
, ŭ =

u
Ure f

,

where τ̆ is the Knudsen number and is very small for inviscid flows (we set τ̆ =
10−4 ∼ 10−3). So the dimensionless time step is seriously limited (for example, ∆t̆ =
1/4τ̆). The value of ere f is very important. It determines Ure f and normalizes e to ĕ
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from which c̆ is computed. In order to make sure that the circle is located inside the
lattice to avoid extrapolation, we need

|ŭ|+ c̆ <
√

2,

where
√

2 is the shortest distance from the original point to the edges of the D2Q13
lattice. Therefore e0 should be big enough. Determining this parameter is easy and it
has a clear physical and mathematical meaning. For safety, ere f can be set a little bit
greater than the maximum specific stagnation internal energy, max(e0), in the whole
flow field. Also, λ2 should be big enough. In our simulations, we set λ2 = ere f for
simplicity. So λ̆2 = 1 and we have the following relations





ρ̆ =
13
∑

i=1

2
∑

v=1
f eq
iv ,

ρ̆ŭ =
13
∑

i=1

2
∑

v=1
f eq
iv ei,

ρ̆Ĕ =
13
∑

i=1

[ 2
∑

v=1
f eq
iv

e2
i

2
+ f eq

i2

]
,

and





ĕ = Ĕ− ŭ2

2
,

p̆ = (γ− 1)ρ̆ĕ.

4 Boundary conditions

In our simulations in this work, many boundary conditions are involved, such as sub-
sonic inlet/outlet, supersonic inlet/outlet and adiabatic inviscid wall boundary con-
ditions. For all the boundary conditions, we can use the following way to implement
them. At first, we need to determine mean flow variables (ρ, u, v and e) on the bound-
ary using available means of traditional CFD. Then, we can compute f eq

iv on the bound-
ary according to ρ, u, v and e. Since inviscid flows are considered and viscous effects
(viscous stress, heat conduction and work done by viscous stress) are negligible, the
non-equilibrium part of fi which results in the viscous effects, can be neglected. This
guarantees that the use of f eq

iv on the boundary is accurate enough.

1

2

3

2'

3'

 

Figure 4: Implementation of slip wall condition. The thick line is the wall, cells drew with thin solid lines
are cells in fluid domain and cells drew with dashed lines are ghost cells inside the wall.
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Figure 5: Reflection-projection method for the inviscid wall boundary condition.

We also implement the slip adiabatic wall boundary condition with a reflection-
projection method. On a rectangular grid, it is easy to perform the specular reflecting
operation to implement slip-wall condition because every velocity has its mirror peer.
However, this is not the case for curvilinear grids. We have a little more work to do
for the curvlinear gird. Fig. 4 shows the wall and the nearby cells. The thick line is
the wall, cells drew with thin solid lines are cells in the fluid domain. In order to
determine the distribution function in the ghost cell 2′, we first reflect every velocity
eα in cell 2 to its mirror velocity, e′α. Usually, the reflected velocity e′α is not coincident
with any node in the D2Q13L2 lattice (Fig. 5). So we assign (project) its distribution
function fαv onto all the nodes of the D2Q13L2 lattice. And the accumulated value on
the velocity ej , f jv(2′) is

f jv(2′) =
13

∑
α=1

fαv(2)ϕj
(
e′αx, e′αy

)
.

This projection can keep conservation of moments (mass, momentum, convective flux
of momentum and energy) of the reflected psudo-particles. So, the projected distri-
bution functions have the same physical meaning with the reflected distribution func-
tions. With the same method, the distribution function f jv(3′) in the ghost cell 3′ can
be determined. After that, the flux through the wall can be computed with MUSCL
scheme. It is not difficult to prove that this reflection-projection operation satisfies the
inviscid wall condition and is of the second order accuracy.

This assigning method might be also used to impose boundary conditions of sym-
metric plane and specular-reflection in curvilinear grids.

5 Numerical results

This section presents numerical results of some test cases. All these numerical tests
will verify that our deriving method, models, numerical procedure and implementa-
tion of boundary conditions.
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5.1 Flow past a bump in a channel

First, we consider a flow in the GAMM channel [16] (Fig. 6) which has a 10% circular
bump (h = 0.1) in it. The inflow Mach number is 0.675. Fig. 7 shows the computational
grid of 80× 22.

Figure 6: Schematic view of the GAMM channel.

Figure 7: The structural curvilinear grid of channel with bump of 10%.

In the computation, total energy e0 = 1.96 for u = 0.675 and ρ = 1 of Mach = 0.675.
The reference variables are

ρre f = 1, Lre f = h, τ̆ = 10−3,

ere f = 2 > max(e0) = 1.96, ∆t̆ =
τ̆

4
.

The left boundary is subsonic inlet, the right boundary is set as extrapolating out-
flow, the top and bottom boundaries are slip adiabatic walls. The computed Mach
number contour is shown in Fig. 8. Fig. 9 shows the Mach number profiles on the
walls. The solid dot line in this figure is the result computed by solving Euler equa-
tion with WENO scheme [17]. Obviously, the present results agree well with those
obtained by the Euler solver.

5.2 Flows around Rae2822 airfoil

Two simulations were performed for this case. For the first one, M∞ = 0.75 and
α = 3◦, while for the second one, M∞ = 0.729 and α = 2.31◦. In these simulations,
a 225× 65 C-type grid was used. The boundary conditions are shown in Fig. 10 in
which the outer boundary is about 20 times of the chord length far from the airfoil.

In the computation, for the freestream with u∞ = Ma and ρ∞ = 1, the internal
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Figure 8: Mach number contour of M = 0.675 flow in the channel of 10%.
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Figure 9: Distribution of Mach number along walls.

energy can be determined as

e∞ =
p∞

(γ− 1)ρ∞
=

1/γ

(γ− 1)× 1
=

1
γ(γ− 1)

.

Then the total energy e0 can be obtained according to the Mach number

e0 =
(

1 +
γ− 1

2

)
Ma2.

The reference variables are ρre f = 1, Lre f = chordlength, ere f > max(e0) and τ̆ = 10−3,
∆t̆ = τ̆/4.

The pressure contours of the first simulation are shown in Fig. 11. The shock wave
is captured clearly. And the pressure coefficient profile is presented in Fig. 12 in which
the results computed with the same grid by solving Euler equations with Jameson’s
central scheme [18] are shown as solid symbols. Obviously, the two results agree
excellently well.
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 Figure 10: Boundary conditions of flow around Rae2822 airfoil.
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Figure 11: Pressure contours of flow over
Rae2822 airfoil (M∞ = 0.75 and α = 3◦).

x

C
p

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

2

 
Figure 12: Pressure coefficient profiles of flow
over Rae2822 airfoil (M∞ = 0.75 and α = 3◦).

 
Figure 13: Pressure contours of flow over
Rae2822 airfoil (M∞ = 0.729 and α = 2.31◦).
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Figure 14: Pressure coefficient profiles of flow
over Rae2822 airfoil (M∞ = 0.729 and α =
2.31◦).

For the second simulation, the pressure contours and pressure coefficient profiles
are shown in Figs. 13 and 14 respectively. The solid dots in Fig. 14 are the experimental
data [19] which have some deviations from our results because the flow in the experi-
ment is a turbulent flow in which the shock wave interacts with the boundary layers.
Therefore, its stiffness and location are different from those of the numerical inviscid
simulation.

5.3 Supersonic flow over a two dimensional cylinder

Finally, supersonic flow over a cylinder is simulated for two different Mach numbers
(M∞ = 3, 5). A 61× 81 mesh, shown in Fig. 15, was generated analytically [20] by

{
x = −(

Rx − (Rx − 1)ξ
)

cos
(
θ(2η − 1)

)
,

y =
(

Ry − (Ry − 1)ξ
)

sin
(
θ(2η − 1)

)
,

(5.1)

where Rx = 3, Ry = 6 and θ = 5π/12, while ξ and η change from 0 to 1. The flow
field is initialized according to the free-stream state, while reflection wall conditions
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Figure 15: Mach 3 flow around a cylinder: grid and pressure contours.

are imposed at the surface of the cylinder. On the two supersonic outflow boundaries,
extrapolating method is applied.

The contours of pressure for M∞ = 3 are plotted in Fig. 15. Although the pressure
jump is very large, the shock wave is captured without spurious oscillations. Fig. 16
shows the profile of pressure along the central line, as well as the result computed from
the sixth order compact-Roe scheme with the adaptive filter by Visbal & Gaitonde [21].
Our profile agrees excellently well with theirs. It is noticed that the shock we simu-
lated smears over 3 cells and our profile is not as sharp as the reference data. This is
because the grid used by Visbal & Gaitonde [21] is finer (101× 81 in the upper-half
domain) than the present work and their sixth order scheme is much more accurate
than the third order MUSCL scheme we used here.

For the higher free-stream Mach number case, simulation of flows around blunt
bodies with Roe scheme may produce the so-called ”carbuncle” [22] which ruins the
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Figure 16: Pressure coefficient profile along the central line for Mach 3 flow around a cylinder.
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Figure 17: Pressure contour of Mach 5 flow around a cylinder.

bow shock waves. Some special treatments such as entropy fixing are needed to fix
this problem. The ”carbuncle” phenomenon doses not occur in our LBM simulation
(Fig. 17). The pressure profile and reference data [21] are shown in Fig. 18. The location
of the shock wave agrees excellently well with the semi-empirical value [23] and the
result by Visbal & Gaitonde [21]. Since a much finer grid (201 × 121 in the upper-
half domain) was used in [21], our shock wave is smeared as compared to the data
extracted from [21].

x

p/
p ∞

-1.8 -1.6 -1.4 -1.2 -1
0

5

10

15

20

25

30

35

40

C6F8-ROE

Shock location
Hayes & Probstein

Present method

 

Figure 18: Pressure coefficient profile along the central line for Mach 5 flow around a cylinder.

6 Conclusions

In this work, the D2Q13L2 model is extended to simulate compressible inviscid flows
on general curvilinear coordinate system. D2Q13L2 model is not derived from the
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conventional Maxwellian distribution functions. Instead, it is derived from the simple
circular function. It can allow the adjustment of specific heat ratio. The conventional
FVM is applied to solve the discrete velocity Boltzmann equation. Since the system is
linear, the exact Riemann solver can be used. In addition, an interpolation scheme is
proposed to implement the slip boundary condition on the solid wall. All the numeri-
cal examples demonstrate that the proposed D2Q13L2 model can effectively simulate
compressible inviscid flows with curved boundaries.
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